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Inverse Optimal Design of Input-to-State
Stabilizing Nonlinear Controllers

Miroslav Krstíc, Member, IEEE, and Zhong-Hua Li

Abstract—We show that input-to-state stabilizability (as defined
by Sontag) is bothnecessary and sufficientfor the solvability of a
Hamilton–Jacobi–Isaacs equation associated with a meaningful
differential game problem similar to, but more general than,
the “nonlinear H1” problem. The significance of the result
stems from the fact that constructive solutions to the input-to-
state stabilization problem are available (presented in the paper)
and that, as shown here, inverse optimal controllers possess
margins on input-to-state stability against a certain class of input
unmodeled dynamics. Rather than completion of squares, the
main tools in our analysis are Legendre–Fenchel transformations
and the general form of Young’s inequality.

Index Terms— Backstepping, control Lyapunov functions,
input-to-state stability, nonlinear H1.

I. INTRODUCTION

SIGNIFICANT advances achieved over the last few years
in formulating the “nonlinear ” control theory [2]–[4],

[7], [12]–[18], [23], [27], [37], [39], [40], [41] have not yet
penetrated into control applications because of difficulties as-
sociated with solving the Hamilton–Jacobi–Isaacs (HJI) partial
differential equations. The need to solve the HJI equations can
be avoided by using the inverse optimality approach, origi-
nated by Kalman and introduced into robust nonlinear control
via Freeman’s robust control Lyapunov functions (CLF’s) [8],
[9], [34]. In parallel to nonlinear , the framework of input-
to-state stability (ISS) introduced by Sontag [34] has triggered
efforts toward designing input-to-state stabilizing controllers
[10], [22], [24], [25], [29], [31], [35], [38]. In this paper, we
show that input-to-state stabilizability is both necessary and
sufficient for the solvability of a differential game problem
similar to, but more general than, the nonlinear problem.

Next, we briefly describe the problem addressed in the
paper. We consider the system of the form

(1)

which is said to be input-to-state stabilizable with respect to the
disturbance if there exists a control law which guarantees
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that

(2)

where is a class function and is a class function. In
[24] we showed that an input-to-state stabilizing controller can
be designed if and only if there exists an ISS-CLF. A virtually
identical result was obtained by Sontag and Wang simultane-
ously in [36]. In Section III we show that the controller from
[24] is inverse optimalwith respect to the following differential
game problem:

(3)

where is positive definite and radially unbounded,
is bounded away from zero, and is class . We
also show that if a problem of the form (3) is solvable, then
(1) is input-to-state stabilizable. Our results extend those of
Freeman and Kokotović [10], where the disturbance had to
obey a state-dependent bound and was not penalized in the cost
functional (ISS was achieved by invoking a result of Sontag
and Wang [35] on robustness of ISS systems to a certain class
of state-dependent perturbations).

By the inverse (rather than adirect) differential game
problem, we mean that we are searching for, not only a control
law, but also functions and which must be
meaningful in a well-defined sense. This problem is easier than
the direct one in which and are given, and where one
has to solve an HJI partial differential equation. To motivate
our inverseapproach, we show a simple example where the
HJI equation is not only difficult to solve, butimpossibleto
solve. Consider the scalar system and the differen-
tial game problem , where .
The resulting HJI equation
is not solvable outside of the interval , and
the optimal control law is not defined
outside of this interval either. Contrary to the discouraging
outcome of thedirectproblem, theinverseproblem is solvable,
and in the paper we show several solutions.

Another benefit of inverse optimality is that the controller
remains input-to-state stabilizing in the presence of a certain
class of input unmodeled dynamics which do not have to be
small in the sense, do not have to be linear, and do not
even have to be ISS. Efforts on input unmodeled dynamics
have been intensive over the last few years, starting with
Krstić et al. [26] and followed by Jiang and Pomet [21],
Praly and Wang [31], and Jiang and Mareels [20]. Sepulchre
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et al. [32] were the first in the nonlinear setting to quantify
stability margins to input unmodeled dynamics. They did this
by using inverse optimality and passivity concepts. Our result
presented in Section IV is an extension of their result to the
case with disturbances. Unfortunately, like in the linear case
(even) without disturbances [1], the class of allowable input
dynamics does not include those that increase relative degree
(and thus reduce the control authority at higher frequencies)
such as, e.g., , which are typical actuator dynamics.

If viewed as extensions of “nonlinear ,” the results of
this paper indicate that the restriction to a quadratic penalty
on the disturbance has been a major factor that has prevented
constructivesolutions in the existing nonlinear literature.
In Section V we explore the possibility of retaining a quadratic
penalty on the disturbance by introducingstate-dependent
weighting:

(4)

We show that input-to-state stabilizability guarantees the ex-
istence of an inverse optimal solution with continuous
and takingnonnegativedefinite symmetric values. Unfortu-
nately, there is no guarantee in general that remains
bounded as .

The constructive character of the results of the paper is
illustrated in Sections VI–VIII. Since every ISS-CLF is a
solution to a meaningful HJI equation, we proceed to show
in Section VI how backstepping can be used to generate ISS-
CLF’s. Finally, in Sections VII and VIII we address strict
feedback systems for which disturbance attenuation controllers
have been constructed by Marinoet al. [28], Isidori [14], Krstić
et al. [25], and Pan and Ba¸sar [29], but without a cost on the
control effort. Our solution is the first that puts penalty on
control and is derived from an HJI equation.

All of the controllers designed in this paper guarantee not
only disturbance attenuation of an type (or similar) but also
attenuation of persistent disturbance, a goal not pursued
in the nonlinear literature.

II. ISS AND ISS-CLF’S

In this section we present preliminaries on ISS, stabilizabil-
ity, and ISS-CLF’s.

Let us consider first the nonlinear system

(5)

where is the state, is the disturbance, and
. System (5) is said to beinput-to-state stable (ISS)

[34] if the following property is satisfied:

(6)

where is a class function and is a class function.
A smooth positive definite radially unbounded function

is referred to as an ISS-Lyapunov function for (5)
if there exists a class function such that the following

implication holds for all :

(7)

It was proved by Sontag and Wang [35] that the characteri-
zation (6) is equivalent to the existence of an ISS-Lyapunov
function. An estimate of the gain functionin (6) that follows
from (7) is , where .

Now consider the system which, in addition to the distur-
bance input , also has a control input

(8)

where and . We say that (8) isinput-to-state
stabilizableif there exists a control law continuous
away from the origin with , such that the closed-loop
system is ISS with respect to.

Definition 2.1: A smooth positive definite radially un-
bounded function is called an ISS-CLF
for (8) if there exists a class function such that the
following implication holds for all and all :

(9)

The following theorem establishes equivalence between
input-to-state stabilizability and the existence of an ISS-CLF.
It extends Sontag’s theorem in [33] to systems affine in the
disturbance.

Theorem 2.1 [24]: System (8) is input-to-state stabilizable
if and only if there exists an ISS-CLF.

The proof of this theorem employs the result of the fol-
lowing lemma. The actual construction of a control law is
presented in the proof of Theorem 5.2.

Lemma 2.1:A pair satisfies Definition 2.1 if and only
if

(10)

Proof (Necessity):By Definition 2.1, if and
, then

(11)

Now consider the particular input

(12)

This input satisfies the upper part of the implication (11)

(13)

Therefore, substituting (12) into the lower part of (11), we
conclude that, if and , then

(14)

that is, (10) is satisfied for .
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(Sufficiency): For , using (10) we have

(15)

This completes the proof.
Corollary 2.1: System (5) is ISS if and only if there exist

a smooth positive definite radially unbounded function
and a class function such that

(16)

III. I NVERSE OPTIMAL GAIN ASSIGNMENT

Definition 3.1: The inverse optimal gain assignmentprob-
lem for (8) is solvable if there exist a class function
whose derivative is also a class function, a matrix-
valued function such that for
all , positive definite radially unbounded functions and

, and a feedback law continuous away from
the origin with , which minimizes the cost functional

(17)

where is the set of locally bounded functions of.
The cost functional (17) puts penalty on the state and both

the control and the disturbance. The state-dependent weight
on the control is not allowed to vanish (and is, in

fact, allowed to take infinite values in parts of the state space
where the open-loop system is “well behaved” and zero control
can be used). The penalty on the disturbance is allowed to be
nonquadratic. (The purpose of the “terminal penalty”
is to avoid imposing an assumption that as .)

In the next theorem we provide a sufficient condition
for the solvability of the inverse optimal gain assignment
problem. This theorem is followed by a result in Theorem 3.2,
which shows how to construct a control law that satisfies the
condition in Theorem 3.1 for any nonlinear system that is
input-to-state stabilizable.

Before we start our developments, let us introduce the
following notation: for a class function whose derivative
exists and is also a class function, denotes the transform

(18)

where stands for the inverse function of . Using
integration by parts (Lemma A1-1), it is easy to show that
is equal to the Legendre–Fenchel transform

(19)

which was brought into the control theory by Praly in [30].

Theorem 3.1:Consider the auxiliary system of (8)

(20)

where is a Lyapunov function candidate and is a
class function whose derivative is also a class
function. Suppose that there exists a matrix-valued function

such that the control law

(21)

globally asymptotically stabilizes (20) with respect to .
Then, the control law

(22)

with any solves the inverse optimal gain assignment
problem for (8) by minimizing the cost functional

(23)

for any , where

(24)

Proof: Since the control law (21) stabilizes (20), there
exists a continuous positive definite function
such that

(25)

We then have

(26)

Since is positive definite, and is
a class function (Lemma A1-3), we conclude that
is also positive definite. Therefore, defined in (23) is a
meaningful cost functional that puts penalty on and .
Substituting into (23), it follows that we have (27), as
shown at the bottom of the next page, where

(28)

By Lemma A1-4, can be rewritten as

(29)
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Then by Lemma A2 we have

(30)

and if and only if ,
that is

iff (31)

Thus

(32)

and the “worst case” disturbance is given by (28). The mini-
mum of (27) is reached with . Hence the control law
(22) minimizes the cost functional (23). The value function of
(17) is .

The parameter in the statement of Theorem 3.1
represents a design degree of freedom. The parameter(note
that it parameterizes not only the penalty on the disturbance
but also the penalty on the state, ) indicates that the same
control law is inverse optimal with respect to an entire family
of different cost functionals.

Remark 3.1:Even though not explicit in the proof of The-
orem 3.1, solves the following family of HJI equations:

(33)

parameterized by . It is easily seen from
the proof of the above theorem that for zero initial conditions,

the achieved disturbance attenuation level is

(34)

In the next theorem we design controllers that are in-
verse optimal in the sense of Definition 3.1. We emphasize
that these controllers are not restricted to disturbances with

because they achieve ISS and allow any
bounded (and persistent).

Theorem 3.2:If (8) is input-to-state stabilizable, then the
inverse optimal gain assignment problem is solvable.

Proof: By Theorem 2.1, there exist an ISS-CLF
and a class function such that (9) is satisfied. We now
show that there exist a class function and a control law

of the form (21) such that the auxiliary system (20)
is stabilized. To this end, we define the following Sontag-type
control law :

(35)

where

(36)

We first show that (35) is continuous in on .
Sontag proved in [33] that the function (35) is smooth,
provided its arguments and are such that

(37)

By Lemma 2.1, (37) is satisfied. Therefore, (35) is a smooth
function of and whenever . Since is
continuous and is smooth, the control law (35) is
continuous for .

by (18)]

(27)
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We then show that the control law is an
input-to-state stabilizing controller for (8). The derivative of

is

(38)

where

(39)

which is positive definite because of (37). Therefore, the
control law input-to-state stabilizes (8).

Next we show that there exists a class function
such that the control law globally asymptotically
stabilizes the auxiliary system (20) with respect to . From
(38) it follows that

(40)

Since vanishes at the origin , there exists a
class function such that

(41)

Since is in class , there exists a class
function whose derivative is also a class function,
such that

(42)

Let us define

(43)

From Lemma A1-2 it follows that , which implies that

(44)

Then with (35) we have

[by (44)]

[by (41)]

[by (40)] (45)

which means that (20) is globally asymptotically stabilized.
Since the control law is of the form (21) with

given by

any positive real number
(46)

by Theorem 3.1, the control law is inverse optimal
with respect to the cost functional (23) with the penalty on
the state given by

(47)

The function is positive definite but not necessarily
radially unbounded. We now modify the control law to achieve
a new that is radially unbounded. Let us suppose that

is not radially unbounded. By following the procedure
in [34, p. 440], we can find a continuous function such
that

(48)

and

is radially unbounded. (49)

Let us introduce a new ISS-CLF
(which is positive definite and radially unbounded) and apply
(35). The resulting penalty on control is

(50)

where and
. Thus (50) becomes

(51)

which is radially unbounded. This completes the proof of
Theorem 3.2.

Remark 3.2:We point out that the control law (35) will be
continuous not only away from the origin but also at the origin
if and only if the ISS-CLF satisfies the followingsmall
control property [33]: for any there is a such
that, if satisfies , then there is some

with such that

(52)

If there exists a control law continuous at the
origin, which is input-to-state stabilizing with respect to an
ISS-Lyapunov function , then satisfies the small
control property.

The following example illustrates Theorem 3.2.
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Example 3.1:Consider the system

(53)

Since the system is scalar, we take and get
and . Picking the class function

as , we have , and the
control law based on (35) is

(54)

where

(55)

Now let us choose the class function as ,
from (44) we can take , and from (19) we
get and . The control
is stabilizing for the auxiliary system (20) of (53), which has
the form

(56)

because the derivative of the Lyapunov function along the
solutions of (56) is

(57)

By Theorem 3.1, with , the control (54)
is optimal with respect to the cost functional

(58)

with a value function .
If, instead, we choose the class function as

, we will end up with a different controller as well as a
different (quadratic with respect to) cost functional. Now we
have and the control law based on
(35) becomes

(59)

where

(60)

We keep the class function the same as before, from (44)
we can take , and from (19) we get and

. The control is stabilizing for the auxiliary
system (20) of (53), which has the form

(61)

because the time derivative of along the solutions of
(61) is

(62)

Theorem 3.1 with then tells us that the control
is optimal with respect to the cost functional

(63)

with a value function . This example, where we
are able to achieve inverse optimality with a quadratic penalty
on both players—the control and the disturbance—motivates
the developments in Section V.

Unfortunately, neither in (58) nor in (63) is radially
unbounded (it is only positive definite). In the proof of
Theorem 3.2 we remedy this by redesigning the ISS-CLF
and applying the Sontag formula with the new ISS-CLF.
Fortunately, for this scalar system, it is easy to go a step further
and show that controller (59), written as , where

(64)

is optimal with respect to the cost functional

(65)

where ,
and . From these expressions it is
easy to see that the penalty is quadratic near
and as . A striking feature of the cost
functional (65) is that it has unity weighting on control. In
Section IV, we show that this can always be achieved for
systems that are input-to-state stabilizable, and we derive
stability marginsassociated with this property.

In Section I we stressed that all of the controllers we
derive guarantee ISS, namely, guarantee bounded solutions
for bounded disturbances. For example, (59) guarantees that

.
Next, we show that input-to-state stabilizability is not only

sufficient but also necessary for the solvability of the inverse
optimal gain assignment problem.

Theorem 3.3:If the inverse optimal gain assignment prob-
lem is solvable for (8), then (8) is input-to-state stabilizable.

Proof: We only sketch the proof. If the inverse optimal
gain assignment problem is solvable, then the following HJI
equation is satisfied:

(66)

Then, along the solutions of (8) with a control law
we have

(67)

By Lemma A2, we get

(68)
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which with (66) results in

(69)

Since is positive definite and radially unbounded, (8) with
is ISS.

By combining Theorem 3.2 and 3.3, we get the following
result.

Corollary 3.1: The inverse optimal gain assignment prob-
lem for system (8) is solvable if and only if the system is
input-to-state stabilizable.

IV. STABILITY MARGINS

The main benefit of inverse optimality is that the controller
remains input-to-state stabilizing in the presence of a certain
class of input uncertainties. In this section, we show that

1) to achieve these margins, it is sufficient to make
;

2) can be achieved for systems that are input-
to-state stabilizable.

We first prove the latter statement and then characterize the
margins.

Definition 4.1 (Small Control Property in the Sense of
Janković et al.—SCPJ [19]):An ISS-CLF is said to
be anISS-CLF-SCPJif there exists a continuous control law

such that, for all and all

(70)

and, in addition

(71)

Without (71), this is Sontag’s small control property [33].
Property (71) is weaker than the requirement in Janković et
al. [19] for rank .

Theorem 4.1:If (8) has an ISS-CLF-SCPJ, then the inverse
optimal gain assignment problem is solvable with .

Proof: The proof extends ideas from [32, pp. 104–105]
and [19]. From the proof of Theorem 3.2 we know
satisfies the Isaacs equation

(72)

where is defined in (46) and is positive definite
and radially unbounded. Our task in this proof is to show
that there exist positive definite radially unbounded functions

and and a class function whose derivative
is also in class , such that the following Isaacs equation
is satisfied:

(73)

in which case, according to Theorem 3.1, the control law

(74)

solves the inverse optimal gain assignment problem with
. Since is an ISS-CLF-SCPJ with some

continuous such that

(75)
we have

for (76)

Following the reasoning in [33, pp. 120–121], from (46) we get

(77)

for . For we have
which yields , so (77)

holds for all . The result in [33] (see also [14]),
along with the continuity of and , implies that

is continuous away from . This, along with
(71) and (77), implies that there exists a continuous positive
function such that

(78)

(Such a function always exists since is radially un-
bounded.) Consider

(79)

which is positive definite, radially unbounded (due to the
positiveness of ), and . Multiplying (72) by , we get

(80)

Since is continuous and vanishes at ,
there exists a class function such that

. Similar to the proof of Theorem 3.2, let , where
is a class function with a class derivative selected

so that . Then

(81)

Substituting this into (80) yields

(82)

Thus satisfies the Isaacs equation (73) with
, which is positive definite and radially un-

bounded.
Next, we derive the stability margins. In order to character-

ize the class of allowable input uncertainties, we remind the
reader of the definition ofstrict passivity[6].
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Fig. 1. The composite system (85) is ISS with respect tod.

Definition 4.2: The system

(83)

is said to bestrictly passiveif there exists a positive definite
radially unbounded (storage) function and a class
(dissipation rate) function such that

(84)

for all .
Theorem 4.2:If a controller solves the inverse optimal gain

assignment problem for (8) with , then it is input-
to-state stabilizing for the system

(85)

where and the -system is strictly passive.
In simple words, an inverse optimal ISS controller remains

ISS stabilizing through unmodeled dynamics of the form
where is strictly passive, as depicted in Fig. 1.

Proof: From the assumptions of the theorem we know
that there exist Lyapunov-type functions and such
that

(86)

(87)

with and as in Definitions 3.1 and 4.2. Consider the
following candidate for a composite ISS-CLF:

(88)

Then the control law guarantees that

(89)

Since , it follows that

(90)

By applying Lemma A2 to the last term, we get

(91)

Since and are both radially unbounded, by [35]
the closed-loop system is ISS.

Theorems 4.1 and 4.2 can be combined to obtain the
following corollary.

Corollary 4.1: If (8) has an ISS-CLF-SCPJ, then there
exists a control law that achieves ISS in the presence of input
unmodeled dynamics of the form with and

strictly passive.
By setting , we recover the result in [32]. In the

linear case, this result implies the standard result that inverse
optimal controllers possess infinite gain margins and 60phase
margins [1].

V. RAPPROCHEMENT WITH“NONLINEAR ”

Definition 5.1: The inverse optimal problem for sys-
tem (8) is solvable if there exist a continuous matrix-valued
function such that for all , a
matrix-valued function such that
for all , positive definite radially unbounded functions
and , and a feedback law continuous away from
the origin with , which minimizes the cost functional

(92)

where is the set of locally bounded functions of.
In this definition we perpetuate the now common abuse

of terminology where the term is used both for
disturbance attenuation problems and for dynamic games, both
for linear and for nonlinear systems. An important feature in
Definition 5.1 is that the state-dependent weight (not
present in standard nonlinear formulations) is required
to take finite values for all finite values of the state and it
may even be zero, hence, putting the disturbance in a more
privileged position than in the standard nonlinear results.
We stress that there is nothing strange in being zero at
some or even all because lower means better disturbance
attenuation.

Theorem 5.1:Consider the auxiliary system of (8)

(93)

where is a Lyapunov function candidate and
is a continuous matrix-valued function such that

is locally bounded. Suppose that there
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exists a matrix-valued function such
that the control law

(94)

globally asymptotically stabilizes (93) with respect to .
Then the control law

(95)

with any , solves the inverse optimal problem for
(8) by minimizing the cost functional

(96)

for any , where

(97)

Proof: Since the control law (94) stabilizes (93), there
exists a continuous positive definite function
such that

(98)

and thus
, which is positive definite. By

performing similar steps as in (27) and by completing squares

(99)

where

(100)

The “worst case” disturbance is , and the minimum of
(99) is reached with . The value function of (92) is

.
Remark 5.1:The function solves the following family

of HJI equations:

(101)

and the achieved disturbance attenuation level is

(102)

Theorem 5.2:If (8) is input-to-state stabilizable, then the
inverse optimal problem is solvable.

Proof: The proof is based on the same Sontag-type
formula as that in the proof of Theorem 3.2. The main
difference is that here we have to find a continuous matrix-
valued function such that the control
law globally asymptotically stabilizes (93) with
respect to . According to (40), we can select

(103)

to get

(104)

which means that (93) is globally asymptotically stabilized.
However, given by (103) is not guaranteed to be
bounded at the origin. Fortunately, a modified Lyapunov
function

(105)

where is a class function such that ,
can be used to achieve a continuous . Let us denote

(106)

(107)

Since is a class function, we have

(108)

which by Lemma 2.1 implies that is an ISS-CLF. Let
us now design a new control law of the form (35)
with and replaced by and . This control law
satisfies [similar to (40)]

(109)

where

(110)

is positive definite. Consider

(111)

which is continuous, and the auxiliary system

(112)

Under the feedback law , the time derivative of
along the solutions of (112) is

(113)
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which proves that stabilizes (112). Since
is of the form (94), by Theorem 5.1, solves the
inverse optimal problem. The radial unboundedness of

can be achieved as in Theorem 3.2.
Example 5.1:Consider again (53). The control law (54) is

optimal with respect to the cost functional

(114)

The control law in Example 5.1 achieved a quadratic
penalty on the disturbance but with a state-dependent weight

which is radially unbounded. On one hand, the
radial unboundedness of the weight should not be viewed
as a disadvantage because the control law (54) guarantees
boundedness of for any bounded . On the other hand, we
see from Example 3.1 that it is possible to design a different
control law (59) which achieves a quadratic penalty onwith
a constant (and bounded!) weight [cf. (63)], thus achieving
inverse optimality in the standard “nonlinear ” sense.

This motivates us to attempt to design controllers which are
inverse optimal in the sense of Definition 5.1 but with a weight

that is bounded, rather that just continuous. In the
sequel, we sketch a modification to the proof of Theorem 5.2
which results in a bounded . We start by modifying
(105) to

(115)

where is defined in (41) and is a class function
such that . Although is not guaranteed
to be radially unbounded, it is positive definite and satisfies

(116)

We treat it as a legitimate ISS-CLF and design a control law
using the formula (35). The feedback law is
stabilizing for the auxiliary system (112) with

(117)

Thus is a bounded function. By Theorem 5.1, the
control law minimizes a cost functional of the
form (96). However, the penalty on the state

(118)

is not guaranteed to be radially unbounded because

and

(119)

contain the division by the class function ,
which may make bounded. Moreover, at present it does
not seem possible to systematically modify the Lyapunov func-
tion to get a control law of the type (35) which would
at the same time guarantee that is radially unbounded
and is bounded. Nevertheless, in (118) is positive
definite, which ensures that is penalized, although large
values of may be tolerated.

VI. I NVERSE OPTIMALITY VIA BACKSTEPPING

In the last two sections we showed that both the inverse
optimal gain assignment problem and the inverse optimal
problem reduce to the problem of finding an ISS-CLF. In this
section, we show that integrator backstepping can be used for
systematically constructing ISS-CLF’s.

Lemma 6.1: If the system

(120)

is input-to-state stabilizable with asmoothcontrol law
, then the augmented system

(121)

is also input-to-state stabilizable with asmoothcontrol law.
An outline of the proof of this lemma, originally given in

[24] in the context of modular adaptive nonlinear stabilization,
is provided next for completeness.

Proof: Let us denote the input-to-state stabilizing con-
troller by . It was proven by Sontag and Wang
[35] that a system is ISS if and only if there exist a smooth
positive definite radially unbounded function and class

functions and such that the following “dissipation”
inequality holds:

(122)

We now show that the control law

(123)

achieves input-to-state stabilization of (121) with respect to
an ISS-CLF

(124)

Toward this end, consider

(125)
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By substituting (122) and (123) we get

(126)

Denoting and picking a class function
, we get

(127)

where . Thus, the control law (123) achieves input-to-
state stabilization of (121). To see that is an ISS-CLF,
we choose .

Theorem 6.1:Under the conditions of Lemma 6.1, both
the inverse optimal gain assignment and problems are
solvable for (121) with control laws which are continuous
everywhere.

Proof: The proof is immediate by combining Lemma 6.1
with Theorems 3.2 and 5.2. The continuity at the origin follows
from the fact that in Lemma 6.1 we found a smooth input-
to-state stabilizing control law, which implies that
satisfies a small control property, and therefore the Sontag-
type controllers in Theorem 3.2 and 5.2 are continuous at the
origin.

A recursive application of Lemma 6.1, combined with
Theorems 3.2 and 5.2, leads to the following result for a
representative class of strict-feedback systems [25].

Corollary 6.1: Both the inverse optimal gain assignment
and problems are solvable for the following system:

(128)

VII. D ESIGN FORSTRICT-FEEDBACK SYSTEMS

Since the control laws for strict-feedback systems (128)
suggested by Corollary 6.1 are based on a Sontag-type formula
and are typically nonsmooth (especially at the origin), in this
section we design inverse optimal control laws that aresmooth
everywhere. In addition, they achieve a quadratic penalty on
the disturbance with a constant weight function.

From Theorems 3.1 and 5.1, it follows that in order to solve
the inverse optimal gain assignment and the inverse optimal

problems, it suffices to find a stabilizing controller of the
form (94) for the auxiliary systems (20) and (93), respectively.
For the auxiliary system (20), we choose

(129)

where is an arbitrary positive constant. This amounts to
selecting the weight function in the auxiliary system (93) to
be a constant

(130)

With these choices, the auxiliary systems (20) and (93) take
the same form

...
... (131)

where .
First, we search for an ISS-CLF for (128). Repeated appli-

cation of Lemma 6.1 gives an ISS-CLF

(132)

where ’s are to be determined. For notational convenience
we define and . We
then have

(133)

...

(134)

where

(135)

The functions are sought to make defined in
(132) a CLF for (131). The derivative of along the solutions
of (131) is

(136)
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The choice

(137)

where , results in

(138)

In the derivation of (138), we have used the equality

(139)

We are now at a position to choose the control. We may
choose such that all the terms inside the bracket in (138) are
cancelled and the bracketed term multiplying is equal to

as in [25], but the controller designed in that way is not
guaranteed to be inverse optimal. In order for a controller to be
inverse optimal, according to Theorem 3.1 or Theorem 5.1, it
should be of the form

(140)

where , for all . In light of (128) and
(132), (140) simplifies to

(141)

i.e., we must choose with as a factor.
Since , and each

vanishes at , there exist smooth functions
, such that

(142)

Thus (138) becomes

(143)

where

(144)

A control law of the form (141) with

(145)
results in

(146)

By Theorems 3.1 and 5.1, the inverse optimal gain assignment
and problems are solved with the feedback control law

(147)

Remark 7.1:We point out that the choice of in (137) is
the same as in [29], but the control is chosen differently.
While the controller in [29] cancels all the terms inside the
bracket in (138), our controller does not. As a result, the
controller in [29] achieves only attenuation of the effect of
the disturbances on, while our controller achieves optimality
which includes a penalty on.

Remark 7.2:The choice of as in (137) is not unique.
In fact, the ISS-CLF framework provides more flexibility
in choosing the ’s. For example, another choice is the
following: by using Lemma A3, we can rewrite (136) as

(148)

where . The choice

(149)

results in

(150)

where

(151)

Instead of (146), a control law of the form (141) with

(152)
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results in

(153)

By Theorems 3.1 and 5.1, the inverse optimal gain assignment
and problems are solved with the feedback control law

. The design in this remark is
similar to those in [28] and [25] for steps ,
but different at step where the new design selects control of
the form (141) instead of cancelling the nonlinearities.

VIII. PERFORMANCE ESTIMATES

We now give performance bounds on the error state
and control for the inverse optimal controller designed in
Section VII. The bound that we present is the first bound in
the literature that incorporates the control. Previous bounds
without were given in [28] and [25].

Theorem 8.1:In the closed-loop system (128), (141), the
following inequalities hold:

1)

(154)

2) (155)

where .
Proof i): According to Theorems 3.1 and 5.1, the control

law is optimal with respect to the cost functional

(156)

with a value function

(157)

Therefore

(158)

which yields (154).
ii): Differentiating along the solutions of (128), not-

ing (146), we have

(159)

By the comparison principle, we get (155).
Remark 8.1: If the control law is chosen as in Remark 7.2,

the cost functional is (160), as shown at the bottom of the
page. Instead of (154), we have the performance bound

(161)

The control law from Remark 7.2 also achieves an ISS bound
as in (155).

IX. CONCLUSION

We showed that it is possible to solve a meaningful HJI
equation (and, therefore, solve an inverse optimal -like
problem) if and only if a system is input-to-state stabilizable.
Our results indicate that—for nonlinear systems—it is crucial

(160)
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to move away from quadratic cost functionals, and in particu-
lar, from the quadratic penalty on the disturbance. The benefits
of the inverse optimal approach are that it is constructive and
it guarantees stability margins against some input unmodeled
dynamics.

APPENDIX

Lemma A1: If and its derivative are class func-
tions, then the Legendre–Fenchel transform satisfies the fol-
lowing properties:

1)

(162)

2) (163)

3) is a class function (164)

4) (165)

Proof:

1) Integrating by parts, we get

(166)

which completes the proof.

2) Immediate by differentiating the second expression in
1), and then inverting and integrating the result.

3) Obvious from the second expression in 1) because
is a class function.

4) Follows by direct substitution into (162).

Lemma A2 (Young’s Inequality [11, Th. 156]):For any
two vectors and , the following holds:

(167)

and the equality is achieved if and only if

that is, for (168)

Lemma A3: For vectors , the following identity
holds:

(169)
where .

Proof: Since

(170)

and

(171)

we have that

(172)

Noting that

(173)

we get

(174)

which is (169).
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[25] M. Krstić, I. Kanellakopoulos, and P. V. Kokotović, Nonlinear and
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