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Inverse Optimal Design of Input-to-State
Stabilizing Nonlinear Controllers

Miroslav Krsti€, Member, IEEE and Zhong-Hua Li

Abstract—We show that input-to-state stabilizability (as defined that
by Sontag) is bothnecessary and sufficierfbr the solvability of a
Hamilton—Jacobi-Isaacs equation associated with a meaningful lz(t)| < B(|z(0)|,1) +X<
differential game problem similar to, but more general than, -
the “nonlinear H..” problem. The significance of the result
stems from the fact that constructive solutions to the input-to- Whereg is a classkCL function andy is a classk function. In
state stabilization problem are available (presented in the paper) [24] we showed that an input-to-state stabilizing controller can
and that, as shown here, inverse optimal controllers possesspe designed if and only if there exists an ISS-CLF. A virtually

margins on input-to-state stability against a certain class of input . . . . )
unmodeled dynamics. Rather than completion of squares, the identical result was obtained by Sontag and Wang simultane

main tools in our analysis are Legendre—Fenchel transformations OUSIY i_n (36]. In S_eCtiQn Il we show that the _Cont_m”er frlom
and the general form of Young’s inequality. [24] isinverse optimalvith respect to the following differential

game problem:

s ld0l) @
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Index Terms— Backstepping, control Lyapunov functions,
input-to-state stability, nonlinear H.

wtswp [ )+ Rl =) @

| INTRODUCTION wherel(z) is positive definite and radially unboundef; ()|

SIGNIFICANT advances achieved over the last few yeais bounded away from zero, ang(|d|) is class ... We
n formulating the “nonlinea#{,” control theory [2]-[4], also show that if a problem of the form (3) is solvable, then
[7], [12]-[18], [23], [27], [37], [39], [40], [41] have not yet (1) is input-to-state stabilizable. Our results extend those of
penetrated into control applications because of difficulties asreeman and Kokoto&i[10], where the disturbance had to
sociated with solving the Hamilton-Jacobi-Isaacs (HJI) partiabey a state-dependent bound and was not penalized in the cost
differential equations. The need to solve the HJI equations cimctional (ISS was achieved by invoking a result of Sontag
be avoided by using the inverse optimality approach, origind Wang [35] on robustness of ISS systems to a certain class
nated by Kalman and introduced into robust nonlinear contref state-dependent perturbations).
via Freeman’s robust control Lyapunov functions (CLF’s) [8], By the inverse (rather than adirect) differential game
[9], [34]. In parallel to nonlineaf{., the framework of input- problem, we mean that we are searching for, not only a control
to-state stability (ISS) introduced by Sontag [34] has triggeréaly, but also functiong(z), R»(z), and~(|d|) which must be
efforts toward designing input-to-state stabilizing controlleisieaningful in a well-defined sense. This problem is easier than
[10], [22], [24], [25], [29], [31], [35], [38]. In this paper, we thedirect one in whichl, R,, and~ are given, and where one
show that input-to-state stabilizability is both necessary amds to solve an HJI partial differential equation. To motivate
sufficient for the solvability of a differential game problemour inverseapproach, we show a simple example where the
similar to, but more general than, the nonlingag, problem. HJI equation is not only difficult to solve, butnpossibleto
Next, we briefly describe the problem addressed in tkglve. Consider the scalar systém- «+z2d and the differen-

paper. We consider the system of the form tial game probleninf, sup, [~ (z*+u*—~?d?), wherey > 0.
The resulting HJI equatiotiz*/~? — 1)(0V/dz)* = —4a?
= f(z)+ g1(x)d + g2(x)u (1) is not solvable outside of the interval ¢ (—,/7,,/7), and

the optimal control lawu* = —yz/+/+% — z* is not defined

which is said to be input-to-state stabilizable with respect to tiggitside of this interval either. Contrary to the discouraging
disturbanced if there exists a control law which guaranteegutcome of thelirect problem, theénverseproblem is solvable,
and in the paper we show several solutions.
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et al. [32] were the first in the nonlinear setting to quantifymplication holds for allz # 0:

stability margins to input unmodeled dynamics. They did this 2| > p(|d])

by using inverse optimality and passivity concepts. Our result -

presented in Section IV is an extension of their result to the

case with disturbances. Unfortunately, like in the linear case %[f(x) +g1(z)d] <0. 7)

(even) without disturbances [1], the class of allowable inpytyas proved by Sontag and Wang [35] that the characteri-
dynamics does not include those that increase relative deggggqn (6) is equivalent to the existence of an ISS-Lyapunov
(and thus reduce the control authority at higher frequencigghction. An estimate of the gain functignin (6) that follows
such as, e.g1/(1+ pus), which are typical actuator dynamics ,om (7)isx = a7 Loasop, wherea, (|z]) < V(z) < ao(|z]).

If viewed as extensions of “nonlinedt..,,” the results of  Now consider the system which, in addition to the distur-
this paper indicate that the restriction to a quadratic penajynce inputd, also has a control input

on the disturbance has been a major factor that has prevented .

constructivesolutions in the existing nonlinedt.. literature. &= f(z) + g1(x)d+ g2(2)u (8)
In Section V we explore the possibility of retaining a quadrati\%,hereu € IR™ and f(0) = 0. We say that (8) input-to-state
penalty on the disturbance by introducirggate-dependent g pjjizapeif there exists a control law = a(x) continuous

weighting away from the origin with(0) = 0, such that the closed-loop
oo system is ISS with respect
igfsup/ [[(z) + uT Ro(z)u — d" Ry (z)d]. (4) Definition 2.1: A smooth positive definite radially un-
4 Jo bounded functionV : IR* — IR, is called an ISS-CLF
We show that input-to-state stabilizability guarantees the e (8) if there exists a clas&’,, function p such that the
istence of an inverse optimal solution wiffy () continuous following implication holds for allz 0 and alld € IR":

and takingnonnegativedefinite symmetric values. Unfortu- lz| > p(|d])

nately, there is no guarantee in general thatz) remains I

bounded agz| — oc. inf {L;V + Ly, Vd+ Ly, Vu} <O0. 9)
The constructive character of the results of the paper is uehR™

illustrated in Sections VI-VIII. Since every ISS-CLF is a The following theorem establishes equivalence between
solution to a meaningfu] HJI equation’ we proceed to Shoiwput-to—state stabilizability and the existence of an ISS-CLF.
in Section VI how backstepping can be used to generate I95extends Sontag’s theorem in [33] to systems affine in the
CLF's. Finally, in Sections VIl and VIII we address strictdisturbance.
feedback systems for which disturbance attenuation controllerstTheorem 2.1 [24]: System (8) is input-to-state stabilizable
have been constructed by Mariabal.[28], Isidori [14], Krstic  if and only if there exists an ISS-CLF.
et al. [25], and Pan and B [29], but without a cost on the The proof of this theorem employs the result of the fol-
control effort. Our solution is the first that puts penalty ofwing lemma. The actual construction of a control law is
control and is derived from an HJI equation. presented in the proof of Theorem 5.2.

All of the controllers designed in this paper guarantee notLemma 2.1:A pair (V, p) satisfies Definition 2.1 if and only
only disturbance attenuation of @ type (or similar) but also if
:;tt(fﬁéja:;[:)onr:ir?égs_;istlﬁgé?u)rglsturbance, a goal not pursued L, V(z)=0= L;V(x)+ |Lg1V(a:)|p L(jz]) < 0,

Yz Z20. (10)
Il. 1SS AND ISS-CLF’S Proof (Necessity):By Definition 2.1, if x # 0 and
. ) o . LV =0, then
In this section we present preliminaries on ISS, stabilizabil-
ity, and 1SS-CLF's. |z| = p(|d])
Let us consider first the nonlinear system 4
LV + L, Vd<O. (11)
&= f(z)+g1(x)d (5) Now consider the particular input
T
h " is the stat " is the disturb , and Ly V) _
wherexz € IR™ is the stated € IR" is the disturbance, an d—( g ) (). (12)

f(0) = 0. System (5) is said to bmput-to-state stable (ISS) T L,V

[34] if the following property is satisfied: This input satisfies the upper part of the implication (11)

lz(8)] < B(|=(0)],%) +x< sup Id(T)I> (6) plldl) = lzl. (13)
0<r<
=7t Therefore, substituting (12) into the lower part of (11), we
where 3 is a classk£ function andy is a classk function. conclude that, ifr # 0 and L,V = 0, then
A smooth positive definite radially unbounded functidh: L.V 4lL V]t 0 14
IR™ — R, is referred to as an I1SS-Lyapunov function for (5) A | o |p (=) < (14)
if there exists a clas&’., function p such that the following that is, (10) is satisfied fox # 0.
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(Sufficiency): For |x| > p(|d]), using (10) we have Theorem 3.1:Consider the auxiliary system of (8)
T
inf{L;V +L, Vd+ L, Vu . Ly V(z)
” { f g g } i = f(a:) +gl($)€’y(2|LglV|)(g—2) —i—gg(a:)u
<inf {L;V +|Ly,V|ld] + Ly, Vu} Lo, V]
" 20
5i%f{LfVJr|Lglv|p—1(|x|)+Lg2Vu} (20)
<. (15) where V(z) is a Lyapunov function candidate andis a

class K, function whose derivativey is also a classC,,
This completes the proof. g function. Suppose that there exists a matrix-valued function

Corollary 2.1: System (5) is ISS if and only if there existf2(z) = Rz(z)* > 0 such that the control law
a smooth positive definite radially unbounded functiétw) _ _ -1 T
and a classC., function p such that u=ofn) = —Ra(2) 7 (Ly, V) (21)

globally asymptotically stabilizes (20) with respect ¥qx).

LyV(z)+ |Lg, V(2)|p7H(|2]) <0, Yz #£0. (18)  Then, the control law

% _ —1 T
[Il. I NVERSE OPTIMAL GAIN ASSIGNMENT u=a"(z) = pa(z) = 4R, (ng V) (22)

Definition 3.1: The inverse optimal gain assignmeptob- with any 3 > 2 solves the inverse optimal gain assignment
lem for (8) is solvable if there exist a clags,, functiony problem for (8) by minimizing the cost functional
whose derivativey’ is also a clasdC,, function, a matrix-
valued functionR,(x) such thatRy(z) = Ra(z)* > 0 for J(u) = sup { lim |:2/3V(x(t))

all z, positive definite radially unbounded functioi{s:) and deD |t

E(z), and a feedback law = «(x) continuous away from ¢ T |d]|

the origin witha(0) = 0, which minimizes the cost functional + /0 o) +u” Ra(z)u = Sy ) )T
(23)

J(w) :Sup{lim {E(x(t))—i— /0 t(l(a:)

deD [t— for any A € (0,2], where

+ut Ro(z)u — y(|d|)) d’/':| } (A7) Uz) = =2B[LsV +4v(2|Lg, V]) = Lg, VRS (Lg, V)']
+ (2= Ny (2|Lg, V]) + B(B — 2)Lg,

whereD is the set of locally bounded functions of -1 T
The cost functional (17) puts penalty on the state and both X Vi (Lg2 V) ) (24)
the control and the disturbance. The state-dependent weight proof: Since the control law (21) stabilizes (20), there
R(x) on the controly is not allowed to vanish (and is, inexists a continuous positive definite functiéh : R™ — IR,
fact, allowed to take infinite values in parts of the state spaggch that
where the open-loop system is “well behaved” and zero control . T
can be used). The penalty on the disturbance is allowed to BeV +£7(2|Ly, V|) = Ly, VR (Lg, V)™ < —W(x). (25)
nonquadratic. (The purpose of the “terminal penalB(’z(t))

is to avoid imposing an assumption thdt) — 0 ast — oc.) We then have

In the next theorem we provide a sufficient condition Iz) > 2/3W(a:)+/3(2—)\)£fy(2|Lg1V|)
for the solvability of the inverse optimal gain assignment 1 T
problem. This theorem is followed by a result in Theorem 3.2, + /(8 = 2)Lg, V Ry (ngv) : (26)

which shows how to construct a control law that satisfies tl%qnce A<2,8>2 W
—_— b) —_ ?

condition in Theorem 3.1 for any nonlinear system that |§ classK... function (Lemma A1-3), we conclude théts)
input-to-state stabilizable. is also positive definite. Thereford(u) defined in (23) is a

Before we start our developments, let us introduce ”?ﬁeaningful cost functional that puts penalty enw, and d.

following notation: for a clas«’,,, functiony whose derivative Substituting!(z) into (23), it follows that we have (27), as
exists and is also a class,, function,Zy denotes the transform shown at the bottom of the next page, where

ey(r) = r(y)7Hr) = H{(Y)THr) (18) (L V)T

, d*(x) = A\(Y) 7 (2] Lg, V]) LoV
where(y")~1(r) stands for the inverse function 81’(}1’—2 Using g

integration by parts (Lemma Al-1), it is easy to show that By | emma A1-4,1I(d, d*) can be rewritten as
is equal to the Legendre—Fenchel transform

. d d*
N H(d,d):_7<¥>_g,}/<7/<|)\|>>
Iy(r) = / (Y7 (s)ds (19) y
i (141 @) d
! i i * ST (29)
which was brought into the control theory by Praly in [30]. X ) A A

(z) is positive definite, andy is

(28)
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Then by Lemma A2 we have the achieved disturbance attenuation level is

1(d, d") < —7@) _zy<¢<|d; |) %
(

/0 00[1(35) +ul Ry(z)u] dt < A /0 Oofy<7> dt.  (34)

—0 (30) In the next theorem we design controllers that are in-
o verse optimal in the sense of Definition 3.1. We emphasize

that these controllers are not restricted to disturbances with

andI1(d,d*) = 0 if and only if { = CORCUC Y JZ24(|d]) dt < oo because they achieve ISS and allow any
that is bounded (and persistent)
11(d,d") = 0 it d— d. 31) Theorem_3.2:|f (_8) is |_nput-t0-state stab_lllzable, then the
inverse optimal gain assignment problem is solvable.
Thus Proof: By Theorem 2.1, there exist an ISS-CUFx)
o0 and a classC., function p such that (9) is satisfied. We now
Sup/ I(d,d")dt =0 (32) show that there exist a clas,, function~ and a control law
deD Jo

u = a(z) of the form (21) such that the auxiliary system (20)
and the “worst case” disturbance is given by (28). The minis stabilized. To this end, we define the following Sontag-type
mum of (27) is reached with = a*. Hence the control law control law . = «,(z):

(22) minimizes the cost functional (23). The value function of AT Ly V(Lgy VIT)

(A7) is J*(z) = 28V (x). O w,={" v LgyV(Lgo V)T (L V)T, (Lg, V)T #£0
The parameter3 > 2 in the statement of Theorem 3.1 0, (Lge, V)T =0

represents a design degree of freedom. The paramdteate (35)

that it parameterizes not only the penalty on the disturbance
but also the penalty on the statég)) indicates that the sameWhere
control law is inverse optimal with respect to an entire family w=LsV 4Ly V|p~(|z]). (36)
of different cost functionals.

Remark 3.1: Even though not explicit in the proof of The- We first show that (35) is continuous in on IR™ \ {0}.
orem 3.1,V (z) solves the following family of HJI equations: Sontag proved in [33] that the function (35) is smooth,
provided its arguments and L, V' are such that

I -1 T
LV = 5LeVRa(@)™ Ly, V) L,V =0 = w<0. 37)
A l
+ 5(7(2|LQIV|) + % =0 (33) By Lemma 2.1, (37) is satisfied. Therefore, (35) is a smooth

function of w and L,V wheneverz # 0. Sincew(z) is
parameterized by, A) € [2,00) x (0, 2]. Itis easily seen from continuous andL,, V(z) is smooth, the control law (35) is
the proof of the above theorem that for zero initial conditiongpntinuous forz # 0.

t
J(u)=sup { lim [2/3V(x(t)) + / <— 20L;VEMA(2| Ly, V]) +8°Ly, VR Ly, V)
0

decD t—oo

- naon(8) ]

r t t
=sup { Jim |2V (2 (1)) - 23 /0 (LyV+Lg Vd+Ly,Vu) dr+ /0 (W Rou+26Lg, Vu+ B2Ly, VR (Lg, V) ) dr

dcD
t
- / </3m<%) - 2/3Lg1Vd+/3)\£fy(2|LglV|)> d’/':|}
0

= sup { lim :2/3V(a:(t)) - 2/3/{: av + /Ot(u — o) Ry(u — a*)dr — /J/Ot [)«y(%) - )\fy((fy’)_l(2|LglV|))

decD t—oo

2\ Lo V] (2L, V) —Lde)} dv}} by (18)]

=28V (x(0)) + /Ooo(u —a") T Ro(u— a*) dt

o [ (2) () -4(5) o o]

I(d,d*)
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We then show that the control law = fa,(z) is an by Theorem 3.1, the control law = «;(z) is inverse optimal
input-to-state stabilizing controller for (8). The derivative ofvith respect to the cost functional (23) with the penalty on
Vis the state given by

. 1 _
Veemsg = LV 4 Lo Vd= S(LsV + Lo VIpT D) i) =a[Wi(a) + Lo, V]p~ (J2]) - (2] Lo V])] = 4W (2)
L Loy (L)) _2LMP%VL2 (L, V (L, V)")? (47)

=5 LV + |Lg1V|p ()

l\Dl'—‘

The function [(z) is positive definite but not necessarily
radially unboundedWe now modify the control law to achieve
- _\/w2 (Lg, V(L V) ) a new!(x) that is radially unbounded. Let us suppose that
W (z) is not radially unbounded. By following the procedure
+Lg1Vd |Lg1V|P () in [34, p. 440], we can find a continuous functief(-) such

< —W(z) — |Lg, V| [p~ (lz]) = |d]] (38) that
where W(r) 21, ¥r>0 (48)
=_|- 2 L L 39
W (z) [ w+\/w (Lg, V( g2V) ) (39) and
which is positive definite because of (37). Therefore, the , ) )
control lawu = 1a,(z) input-to-state stabilizes (8). 7 (V(2))W (=) is radially unbounded. (49)
Next we show that there exists a claks, function ~ V)
such that the control law = %, (z) globally asymptotically Let us introduce a new ISS- CLF (z) = [, " n/(
stabilizes the auxiliary system (20) with respecttr). From (which is positive definite and radlally unbounded) and apply
(38) it follows that (35). The resulting penalty on control is
LisgooeV + Lo Vo™ (l2l) = =W (). (40) .

l(z) > 4W (z) _2[—w+\/w2 (Lyg V(L V) ) } (50)
Since|L,, V(z)| vanishes at the origia = 0, there exists a
class K., function = such that . . .
whereL,,V =7/ (V)L,V and® = LyV+|L, V]p~Y(|z|) =

|Lg, V| < w(lzl). (41)  4/(V)w. Thus (50) becomes
Since p~! o 771 is in classK,, there exists a clask, X
function ¢ whose derivative’ is also a clasC. function, i(z) > 2/(V [—w + \/wQ 2(Lg, V (Lgy V) ") }
such that L (V)W ) (V)
= 4n + 27
¢(2r) < 7>p—1(7r—1(7>)). (42) |:\/ - L V(L V) )
w 2 2
Let us define s s
v = L. (43) - \/(“)2 ngv ngv) ) :|
From Lemma A1-2 it follows thatf¢ = ¢, which implies that > 4n (V)W (x) (51)
V< rp M r T . . .
by(@r) < rp= (7 (1)), (44) which is radially unbounded. This completes the proof of
Then with (35) we have Theorem 3.2. O
. Remark 3.2: We point out that the control law (35) will be
V| (20) continuous not only away from the origin but also at the origin
=LyygeeV +4y 2|Lg1V| if and only if the ISS-CLFV () satisfies the followingmall

_1 control property[33]: for any ¢ > 0 there is aé > 0 such
ShprgsV |L91V|p o (|Lg1V|) [oy (44)] that, if z # 0 satisfiesp(|d|) < |z| < §, then there is some
< Lyygee VA |Lg, VIp~H(J2])  [by (42)] w with |u| < ¢ such that

= —W(z ) [by (40)] (45)

which means that (20) is globally asymptotically stabilized.
Since the control lawja,(z) is of the form (21) with
Ry(z) = Ro(z)T > 0 given by

LiyguV + Ly Vd <0. (52)

If there exists a control law: = «(z) continuous at the
origin, which is input-to-state stabilizing with respect to an

2Ly, V(Lyy V)T L,V #£0 ISS-Lyapunov functionV(x), then V(z) satisfies the small
Ry(z) = ]{ w6+ (Lg, V(Lg, V)T)?’ gz (46) control property. 0
any positive real number L,V =0 The following example illustrates Theorem 3.2.
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Example 3.1:Consider the system Theorem 3.1 with3 = A = 2 then tells us that the control
. ) u = as(x) is optimal with respect to the cost functional
& =u—+zd. (53) .
. 5 272
Since the system is scalar, we také = 3z? and get J(w) :Sgp{th—glo {237(0 +/0 <m
L,V =2®andL,V = z. Picking thle cIass}COZ function 202 ,
pasp(r) =r, we havew = |L, V]p~(|z|]) = z*, and the +——d>d¢}} (63)
contro$ I)aw based on (35) is|, VIl ot + Vet 41
with a value function/*(x) = 2z2. This example, where we
u=a,(z) = —(2?+ Vat+ )z = —R#ngV (54) are able to achieve inverse optimality with a quadratic penalty
2 on both players—the control and the disturbance—motivates
where the developments in Section V.
2 Unfortunately, neither in (58) nor in (63) Kx) radially
Ry(x) = P >0, Va. (35 unbounded (it is only positive definite). In the proof of

Theorem 3.2 we remedy this by redesigning the ISS-CLF
Now let us choose the clags,, functionw as#(r) = r®, and applying the Sontag formula with the new ISS-CLF.
from (44) we can take/v(2r) = r*/%, and from (19) we Fortunately, for this scalar system, it is easy to go a step further
get'(r) = Zr® and y(r) = 2lr*. The controlu = % and show that controller (59), written as= —2L,, V', where
is stabilizing for the auxiliary system (20) of (53), which has

. V@) g2 4/ v
the form Vi) :/ 4r” + 21+167 dr (64)
LA, 3 0
rEutT (56) is optimal with respect to the cost functional
because the derivative of the Lyapunov function along the _ R
solutions of (56) is J(u) = Sup {tlgglo {4V($(t))
. —z2 411 t
I (57) + [ —agaal]}b o9
2 0
By Theorem 3.1, with = A = 2, the controk, = as(z) (54)  whered(r) = 46(¢ on~1)(r/2), £(r) = (r* + VI + 15)r5/2,
is optimal with respect to the cost functional andy(r) = (r* + V1 +r5)r3. From these expressions it is
¢ 92 easy to see that the penalty|d|) is quadratic neatl = 0
J(u) = Sup{tﬁ_{go {237(02 +/ <2—\/4—1 and O(|d|1/3) as |d| — oc. A striking feature of the cost
d ) 0 AT+ VI functional (65) is that it has unity weighting on control. In
+ 2w 2—7d4 d (58) Section IV, we show that this can always be achieved for
2 oA T : " )
24+ Vat+1 64 systems that are input-to-state stabilizable, and we derive

stability marginsassociated with this property.

In Section | we stressed that all of the controllers we
derive guarantee ISS, namely, guarantee bounded solutions
afor bounded disturbances. For example, (59) guarantees that
|2(t)] < e *|2(0)] + 3 /|d]|o-

Next, we show that input-to-state stabilizability is not only
sufficient but also necessary for the solvability of the inverse

with a value function*(z) = 2z2.

If, instead, we choose the class,, function p as p(r) =
r1/3, we will end up with a different controller as well as
different (quadratic with respect tf) cost functional. Now we
havew = |L,, V|p~(]z]) = 2° and the control law based on
(35) becomes

w = as(z) = _($4 N 1)$ _ _ingv (59) optimal gain assignmgnt problem. ' .
Ry Theorem 3.3:If the inverse optimal gain assignment prob-
where lem is solvable for (8), then (8) is input-to-state stabilizable.
5 Proof: We only sketch the proof. If the inverse optimal
Ry(z) = ———F—= >0, V. (60) gain assignment problem is solvable, then the following HJI
zt+va® +1 equation is satisfied:

We keep the clask,,, functionw the same as before, from (44)
we can takeéy(2r) = r2, and from (19) we get/(r) = 2r and

2 — g2 — Qs ilizi ili . .
7(r) = r*. The controlu = < is stabilizing for the auxiliary Then along the solutions of (8) with a control law =

1
LiV = L VE (L, V) +67(2 Ly, V]) = =J1(@). (66)

system (20) of (53), which has the form _RQ(a;)—l(Lg V)T we have

i =u+a’ (61) V=L;V—L,VR (L,V) +L,Vd.  (67)
because the time derivative &f(z) along the solutions of By Lemma A2, we get
(61) is

‘ Y d
I s o 6 | LV he VRS L) b LY #(5)

u=2 2 (68)
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which with (66) results in solves the inverse optimal gain assignment problem with
] 1 1] Ry(x) = I. Since V(z) is an ISS-CLF-SCPJ with some
V< _Zl(x) +fy<?> (69) continuousc..(x) such that

. . .. - . . L,V + L,V L,Va. 0, Y 0
Sincel(z) is positive definite and radially unbounded, (8) with * 7 o™ al) + Lo, Vere(w) < v

u=—Ro(z)"1 (L, V)T is ISS. O w (75)
By combining Theorem 3.2 and 3.3, we get the followmgve have

result.
Corollary 3.1: The inverse optimal gain assignment prob- lw] < |Lg2V||ac(w)|7 for w > 0. (76)

lem for system (8) is solvable if and only if the system i
input-to-state stabilizable.

- w1 ae(@)] | L
IV. STABILITY MARGINS Ra(w)™ < <|Lg V[ * 2) = <|L V()| g )t a0

The main benefit of inverse optimality is that the controlle,
remains input-to-state stabilizing in the presence of a certafif L
class of input uncertainties. In this section, we show that ho éé’%%ﬁm c V}ILQI"ChT)QSO:;EQIt( |21 [3; (1s/e2eI alssc()) ([711)])

x
1) o aCh'er these margins, it is sufficient to makSIong with the continuity ofv(z) and Ly, V(z), implies that
5 ?( ) :I b hieved f ‘ that Ro(x)~! is continuous away fronx = 0. This, along with
) Ia(z) can be achieved for systems that are InlouE?l) and (77), implies that there exists a continuous positive
to-state stabilizable.

function ¢(V') such that
We first prove the latter statement and then characterize the 1 .
margins. Ro(x)™ < o(V(@)I,  VzeR™ (78)

Definition 4.1 (Small Control Property in the Sense O(fSuch a function always exists sindé(z) is radially un-
Jankovt et al.—SCPJ [19]):An ISS-CLF V/(z) is said t0 poyunded.) Consider

be anISS-CLF-SCP.f there exists a continuous control law

]i—ollowing the reasoning in [33, pp. 120-121], from (46) we get

a{ w > 0. Forw < 0 we havew + /w2 + (Ly, V(L,, V)T)?2

r N Viz)
u = a.(x) such that, for allz # 0 and alld € IR V(z) :/ o(s)ds (79)
|lz| = p(ld]) L . T
i) whlgh is positive definite, rad.|all)_/ unbounded (due to the
LyV+ Ly, Vd+ Ly, Va(x) <0 (70) Positiveness ob(+)), andCt. Multiplying (72) by o(V'), we get
and, in addition L;V - —|Lg2V| + Ly, V]p 7 ()
|cte ()] 3
fimg e ] < 7 ——oV)W(a) + LV (B = Gon1)
Without (71)., this is Sontag’'s small gontrol property [3.3], % (Lg2 V)TQ(V) < —o(V)W(2). (80)
Property (71) is weaker than the requirement in Jarkew¥i _ . .
al. [19] for rank {-2 (2 g,)T(0)} = dim{u}. Since g(V)L,4, V(z) is continuous and vanishes at= 0,

Theorem 4.1:1f (8) has an ISS-CLF-SCPJ, then the inversiere eXists a class., functioni such thate(V)L,, V()| <
optimal gain assignment problem is solvable with(z) = I. 7(|z[). Similar to the proof of Theorem 3.2, 1§t= ¢(, where
Proof: The proof extends ideas from [32, pp. 104—105@ is a classk, function with a classC., derivative selected
and [19]. From the proof of Theorem 3.2 we kndi(z) SO that{(2r) < rp™H(#7*(r)). Then

satisfies the Isaacs equation K’?(2|Lg1f/| |Lg1V|p_1 F-1 |Lg1f/|
LyV = Ly, VRy(2) ™ (Lg, V)" + Ly, V]~ (Ja]) < [Lg, Vo™ (J2))- (81)
=-W(z) (72)  substituting this into (80) yields
where Ry(x) is defined in (46) andV (z) is positive definite L.V Al
and radially unbounded. Our task in this proof is to show / g 2 gt
that there exist positive definite rgdlally unbound(_ed f_unc/nons < —o(V)W(z) + 203 2|Lg1V|
V(z) andi(z) and a clas¥., function4 whose derivativey R
is also in classK.., such that the following Isaacs equation — |Lg, V] (|z]) £ —o(V)W (). (82)
is satisfied: - - : -
P \ i) Thus V(z) satisfies the Isaacs equation (73) wittx) >
o _ P 712 1 Mps 1y — ) 280(V YW (z), which is positive definite and radially un-
LV = S|L, V|™ + 245(2|Ly, V) = 73 2
VoSl P38 =55 (3 oundea. O

in which case, according to Theorem 3.1, the control law Next, we derive the stability margins. In order to character-
ize the class of allowable input uncertainties, we remind the

u=—_ (ngf/)T, B>2 (74) reader of the definition oftrict passivity[6].
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Sincea > 1/2, it follows that

z = f(z) + g1(z)d + ga(z)v : (z) a A A \d|
ut = —,B(L92V)T Vc S _2—/3 - B¢(|X|) - §£7(2|LQ1V|) + §2|L91V|T
(90)
g w By applying Lemma A2 to the last term, we get
x =f00 + 0w V. < _l@) _ Z(ix)) +7<M>. (91)
. 28 B A
v =a(u* + h(x))

Sincel(z) and(]x|) are both radially unbounded, by [35]
the closed-loop system is ISS. O
Theorems 4.1 and 4.2 can be combined to obtain the

o following corollary.

Definition 4.2: The system Corollary 4.1: If (8) has an ISS-CLF-SCPJ, then there
x = fx)+ g0 exists a control law that achieves ISS in the presence of input
7= h(x) (83)  unmodeled dynamics of the fora(I 4+ P) with « > 1/2 and

‘P strictly passive.

is said to bestrictly passivef there exists &! positive definite By settingd = 0, we recover the result in [32]. In the

radially unbounded (storage) functidri(x) and a classC.. linear case, this result implies the standard result that inverse

(dissipation rate) functio)(-) such that optimal controllers possess infinite gain margins artd@tase

t . . t margins [1].
/0 §Fiido > V(x(£)) = V(x(0)) + / b)) do  (84)
for all w € C° x(0) € R™, ¢ > 0.

Theorem 4.2:1f a controller solves the inverse optimal gain Definition 5.1: The inverse optimal}{.. problem for sys-
assignment problem for (8) witk,(z) = I, then it is input- tem (8) is solvable if there exist a continuous matrix-valued

Fig. 1. The composite system (85) is ISS with respeci.to

V. RAPPROCHEMENT WITH“N ONLINEAR Hoo”

to-state stabilizing for the system function Ry () such thatR;(x) = Ri(x)" > 0 for all z, a
. 3 matrix-valued functionR,(x) such thatRs(z) = Re(z)T > 0
& = f(@) +g91(2)d + ga(w)alu + ) for all z, positive definite radially unbounded functiofis:)
x=S00+90)u,  g="hx) (85) andE(x), and a feedback law = «(x) continuous away from

wherea € [1/2,00) and thex-system is strictly passive. the origin with«(0) = 0, which minimizes the cost functional

In simple words, an inverse optimal ISS controller remains {

ISS stabilizing through unmodeled dynamics of the form J(u) = sup
deD

t—oo

t
lim [E(a:(t))—i—/ (I(z)
a(l +P) whereP is strictly passive, as depicted in Fig. 1. 0
Proof: Erom the assumptions (_)f the theorem we know + UTRQ(x)u _ dTRl(x)d) d’/':|} (92)
that there exist Lyapunov-type functiof¥x) andV(x) such

that
whereD is the set of locally bounded functions of

LV — §|Lg2V|2 = —lé—x) - éEfy(2|Lg1V|) (86) In this definition we perpetuate the now common abuse
; . g2 of terminology where the tern¥., is used both forl,
LV +LgVu < =(Ix]) + 9" u (87) disturbance attenuation problems and for dynamic games, both
and+ as in Definitions 3.1 and 4.2. Consider théor linear and for nonlinear systems. An important feature in
Definition 5.1 is that the state-dependent weight(x) (not
present in standard nonline&f., formulations) is required

with 1, ~,
following candidate for a composite ISS-CLF:

Velz,x) =V(z)+ %V(X). (88) to take finite values for all finite values of the state and it
A may even be zero, hence, putting the disturbance in a more
Then the control law* = —3(L,, V)T guarantees that privileged position than in the standard nonlingéy, results.

We stress that there is nothing strangdii(z) being zero at

Ve=LsV+ Lo VdtaLg,Vu some or even alt because loweR; means better disturbance

+ aLg, Vi + %(Lff/ + LyVu*) attenuation.
£ Theorem 5.1:Consider the auxiliary system of (8)
<@ <1 - a>/3|L V|’
Cow A2 N b= (@) + 0@ Ri(2) " (Lo V@) + ol (99)

A y
B §£7(2|L91V|) + Lo VdtaleVy whereV(z) is a Lyapunov function candidate ar¢} (z) =
_ LT — T Ri(z)T > 0 is a continuous matrix-valued function such that
b(|x]) + B(Lg V)" )- (89) -u = )
/31/(|X|) i (=ALeV)") Ry(z)7Y(Ly, V(2))" is locally bounded. Suppose that there
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exists a matrix-valued functiomz(z) = Ra(z)T > 0 such Proof: The proof is based on the same Sontag-type
that the control law formula as that in the proof of Theorem 3.2. The main

_ _ 1 T difference is that here we have to find a continuous matrix-

u=ofz) = —Re(@)™ (Lg V) (94) valued functionR; (z) = R;(z)T > 0 such that the control

globally asymptotically stabilizes (93) with respect ¥z). aw u = ja,(x) globally asymptotically stabilizes (93) with
Then the control law respect toV'(x). According to (40), we can select

* — T

u=a*(z) = falr) = =Ry (Lg,V) (95) Ri(z) = Ri(x)t =1 |Lf(1|v||) >0 (103)
P T

with any 3 > 2, solves the inverse optim&l., problem for

(8) by minimizing the cost functional to get )
¢ Lppg ooV + Ly, VR (Lg, V)
= sup { lim |25V (a(t ! 3
J(w) 3‘;{;{&&[ AV (a( ))+/0 (U(=) = LyypesV + |L V]o Mz = -W(z)  (104)

4 hich means that (93) is globally asymptotically stabilized
TR _ParR d) d ” 96) Whic globally asymp y :
tu By (z)u A 1(@) 4 (%6) However, Ri(x) given by (103) is not guaranteed to be

for any A € (0,2], where bounded at the origin. Fortunately, a modified Lyapunov

function
l(z) = —=28[L;V + Ly, VR (L, V) ' . V)
plm V(z) = / p~H g () dr (105)
- L, VR, (Lg2 V) ] 0
+B(2 = N Ly, VR Ly, V)T whereas(-) is a classC, function such thaV’ (z) < as(|z]),
L T can be used to achieve a continud@gx). Let us denote
+0(B = 2)L, VR (Lg, V)™ 97) Ly, ¥ (o (V) Ly V (106)
g2 =P Xy g2

Proof: Since the control law (94) stabilizes (93), there

A % o o—1
exists a continuous positive definite functiéi : IR — IR =1LV + |L91V|p (=)

such that =p oz ' (V))w. (107)
LV + LQIVRl_l(LmV)T — ngvggl(ngv)T < -W(z) Sincep'oay" is a classk,, function, we have
(98) L,V=0= &=0 (108)

and thusi(z) > 28W(z) + 3(2 — A)Lg, VR (L, V)™ + which by Lemma 2.1 implies thak'(z) is an ISS-CLF. Let
B(B — 2)Lg,VR;*(Lg, V)T, which is positive definite. By us now design a new control law/= &, (x) of the form (35)
performing similar steps as in (27) and by completing squareth ,,V andw replaced byL,,V and&. This control law

o0 satisfies [similar to (40)]
J(u) = 28V (x(0)) +/0 (u— a*) ' Ro(u — o) dt

/ LHgZaZ_SV + Ly, Vo™ (Jz]) = =W (x) (109)
_p inf {/ (d—=d")TRy(d - d*)dt} (99) where
Adep | J, .
2 ~ ~ -~ Ty 2
where W(.’L’) = 5 [—w + \/CUQ + (ngv(ng V) ) (110)
d* = AR (Ly, V)T. (100) is positive definite. Consider
The “worst case” disturbance &= d*, and the minimum of . - Ly, V| N |Lg, V|
(99) is reached with, = «*. The value function of (92) is Fy(z) = Ry(x)” = Ip_1(|:1:|) =17 oz (V) o~ L(|z|)
J*(z) = 26V (x). _ _ O < I|Ly, V| (111)
Remark 5.1: The functionV () solves the following family
of HJI equations: which is continuous, and the auxiliary system
o a -1 AT
LV - ngz V Ry(z) " (Ly, V)T i = f(z) +g1(x)Ri(z) " (Lg, V) + g2(z)u. (112)

Under the feedback law = }&,(z), the time derivative of

A _ r  lx) -
+5Lg VEi(2) HLg V) + o5 " 0 (101) ¥(z) along the solutions of (112) is

and the achieved disturbance attenuation level is V= Ly gaV 4 Lo VR (L, )t
00 3 oo _ T
| @+ Rt < § [T m@ad 02 L par oM (L)
0 A 0 - f—|—g2% + g1 1 —1 L.V
0 P (a2 (V)) | g1 |

_ R ¥ |, —1
Theorem 5.2:If (8) is input-to-state stabilizable, then the o ijgz%VJr |L91V|p ()
inverse optimalH., problem is solvable. =-W(x) (113)
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which proves that, = a,(z) stabilizes (112). Sincgd,(z) and
is of the form (94), by Theorem 5.1 = &;(x) solves the

-1/, -1
inverse optimalH., problem. The radial unboundedness of o= (o2 (V) w (119)
I(x) can be achieved as in Theorem 3.2. O 1+ 7 (a7 (V)
Example 5.1: Consider again (53). The control law (54) is
optimal with respect to the cost functional contain the division by the clask., function m(ay*(V)),
. which may make(z) bounded. Moreover, at present it does
. 2 ' 227 not seem possible to systematically modify the Lyapunov func-
J(u) =sup< lim |2z(¢)" + _ . P Yy y yap
d ([t o \zZ+Vazt+1 tion V(z) to get a control law of the type (35) which would

2u? 252\ 4 114 at the same time guarantee tHAét)A is radially unbounded
+ 24Vrirl v T 114) and R; (z) is bounded. Neverthelesg;r) in (118) is positive

i ) definite, which ensures that is penalized, although large
The control law in Example 5.1 achieved a quadratigy|,es ofz may be tolerated.

penalty on the disturbance but with a state-dependent weight

Ri(z) = z* which is radially unbounded. On one hand, the

radial unboundedness of the weight should not be viewed  VI. INVERSE OPTIMALITY VIA BACKSTEPPING

as a disadvantage because the control law (54) guarantegs the last two sections we showed that both the inverse
boundedness of for any boundedi. On the other hand, we gptimal gain assignment problem and the inverse optital

see from Example 3.1 that it is possible to design a differeptoblem reduce to the problem of finding an ISS-CLF. In this
control law (59) which achieves a quadratic penaltydonith  section, we show that integrator backstepping can be used for
a constant (and bounded!) weight [cf. (63)], thus achieving/stematically constructing ISS-CLF’s.

inverse optimality in the standard “nonlineaf,,” sense. Lemma 6.1:If the system
This motivates us to attempt to design controllers which are
inverse optimal in the sense of Definition 5.1 but with a weight &= f(x)+ g1(x)d + g2(x)u (120)

Ry (z) that is bounded rather that just continuous. In the
sequel, we sketch a modification to the proof of Theorem 5 input-to-state stabilizable with smoothcontrol law « =
which results in a bounde®;(x). We start by modifying «(z), then the augmented system
(105) to
= f(z)+ gi(x)d+ go(x
) E) ot (agir) : (@) + g1(z)d + g2(x)€ (121)
0 1+ (ot (r)

) ) ) ) ) is also input-to-state stabilizable withsaoothcontrol law.
wherer is defined in (41) andv,(-) is a c_Iass}COO function An outline of the proof of this lemma, originally given in
such thatV(x) > i (|z). Although V/(z) is not guaranteed (o4 in the context of modular adaptive nonlinear stabilization,
to be radially unbounded, it is positive definite and satisfiesg provided next for completeness.

Proof: Let us denote the input-to-state stabilizing con-

troller by v = «(z). It was proven by Sontag and Wang
We treat it as a legitimate 1SS-CLF and design a control lal#5] that a system is ISS if and only if there exist a smooth
using the formula (35). The feedback law = i@, (z) is positive definite radially unbounded functidn(x) and class

stabilizing for the auxiliary system (112) with K~ functions . and» such that the following “dissipation”
inequality holds:

Ly, V=0 = LV +|L,V|p~*(|z|) < 0. (116)

<

s a Ly,
Ri(z) = Ri(2)" = Ip_fﬂx') LitgaV + Le, VA < —p(|z]) +v(d)).  (122)
e ) [Ly, V]

1+ 7 (a7t (V) p2(|2l)

< I (117) We now show that the control law

. . , uw=a(z,§) = —Lg,V—({—a)
Thus Ri(x) is a bounded function. By Theorem 5.1, the I Lol 123
control law u = @,(z) minimizes a cost functional of the + Lytgeea = |Lya (€ - o) (123)

form (96). However, the penalty on the state achieves input-to-state stabilization of (121) with respect to

R R N N an ISS-CLF
i) 2 4 (0) =2| =0+ /62 + (L, P (20, ) )’
- 1
(118) V(z,6) = V(@) + 5(§ - al@))”. (124)
is not guaranteed to be radially unbounded because Toward this end, consider
—1 —1 KN
[ D) V= LiygaV + Ly Vd

1+7(ar (V) (€= a)[ut Ly, V = Lyygea — (Lya)d]. (125)
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By substituting (122) and (123) we get With these choices, the auxiliary systems (20) and (93) take

N the same form
V < —pllz]) + v(|d]) = (€ — a)?

) T2 0
- |L91a| (5—04)2—(5—04)(Lg104)d 3 T 0
1 =+ | + L, V)" + |: 131
~plfel) + Jd) = (6~ ) + TIdP. (126 e R R H A
Denoting(r) = v(r) + r? and picking a clas& . function 0 1
fi(r) < min{pu(r),r?}, we get where g1 = [p1, 02, ,¢n] "
) First, we search for an ISS-CLF for (128). Repeated appli-
V< —ﬁ<‘ [5 _Z(x)} D + o(|d|) cation of Lemma 6.1 gives an ISS-CLF
1 n
~ X _ V e 22
<=(([¢]]) v 20 22 (132)
Zizxi_ai—l(xlv"'vxi)v L:].,,7’L+1

wherefi € K. Thus, the control law (123) achieves input-to-
state stabilization of (121). To see thid{z) is an ISS-CLF, whereq;’s are to be determined. For notational convenience

we choosey = i~ 0 27. O we definezg := 0, ap := 0, 2,41 = 0, and z,,.1 = 0. We
Theorem 6.1:Under the conditions of Lemma 6.1, boththen have
the inverse optimal gain assignment akd, problems are n n
solvable for (121) with control laws which are continuous LgIV Z 5 % = Z Z ag’“ L 2L
everywhere. Ly =1 ke=jr1 O
Proof: The proof is immediate by combining Lemma 6.1
with Theorems 3.2 and 5.2. The continuity at the origin follows ;= Z w; 2 (133)
from the fact that in Lemma 6.1 we found a smooth input- ;
to-state stabilizing control law, which implies th&t(x, ) T
satisfies a small control property, and therefore the Sontag- T3 N
type controllers in Theorem 3.2 and 5.2 are continuous at the?V | . | _ 3 av
origin. O dx L
A recursive application of Lemma 6.1, combined with L -
Theorems 3.2 and 5.2, leads to the following result for a '
representative class of strict-feedback systems [25]. - iy Oaj_1
Corollary 6.1: Both the inverse optimal gain assignment = Z Ti+1 = Rl R (134)
andH.. problems are solvable for the following system: =t k=1
where
-’ti:xi+1+(,0i($1,"',$i)Td, i:]-v"'vn_]- o
Tn =u~+ @z, - 7xn)Td, (128) w]'(.fj) =p;— g;;l Pk (135)
k=1
VII. DESIGN FOR STRICT-FEEDBACK SYSTEMS The functionsay, - - -, o, 1 are sought to maké&” defined in
Since the control laws for strict-feedback systems (12 3(21)3i)c ::SF for (131). The derivative 6f along the solutions
suggested by Corollary 6.1 are based on a Sontag-type formula
and are typically nonsmooth (especially at the origin), in this | n
section we design inverse optimal control laws thatsam@oth V=zu+r <Z wk’“k) <Z wm)
everywhere In addition, they achieve a quadratic penalty on k=1 ‘
the disturbance with a constant weight function. L Oy,
From Theorems 3.1 and 5.1, it follows that in order to solve + Z <$Z+1 Az xk“)
the inverse optimal gain assignment and the inverse optimal k=1
H problems, it suffices to find a stabilizing controller of the 9 9 = T
form (94) for the auxiliary systems (20) and (93), respectively. 7% ilwnl“zy + iz <Z Wy 7k> Wn
For the auxiliary system (20), we choose Ly b=l .
— Zn an la: K wiz‘ Wi %5
n—1
where  is an arbitrary positive constant. This amounts to
selecting the weight function in the auxiliary system (93) to + Aot 2 Lot 'i(kzl Wk 7’“)
be a constant ‘ _
Ri(z) = % (130) Z “’”1] Zie (136)
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The choice

= —zimy — iz — kw2

i—1 i—1
- 2K <Z wgzk> w; + Z
k=1 k=1

where¢; > 0, results in

Joi—1
Lh41
8a:k +

(137)

n—1 n—1
_ 2 2 T
— enzy, + Zn |+ 2p—1+E|lwp| 2,42k wj; 2k
k=1 k=1

(138)

-1
aOén—l
Wp — Th4+1]-

P 8a:k
In the derivation of (138), we have used the equality

n—1
Iiz Z wk7k wZ7Z—IiZ Zwk7k Wy %24
=1 i=1 k=1

k=i+1

= Iizn< E wgzk>wn
k=1

(139)

We are now at a position to choose the controWe may
chooseu such that all the terms inside the bracket in (138) are
cancelled and the bracketed term multiplying is equal to
—c, 22 as in [25], but the controller designed in that way is not
guaranteed to be inverse optimal. In order for a controller to be
inverse optimal, according to Theorem 3.1 or Theorem 5.1, it

should be of the form

u = o (z) = —Rp(z) 7 (Ly, V)T (140)

where Ry(r) = Ry(z)T
(132), (140) simplifies to
U= an(r) = —Ro(x) ™!
i.e., we must choose,, with z, as a factor.
Sincexgy1 = zp41 + g, k=1,---,n — 1, and eachy;

vanishes at: = 0, there exist smooth functiong;, k& =
1,---,n, such that

(141)

Zn

n—1 n
aOén—l _
- Z . T Z Pr 2k (142)
k=1 k=1
Thus (138) becomes
n—1
V== ch7k+7nu+li|wn| z; +7n2‘1’k7k (143)
k=1 k=1
where
Dy, :2ﬁwgwn+¢k, k=1---.n—-2
Q1 =1+ 2IinTL_1wn + ¢n—1 (144)

A control law of the form (141) with

-1
(1)2
<cn+ﬁ|wn|2+z ) >0, ¢, >0

(145)

2
<7k - —7n> . (146)

Ry(z) =
results in

>

k=1

| =

n
2
E CipRy, —

l\DIr—\

> 0, for all z. In light of (128) and

347

By Theorems 3.1 and 5.1, the inverse optimal gain assignment
and M., problems are solved with the feedback control law

u= (@) = fan(z), P22 (147)

Remark 7.1: We point out that the choice ei; in (137) is
the same as in [29], but the contralis chosen differently.
While the controller in [29] cancels all the terms inside the
bracket in (138), our controller does not. As a result, the
controller in [29] achieves only attenuation of the effect of
the disturbances on, while our controller achieves optimality
which includes a penalty on.

Remark 7.2: The choice ofa; as in (137) is not unique.
In fact, the ISS-CLF framework provides more flexibility
in choosing thea;’s. For example, another choice is the
following: by using Lemma A3, we can rewrite (136) as

n
V:znu—i—ﬁz |w; 2|2

=1
Tiyl — Z .’L’k 1
‘ i+ axk +
=1 k=1
Rq
wzn wj7j
6j= 1
i#y

—7nu+ﬁn|wn| 7 4 ZpZn_1

8an 1
—2Zn Tp+1—HR Z

Kj
wzn —Wj;zy
R

k=1 i,j=1
17
n—1 1—1 804
+Z Zi—1t+ oy + Iii|wi|22i — a;;1$k+1] 2
i=1 k=1
(148)
wheres = (E?:l Kl) , k; > 0. The choice
O = —Zi_1 — CiZi — m|wZ Zi + Z Oavi 1a:k+1 (149)
T,
results in
ch7k—li Z ,/ wzn 1/ wj7j
ZJ 1
+ 2ot + b |wn 222 + 2, Z W2k (150)
k=1
where
\Ijk:d)kv If:].,"',TL—2
\Ijn—l =1+ ¢n—l
v, = ¢p,. (151)

Instead of (146), a control law of the form (141) with

-1
2
<cn+ﬁ|wn|2+z i ) >0 (152)

RQ(.’L’) =
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results in with a value function

. 1 1 U \? J* = 2|2|2. 157

V:—§Zﬁﬁ‘§ZF%“‘E%J o (o)
kznl k=1 ) Therefore

R K
-k Z Wiz =y / ﬁ—{wﬁ:l (153) 00 n w2 1

ij=1 J : / 22 cr7i + 5 — —|d|?| dt
i#] 0 ] et Rlwe+ 35 5

. n ) n (I)k 2
and H.. problems are solved with the feedback control law =< 2 Z iy 12 Z Ck <Zk - c—zn>
u = of(z) = Py (x), § > 2. The design in this remark is k=1 k=1 »
similar to those in [28] and [25] for steps= 1,---,n — 1, u2
but different at stem where the new design selects control of +

the form (141) instead of cancelling the nonlinearities. Cn + Klwal? + 3051,

< J* = 2](0))? (158)

By Theorems 3.1 and 5.1, the inverse optimal gain assignment /oo

1
— =|d|?| dt
(1)2' Ii| |
2¢y

VIIl. PERFORMANCE ESTIMATES
which yields (154).

We now give performance bounds on the error state jj): pifferentiating 3|2|? along the solutions of (128), not-
and controlw for the inverse optimal controller designed ir]ng (146), we have
Section VII. TheLs bound that we present is the first bound in
the literature that incorporates the conttolPrevious bounds d <1| |2) _ 1 z": > 12": < Dy, )2
2 z = B 2 CL R}, B Cp

2k — —2Zn
Ck

without v were given in [28] and [25]. dt
Theorem 8.1:1n the closed-loop system (128), (141), the
following inequalities hold:

k=1

2 n T
+ <Z wkzk) d

— K

n
E W
k=1

1) /oo zn: ) U,2 —1
2Y ez + = | dit 1
0 Pt Cn + Klwa|2+ 327, % < —§|z|2+ E|d|2' (159)
1
< EHdH% +2[2(0)? (154) By the comparison principle, we get (155). O
1 —et)2 Remark 8.1:If the control law is chosen as in Remark 7.2,
2) ()] < Moi&%'dhﬂ +12(0)]e (155)  the cost functional is (160), as shown at the bottom of the

page. Instead of (154), we have the performance bound
wherec = minlﬁiﬁn C;.

Proof i): According to Theorems 3.1 and 5.1, the control 0 1 5 u?
law « = o*(x) is optimal with respect to the cost functional / 2) o+ 5 |
N k=1 Cn + Elwa|? + 3k o
(B =Xx=2) ek
1
< —[ldlI3 + 2|=(0)]*. (161)
(w) S‘;P Bt ((t) The control law from Remark 7.2 also achieves an ISS bound
as in (155).
t n n (I)k 2
+/ 2 ckz,z +2 Ck <zk - —zn>
0 < kz—:—l ; Ck IX. CONCLUSION
u2 1 We showed that it is possible to solve a meaningful HJI
+ N R E|d|2 dr equation (and, therefore, solve an inverse optifial-like
Cn + Klwnl? + 3 pm 5 problem) if and only if a system is input-to-state stabilizable.

(156) Our results indicate that—for nonlinear systems—it is crucial

2

+ n n 0, 2 n
J(u) = sup tlll)glo 4V (x(t)) + 2/0 Z ez + ch <zk - c—:zn> + 2k Z

d k=1 k=1 ij=1
i#j

Ky Ky
— W2y — —Wjzj
Ky K;

2 1
-3 |d|* | dr (160)

u

+ S
2(Cn + Ii|wn|2 + Ek:l QCIZ,)
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to move away from quadratic cost functionals, and in particu- Proof: Since

lar, from the quadratic penalty on the disturbance. The benefits .
D
i=1

n

Z vl + > 2y (170)

of the inverse optimal approach are that it is constructive and
it guarantees stability margins against some input unmodeled

- =1 4,j=1
dynamics. 7]
and
APPENDIX
. o 2y y;

Lemma Al:If v and its derivativey” are classkC., func- . . = — 2
tions, then the Legendre—Fenchel transform satisfies the fol- = —*|y;|* + —|y;|* — ‘, [ =i — ] j (171)
lowing properties: kg ki K, ki

D A0 =) - () ) we have tht

" n—1 n
= ¥ s)ds (162)
e Zyi Z|yz|2+ )y S+ > Sy
i=1 ,J 1 :J 1 i
2) Uy =~ (163)
Ki []
3) /v is a class,, function (164) \ K, P y, (172)
hj= 1
17
4 (A (1)) = 7 (r) = (7). 165
) (Y (r)) =1 (r) = () (165) Noting that
Proof:
2 2 J 2
1) Integrating by parts, we get Z|yl| - Zl —Iyzl + Zl [
3% Y
(2] (2]

: ~ (k) Sosiu a73)

=1 =1

: we get
=7(7) 1(7)—/ Y () THE) () TH(s)) n | n n
o doul = <Z f) > rilyil?
=y - ATy ase) =L NS 2
D Y Lty (174)
which completes the proof. =1 |V Fi g
2) Immediate by differentiating the second expression in i
1), and then inverting and integrating the result. which is (169). |
3) Obvious from the second expression in 1) because
(’}//)_1 is a classkC,, function. ACKNOWLEDGMENT

4) Follows by direct substitution into (162). O

Lemma A2 (Young's Inequality [11, Th. 156]For
two vectorsz andy, the following holds:
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