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a b s t r a c t

In this work, we present a form of extremum seeking (ES) in which the unknown function being mini-
mized enters the system’s dynamics as the argument of a cosine or sine term, thereby guaranteeing known
bounds on update rates and control efforts. We present general n-dimensional optimization and stabi-
lization results as well as 2D vehicle control, with bounded velocity and control efforts. For application
to autonomous vehicles, tracking a source in a GPS denied environment with unknown orientation, this
ES approach allows for smooth heading angle actuation, with constant velocity, and in application to a
unicycle-type vehicle results in control ability as if the vehicle is fully actuated. Our stability analysis is
made possible by the classic results of Kurzweil, Jarnik, Sussmann, and Liu, regarding systemswith highly
oscillatory terms. In our stability analysis, we combine the averaging results with a semiglobal practical
stability result under small parametric perturbations developed by Moreau and Aeyels.

Published by Elsevier B.V.
1. Introduction

Motivation. Extremum seeking (ES), as a real-time non-model-
based optimization approach, has seen growth following signifi-
cant theoretical advances during the past decade, starting with the
proof of local convergence by Krstić and Wang [1] and extension
to semiglobal convergence by Tan, Nešić, and Mareels [2]. ES has
now been used in diverse applications with unknown/uncertain
systems [3,4], such as active flow control [5,6], aeropropulsion [7],
cooling systems [8,9], wind energy [10], photovoltaics [11], elec-
tromagnetic valve actuation [12], human exercise machines [13],
controlling Tokamak plasmas [14], PID gain tuning [15], enhancing
mixing inmagnetohydrodynamic channel flows [16], beammatch-
ing [17], laser pulse shaping [18] and high voltage converter mod-
ulator output voltage optimization [19].

Recent work by Dürr et al. [20] combined the Lie bracket-based
averaging results of Gurvits and Li [21] with results of Moreau and
Aeyels [22], providing a technique for Lyapunov function based ES
analysis. In [23], the application of ES was then expanded beyond
minimization, to stabilization of unknown, open-loop unstable
systems, solving the problem of model-independent semiglobal
exponential practical stabilization for time-varying and nonlinear
systems. In [24], by introducing a non-smooth ES scheme, persis-
tent oscillations, which plague all ES schemes, were made to decay
as a system approaches equilibrium.
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Because ES is designed to perform with unknown systems, one
of themost promising applications is for the control of autonomous
vehicles, and has been demonstrated as a powerful tool for steering
vehicles towards a source in GPS-denied environments [25–27].

Despite the mentioned theoretical advancements and applica-
tions, one limitation which remains in all ES schemes is the uncer-
tainty of convergence rate and control effort. This is due to the fact
that an unknown function, whether it is the unknown output of a
system which is being minimized, or a Lyapunov candidate for a
system which is being stabilized, enters the control scheme in an
affine way.
Results of the paper. In this work we present a new ES scheme, in
which the uncertainty is confined to the argument of a sine/cosine
function, resulting in guaranteed bounds on update rate in mini-
mum seeking and control effort in stabilization. In order to prove
our stability conditions we introduce the results of Kurzweil and
Jarnik [28], and Sussmann and Liu [29,30].

The controller that we develop, in the case of minimization of a
measurable, but unknown output function J(θ) of a dynamic sys-
tem, is given by

θ̇i = ui =
√
αiωi cos (ωit + kiJ) . (1)

In this scheme, a high frequency (ωi) dither is applied to parame-
ter θi, whose magnitude is proportional to (after averaging) αi, ki
can be thought of as the controller gain. These parameters are dis-
cussed in more detail below.

In the case of stabilization of a system of the form
ẋ = f (x, t)+ g(x, t)u, (2)
the controller’s components are chosen as

ui =
√
αiωi cos (ωit + kiV (x)) , (3)

http://dx.doi.org/10.1016/j.sysconle.2013.10.004
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2013.10.004&domain=pdf
mailto:alexscheinker@gmail.com
mailto:krstic@ucsd.edu
http://dx.doi.org/10.1016/j.sysconle.2013.10.004


26 A. Scheinker, M. Krstić / Systems & Control Letters 63 (2014) 25–31
where V is a Lyapunov function candidate. In these two cases, the
closed loop systems, on average, satisfy the dynamics:

˙̄θ i = −
kα
2
∂ J
∂θ̄i
, (4)

˙̄x = f (x̄, t)−
kα
2

g(x̄, t)gT (x̄, t)
∂V (x̄)
∂ x̄

. (5)

Note that both the update rate (1) and control effort (3) have
bounds of the form

√
αω, independent of J(θ) or V (x).

Next, we consider the particular case of 2D vehicle control, in
which an unknown, but measurable function J(x, y), whose value
depends on vehicle position (x, y) is to be minimized or maxi-
mized, in a GPS denied environment. The controller that we de-
velop towards this goal is given by:

ẋ =
√
αω cos (ωt + kJ(x, y)+ θ0) (6)

ẏ =
√
αω sin (ωt + kJ(x, y)+ θ0) (7)

where θ0 is an arbitrary initial vehicle orientation. The resulting
closed loop system, on average, has dynamics

[ẋ, ẏ]T = −
kα
2
(∇J)T , (8)

and performs gradient descent towards a local minimum of J(x, y).
Note that in this case, the vehicle velocity v =


ẋ2 + ẏ2 =

√
αω,

is constant, and the vehicle performs smooth, unicycle-type mo-
tion in circular trajectories.

Intuitively, the mechanism behind the convergence of system
(6), (7) is easy to see. At any time, t , the system’s velocity vector is
given by

√
αω [cos(θ(t)), sin(θ(t))]T , where θ(t) = ωt+kJ(x, y)+

θ0. In this case, the rate of change of the heading, θ(t) is given by:

θ̇ = ω + k
∂ J
∂t
. (9)

A large value of ω keeps the system spinning around, looking in all
directions. When the system’s trajectory is heading in a direction
such that J is decreasing, then ∂ J

∂t < 0, and the rate of change of θ(t)
is decreased. On the other hand, when the system’s trajectory is
heading in a direction such that J is increasing, then ∂ J

∂t > 0, and the
rate of change of θ(t) is increased. By this mechanism, on average,
the system spends more time pointing in the right direction, and
quickly turning away from the wrong direction. The overall result
is convergence towards the minimum value. The system is made
to approach a maximum by replacing k with −k.

In our 2D vehicle analysis, we focus on applying the simple al-
gorithm as stated above, and therefore rely on direct heading angle
actuation. It is possible to use the same approach to instead regu-
late the heading angle rate by adding additional layers of filtering
to the schemeabove. Thenewscheme ismore complicated and sta-
bility/convergence analysis requires a singular perturbation ver-
sion of the averaging theory presented here or standard averaging
combined with singular perturbation techniques that lead to local
results. Although we do not pursue a lengthy combined singular
perturbation and averaging analysis in this paper, we do present
the algorithm design for heading angle rate actuation and demon-
strate its ability with a simulation.
Organization. In Section 2we provide background on the averaging
results of Kurzweil, Jarnik, Sussmann and Liu. We also review sta-
bility results of Moreau and Aeyels. In Section 3 we present our
optimization results. In Section 4 we provide nonlinear system
stabilization results. In Section 5 we present our vehicle control
scheme. Finally, in Section 6 we present several examples of a ve-
hicle tracking both a stationary and amobile source in an unknown
environment with external disturbances.
2. Background on averaging and stability

In this section we begin by recalling the main theorems which
are necessary for calculating the averaged dynamics of the closed
loop systems with highly oscillatory terms, for which standard
averaging techniques are not applicable. Theorem 1 is a general
result, of which the special case given by Corollary 1 is applied
throughout the paper. The results of Moreau and Aeyels which fol-
low are necessary in order to provide a relationship between the
stability of the averaged and actual system dynamics.

2.1. Averaging results of Kurzweil, Jarnik, Sussmann, and Liu

Theorem 1 ([28–30]). For T ∈ (0,∞), and a compact set K ⊂ Rn,
consider the differential equation:

ẋ = f (x, t)+

n
i=1

fi(x, t)ϕi,k(t), x(0) = x0, (10)

where the functions

f (x, t) : Rn
× [0, T ] → Rn (11)

fi(x, t) : Rn
× [0, T ] → Rn (12)

ϕi,k(t) : [0, T ] → R (13)

are continuous and Lipschitz, and Dfi, D2fi,
∂ fi
∂t ,

∂
∂tDfi,

∂
∂tD

2fi, are
continuous and bounded, where D =

∂
∂x .

If the functions ϕ(t) are continuous and their integrals satisfy:

Φi,k(t) =

 t

0
ϕi,k(τ )dτ → 0 uniformly as k → ∞, (14)

and there exist measurable functions λi,j(t) : [0, T ] → R such that
for all s, t ∈ [0, T ]

lim
k→∞

 t

0
ϕj,k(τ )Φi,k(τ )dτ =

 t

0
λi,j(τ )dτ , uniformly, (15)

Φi,k(t)− Φi,k(s)
 ≤ L2|t − s|η, 0 < η <

1
2
, (16) t

0
ϕj,k(τ )


Φi,k(τ )− Φi,k(s)


dτ
 ≤ L1|t − s|γ , (17)

where 1−η < γ ≤ 1. Then, for all t ∈ [0, T ] and x ∈ K, the sequence
of solutions of (10):

xk(t) = x0 +

 t

0


f (xk, τ )+

n
i=1

fi(xk, τ )ϕi,k(τ )


dτ (18)

converges uniformly with respect to k, over (x, t) ∈ K × [0, T ] to the
solution x(t) satisfying:

ẋ = f (x, t)−

n
i,j=1

λi,j(t) (Dfi(x, t)) fj(x, t), x(0) = x0. (19)

The following special case of Theorem 1, with sine and cosine
highly oscillatory terms, is used throughout the paper.

Corollary 1. For T ∈ [0,∞), and any compact set K ⊂ Rn such that
the functions f (x, t), fi(x, t) satisfy the assumptions of Theorem 1, for
any ν, δ > 0, there exists M such that for all k > M, the trajectory
x(t) of the system

ẋ = f (x, t)+

n
i=1

fi(x, t)(kki)ν cos

(kki)2ν t


−

n
i=1

gi(x, t)(kki)ν sin

(kki)2ν t


, (20)
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and the trajectory x̄(t) of the system

˙̄x = f (x̄, t)−
1
2

n
i≠j


fi(x̄, t), gj(x̄, t)


, x̄(0) = x(0) ∈ K , (21)

satisfy the convergent trajectories property:

max
t∈[0,T ]

|x(t)− x̄(t)] < δ, (22)

where k ∈ N, ki ∈ R such that k̂i ≠ k̂j, and
fi(x̄, t), gj(x̄, t)


=
∂gj
∂ x̄

fi −
∂ fi
∂ x̄

gj, (23)

is the Lie bracket of the functions fi and gi.

Proof. All of the conditions of Theorem 1 are satisfied with η =
1
2 ,

γ = 1,

ϕi,k = (kki)ν cos

(kki)2ν t


, (24)

ϕ̂i,k = −(kki)ν sin

(kki)2ν t


, (25)

Φi,k(t) =
1

(kki)ν
sin((kki)2ν t), (26)

Φ̂i,k(t) =
1

(kki)ν
cos((kki)2ν t), (27)

with

λi,j =


1
2

: mixed terms ϕi,kΦ̂j,k, ϕ̂i,kΦj,k s.t. i = j

0 : mixed terms ϕi,kΦ̂j,k, ϕ̂i,kΦj,k s.t. i ≠ j
0 : all non-mixed terms ϕi,kΦj,k, ϕ̂i,kΦ̂j,k. �

(28)

2.2. Stability results of Moreau and Aeyels

Werecall the followingdefinitions as inMoreau andAeyels [22].
In what follows, given a system

ẋ = f (t, x), (29)

ψ(t, t0, x0) denotes the solution of (29) which passes through the
point x0 at time t0. In conjunction with (29), we consider systems
of the form

ẋ = f ϵ(t, x) (30)

whose trajectories are denoted as φϵ(t, t0, x0).

Definition 1 (Converging Trajectories Property). The systems (29)
and (30) are said to satisfy the converging trajectories property if
for every T̂ ∈ (0,∞) and compact set K ⊂ Rn satisfying {(t, t0, x0)
∈ R × R × Rn

: t ∈ [t0, t0 + T̂ ], x0 ∈ K} ⊂ Domψ , for every d ∈

(0,∞) there exists ϵ⋆ such that for all t0 ∈ R, for all x0 ∈ K and for
all ϵ ∈ (0, ϵ⋆),

∥φϵ(t, t0, x0)− ψ(t, t0, x0)∥ < d, ∀t ∈ [t0, t0 + T̂ ]. (31)

In an approach similar to Moreau and Aeyels, we define two forms
of stability for system (30):

Definition 2 (ϵ-Semiglobal Practical Uniform Ultimate Boundedness
with Ultimate Bound δ ((ϵ, δ)-SPUUB)). The origin of (30) is said to
be (ϵ, δ)-SPUUB if there exists δ > 0 such that the following three
conditions are satisfied:
• (ϵ, δ)-Uniform Stability: For every c2 ∈ (δ,∞) there exists

c1 ∈ (0,∞) and ϵ̂ ∈ (0,∞) such that for all t0 ∈ R and for
all x0 ∈ Rn with ∥x0∥ < c1 and for all ϵ ∈ (0, ϵ̂),

∥ψϵ(t, t0, x0)∥ < c2 ∀t ∈ [t0,∞).
Fig. 1. ES scheme for the ith component θi of θ .

• (ϵ, δ)-Uniform Ultimate Boundedness: For every c1 ∈ (0,∞)
there exists c2 ∈ (δ,∞) and ϵ̂ ∈ (0,∞) such that for all t0 ∈ R
and for all x0 ∈ Rn with ∥x0∥ < c1 and for all ϵ ∈ (0, ϵ̂),

∥ψϵ(t, t0, x0)∥ < c2 ∀t ∈ [t0,∞).

• (ϵ, δ)-Global Uniform Attractivity: For all c1, c2 ∈ (δ,∞) there
exists T ∈ (0,∞) and ϵ̂ ∈ (0,∞) such that for all t0 ∈ R and
for all x0 ∈ Rn with ∥x0∥ < c1 and for all ϵ ∈ (0, ϵ̂),

∥ψϵ(t, t0, x0)∥ < c2 ∀t ∈ [t0 + T ,∞).

Definition 3 (ϵ-Semiglobal Practical Uniform Asymptotic Stability
(ϵ-SPUAS)). The origin of (30) is said to be ϵ-SPUAS if it is (ϵ, δ)-
SPUUB for all δ > 0, in which case all of the conditions of Defini-
tion 2 are replaced with a lower bound of 0 on c2, instead of δ.

With these definitions the following result of Moreau and
Aeyels [22] is used in the analysis that follows.

Theorem 2 ([22]). If systems (30) and (29) satisfy the converging
trajectories property and if the origin is a GUAS equilibrium point
of (29), then the origin of (30) is ϵ-SPUAS.

Corollary 2. If the origin of system (19) is GUAS, then the origin of
system (10) is 1

k -SPUAS.

Proof. By Theorem 1 the solutions of (10) and (19) satisfy the con-
verging trajectories property for any T ∈ [0,∞). Since the origin
of (19) is GUAS, by Theorem 2, the origin of (10) is 1

k -SPUAS. �

Corollary 3 ([22]). If systems (10) and (19) satisfy the converging
trajectories property and if the origin is a δ-GUUB point of (19), then
the origin of (10) is

 1
k , δ


-SPUUB.

Proof. By Theorem 1 the solutions of (10) and (19) satisfy the con-
verging trajectories property for any T ∈ [0,∞). The rest of the
proof is a slight modification of the proof found in Moreau and
Aeyels [22], with a lower bound of δ instead of 0 on the choices
of c2, b2 and c3, with details available from the author. �

3. Extremum seeking for unknownmap

Consider the problem of locating an extremum point of the
function J(θ) : Rn

→ R, for θ = (θ1, . . . , θn) ∈ Rn. We assume
that J(θ) has a global extremum such that there exists a unique θ ⋆
for which:

∇J|θ⋆ = 0 and ∇J ≠ 0, ∀θ ≠ θ ⋆. (32)

Theorem 3. Consider the ES scheme shown in Fig. 1 (for maximum
seeking we replace ki with −ki):

θ̇i =
√
αiωi cos (ωit + kiJ(θ)) , (33)

where ωi = ωω̂i such that ω̂i ≠ ω̂j ∀i ≠ j and J satisfies (32). The
point θ ⋆ is 1

ω
-SPUAS.

Proof. By expanding

cos (ωit + kiJ) = cos(ωit) cos (kiJ)− sin (ωit) sin (kiJ) (34)
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we rewrite the θi dynamics as

θ̇i =
√
ωi cos(ωit)

√
αi cos (kiJ)−

√
ωi sin(ωit)

√
αi sin (kiJ) , (35)

and applying Corollary 1 (with respect to ω and with ν = 0.5) the
trajectory of system (33) uniformly converges to the trajectory of

˙̄θ i = −
kiαi

2
∂ J

θ̄


∂θ̄i
, (36)

where we have used the fact that mismatched terms of the form
cos(ωit) sin(ωjt), ∀i ≠ j, and terms of the form cos(ωit) cos(ωjt),
and sin(ωit) sin(ωjt), ∀i, j have averaged to zero. Combining all
the θi components we then get:

˙̄θ = −
kα
2
(∇J)T , (37)

where kα is the diagonal matrix with entries kiαi. �

4. Nonlinear MIMO systems with matched uncertainties

In this section we study multi-input systems with the same
number of controls and states.We use this class to illustrate clearly
how to deal with nonlinearities that are not only unknown but also
have arbitrary growth (super-linear, exponential, or even faster
than exponential).

Theorem 4. Consider the following system over a compact set K ⊂

Rn:

ẋ = f (x, t)+ G(x, t)u(x, t), (38)

where x(t) : R+
→ Rn, and u(x, t), f (x, t) : Rn

× R+
→ Rn,

G(x, t) : Rn
× R+

→ Rn×n and let there exist ζ ∈ K , and η ∈ K∞

such that f (x, t) and G(x, t) satisfy the following bounds for all
(x, t) ∈ Rn

× R+:

G(x, t)GT (x, t) ≥ ζ (|x|)I, ∀x ∈ K (39)
sup
x∈K

|f (x, t)| ≤ η(|x|). (40)

If k and α are chosen such that

kα > sup
x∈K

1
ζ (|x|)

, (41)

then the vector-valued controller with components

ui =
√
αωi cos (ωit + kV (x)) , (42)

where ωi = ωω̂i such that ω̂i ≠ ω̂j ∀i ≠ j, and

V (x) =


|x|

0
η(r)dr, (43)

renders the origin of (38), (42)
 1
ω
, ζ−1

 1
kα


-SPUUB.

Remark 1. The following proof is based on an application of Theo-
rem 1, which is an existence result regarding a large enough value
of ω for our desired result to hold. Clearly, from the form of (38),
(42), in order for stabilization to be possible, we must choose ω
large enough such that ζ (|x|)

√
αω > |f |. Although this detail is

glossed over in our existence result, exactly such a requirement can
be found if onewrites out the proof of Theorem 1 for this particular
system, in which, after integration by parts, terms of the form |f |

√
ω

will appear, which approach zero as ω → ∞.

Proof. We expand (42) as

ui =
√
αωi cos (ωit) cos (kV (x))

−
√
αωi sin (ωit) sin (kV (x)) , (44)
and apply Corollary 1. By an analysis similar to that in the proof
of [23, Theorem 5], we evaluate the averaged system as:

˙̄x = f (x̄, t)−
kα
2

G(x̄, t)GT (x̄, t)η(|x̄|)
x̄
|x̄|
, (45)

where we have used the fact that

∂V (x̄)
∂ x̄

= η(|x̄|)
x̄T

|x̄|
. (46)

With the Lyapunov function candidate

W (x̄) =
|x̄|2

2
, (47)

we get

Ẇ (x̄) = x̄T ˙̄x = x̄T f − kα
η(|x̄|)
|x̄|

x̄TGGT x̄. (48)

From (40) we havex̄T f  ≤ |x̄| |f | ≤ |x̄|η(|x̄|) (49)

and from (39) we have that

kα
η(|x̄|)
|x̄|

x̄TG(x̄, t)GT (x̄, t)x̄ ≥ kα
η(|x̄|)
|x̄|

β (|x̄|) |x̄|2. (50)

Plugging (49) and (50) into the equation for Ẇ (x̄)we get

Ẇ (x̄) ≤ |x̄|η(|x̄|)− kαβ (|x̄|) |x̄|η(|x̄|)

= (1 − kαβ(|x̄|))|x̄|η(|x̄|), (51)

therefore by our choice of kα as in (41), we guarantee that (51)
is negative definite outside of a ball or radius β−1

 1
kα


about the

origin. Therefore, the averaged system (45) is ultimately bounded
with ultimate bound β−1

 1
kα


. By Corollary 3, system (38) is 1

ω
, β−1

 1
kα


-SPUUB. �

5. 2D vehicle control

In this section we consider a vehicle in a GPS-denied environ-
ment, unaware of its own orientation,whose goal is to reach the lo-
cation of theminimumof J(x, y), where J(x, y) is a detectable value,
whose analytic form is unknown.

Theorem 5. If the function J(x, y) has a global minimum at (x⋆, y⋆),
such that

∇J|(x⋆,y⋆) = 0, ∇J ≠ 0, ∀(x, y) ≠ (x⋆, y⋆), (52)

then for any δ > 0, by a sufficiently large choice of kα the point
(x⋆, y⋆) is

 1
ω
, δ

-SPUUB relative to the system (x(t), y(t)), as shown

in Fig. 2:

ẋ =
√
αω cos (ωt + kJ(x, y)+ θ0) (53)

ẏ =
√
αω sin (ωt + kJ(x, y)+ θ0) (54)

where θ0 is an unknown initial orientation.

Remark 2. In the analysis that follows, it becomes apparent that
the value of the arbitrary initial orientation, θ0, is irrelevant, when
we make the simplification:

sin2 (kJ + θ0)+ cos2 (kJ + θ0) = 1,

therefore for notational convenience, and without loss of general-
ity, from now on we set θ0 = 0.

Proof. We expand

cos(ωt + kJ) = cos(ωt) cos(kJ)− sin(ωt) sin(kJ) (55)
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Fig. 2. Velocity actuated ES control scheme.

and

sin(ωt + kJ) = cos(ωt) sin(kJ)+ sin(ωt) cos(kJ) (56)

and rewrite (53), (54) as
ẋ
ẏ


=

√
ω cos(ωt)

√
α cos(kJ)

√
α sin(kJ)


+

√
ω sin(ωt)


−

√
α sin(kJ)

√
α cos(kJ)


. (57)

By Theorem 1, the trajectory of (57) uniformly converges to the
trajectory of

˙̄x
˙̄y


=
α

2
D


− sin(kJ)
cos(kJ)


cos(kJ)
sin(kJ)


−
α

2
D


cos(kJ)
sin(kJ)


− sin(kJ)
cos(kJ)


. (58)

We expand the right side of (58) as

kα
2

−
∂ J
∂ x̄

cos(kJ) −
∂ J
∂ ȳ

cos(kJ)

−
∂ J
∂ x̄

sin(kJ) −
∂ J
∂ ȳ

sin(kJ)

cos(kJ)sin(kJ)



−
kα
2

−
∂ J
∂ x̄

sin(kJ) −
∂ J
∂ ȳ

sin(kJ)

∂ J
∂ x̄

cos(kJ)
∂ J
∂ ȳ

cos(kJ)

− sin(kJ)
cos(kJ)


, (59)

which simplifies to

˙̄x = −
kα
2


∂ J
∂ x̄

cos2(kJ)+
∂ J
∂ x̄

sin2(kJ)

, (60)

˙̄y = −
kα
2


∂ J
∂ ȳ

sin2(kJ)+
∂ J
∂ ȳ

cos2(kJ)

. (61)

Applying the identity

cos2(·)+ sin2(·) = 1,

we arrive at the average system dynamics
˙̄x
˙̄y


= −

kα
2
(∇J(x̄, ȳ))T . (62)
Therefore, by Theorem 1 the trajectory (x(t), y(t)) of system
(53)–(54) uniformly converges to the trajectory (x̄(t), ȳ(t)), of the
system

˙̄x = −
kα
2
∂ J
∂ x̄
, x̄(0) = x(0), (63)

˙̄y = −
kα
2
∂ J
∂ ȳ
, ȳ(0) = y(0), (64)

and therefore, for any δ > 0, by choosing arbitrarily large values
of kα we may ultimately bound (x̄, ȳ) within a δ neighborhood of
(x⋆, y⋆). �

Remark 3. Although the results presented above are for functions
having a stationary extremum, they are easily extended to systems
where the extremum point varies with time, such as the case of
trajectory tracking, in which the cost is the distance between a
mobile agent and its target.

Corollary 4. Consider a function f (x, y, t) =

fx(x, y, t), fy(x, y,

t)
T
, over a compact set (x, y) ∈ K ⊂ R2, which is continuous with

respect to t and Lipschitz continuous with respect to (x, y). If the func-
tion J(x, y, t) has a global minimum at (x⋆(t), y⋆(t)) ∈ K ∀t, such
that the location of theminimum point has bounded velocity |ẋ⋆| , |ẏ⋆|
< M, and

∇J|(x⋆(t),y⋆(t)) = 0, (65)

∇J ≠ 0, ∀(x(t), y(t)) ≠ (x⋆(t), y⋆(t)), (66)

then for any δ > 0, by a sufficiently large choice of kα, (x⋆(t), y⋆(t))
is
 1
ω
, δ

-SPUUB relative to the system:

ẋ = fx(x, y, t)+
√
αω cos (ωt + kJ(x, y, t)) (67)

ẏ = fy(x, y, t)+
√
αω sin (ωt + kJ(x, y, t)) (68)

where θ0 is an unknown initial orientation.
Proof. We define the error variables ex(t) = x(t) − x⋆(t) and
ey(t) = y(t)−y⋆(t) and show, by the same proof as above, that the
trajectory of the error system of (67)–(68) uniformly converges to
the trajectory of

˙̄ex = fx(ēx + x⋆, ēy + y⋆, t)−
kα
2
∂ J
∂ ēx

+ ẋ⋆(t), (69)

˙̄ey = fy(ēx + x⋆, ēy + y⋆, t)−
kα
2
∂ J
∂ ēy

+ ẏ⋆(t). (70)

Because the velocities |ẋ⋆| and |ẏ⋆| are bounded, and the function
f (x, y, t) is bounded on the compact set K , for any δ > 0, by choos-
ing arbitrarily large values of kα we may ultimately bound (x̄, ȳ)
within a δ neighborhood of (x⋆, y⋆). �

6. 2D vehicle simulations

6.1. Stationary source seeking

In order to illustrate the behavior of the control system for a ve-
hicle with unknown orientation we first demonstrate the scheme
in an environment without external disturbance, in which the goal
is to seek the stationary minimum of an unknown, but measurable
function. We consider the system

ẋ =
√
αω cos (ωt + kJ(x, y)) , x(0) = 1 (71)

ẏ =
√
αω sin (ωt + kJ(x, y)) , y(0) = −1, (72)

where J = x2 + y2, α =
1
2 , k = 2, θ(0) = 1.2, and ω = 25.

The simulation results are shown in Fig. 3. By showing the sys-
tem’s trajectory (x, y), alongside that of the averaged system, (x̄, ȳ),
it is easy to see that the convergence is along a gradient descent to-
wards the minimum of J(x, y).
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Fig. 3. Tracking of a stationary source is shown for 10 s, alongwith control effort for
the first 1.5 s. The initial trajectory of (x(t), y(t)) is far from circular, as the system
rotates slower while heading in the correct direction (towards decreasing J), which
is the mechanism of convergence. This is also clearly seen in the control effort,
where both the sine and cosine terms are initially asymmetric, changing faster or
slower, depending on the heading direction.

6.2. Tracking by heading rate control, with disturbances

Wedemonstrate the tracking and stabilizing abilities of the con-
troller by tracking amoving sourcewith an open loop unstable sys-
tem. Furthermore, in order to demonstrate the ability to control
heading angle velocity, rather than the angle value directly, we im-
plement the following scheme, in which an additional filter (76) of
the function J(x, y, t) has been introduced. The system is:

ẋ = x + 0.75y +
√
αω cos (θ) , x(0) = 1 (73)

ẏ = 0.5x + 2y +
√
αω sin (θ) , y(0) = −1 (74)

θ̇ = ω + kω2(J − η), θ(0) = 1.2 (75)

η̇ = −ω2η + ω2J, ω = 250 (76)
rx = cos(t), ry = sin(2t) (77)

J = (x − rx)2 +

y − ry

2
, α = 2, k = 10. (78)

Intuitively, if one considers the combined θ , η dynamics as in
(75), (76), then θ̇ = ω + kη̇ and therefore θ(t) = ωt + kη(t).
Fig. 4. Tracking of a moving source, despite external disturbances, is shown for 7 s,
along with control effort for the first 0.25 s. The initial trajectory of (x(t), y(t)) is
far from circular, the system rotates slower while heading in the correct direction
(towards decreasing J), as it makes a large arc towards the location of theminimum
of J . This is also obvious in the initial control effort, where both the sine and cosine
terms are initially extremely distorted, changing faster or slower, depending on the
heading direction.

Considering the transfer function η =
ω2

s+ω2 J , in the limit as ω ap-
proaches infinity, η approaches J , and so θ(t) approaches ωt + kJ
as before. Note that the system is open loop unstable, with eigen-
values λi = 2.3, 0.7. Because of the disturbance and the non-zero
velocity of (rx(t), ry(t)), we must use larger values of k, α, and ω.
The simulation results are shown in Fig. 4.

7. Conclusions

This work recalls an important mathematical tool for the analy-
sis of highly oscillatory systems,withwhich a newESmethod’s sta-
bility is derived. This new ES method provides a scheme in which
the update rate of minimization or the control effort in the case
of trajectory tracking/stabilization is bounded, despite uncertainty
of the functions being minimized or the systems being controlled.
Known bounds on update rates and control efforts are important
for actual in-hardware control implementation. We demonstrate,
without proof, a controller design in which the heading angle rate,
rather than the angle directly, is controlled.
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