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Abstract

After considering the stabilization of a specific class of stochastic nonlinear systems in a companion paper, in this
second part, we address the classical question of when is a stabilizing (in probability) controller optimal and show that
for every system with a stochastic control Lyapunov function it is possible to construct a controller which is optimal with
respect to a meaningful cost functional. Then we return to the problem from Part I and design an optimal backstepping
controller whose cost functional includes penalty on control effort and which has an infinite gain margin. © 1997 Published
by Elsevier Science B.V.
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1. Introduction

After considering the stabilization of strict-feedback stochastic systems in a companion paper [2], in this
paper we present the following new results: For general stochastic systems affine in the control and noise
inputs, we design stabilizing control laws which are also optimal with respect to meaningful cost functionals.
This result is a stochastic counterpart of the inverse optimality result of Freeman and Kokotovi¢ [4] for systems
with deterministic uncertainties. Furthermore, we show how our backstepping design from [2], which achieves
stability, can be redesigned to also achieve inverse optimality. In contrast to the design of Pan and Bagar [9],
our cost functional includes penalty on the control effort and has an infinite gain margin [10] (namely, the
property that it remains stabilizing when multiplied by any constant no smaller than one), which is one of
the main advantages of inverse optimality.

2. Stochastic control Lyapunov functions

Consider the system which, in addition to the noise input w, has a control input u:

dx = f(x)dt + ¢1(x)dw + ga(x)uds, (2.1)
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where f(0)=0, g;(0)=0 and u& R™ We say that the system is globally asymptotically stabilizable in
probability if there exists a control law u=ua(x) continuous away from the origin, with 2(0)=0, such that
the equilibrium x =0 of the closed-loop system is globally asymptotically stable in probability.

Definition 2.1. A smooth positive-definite radially unbounded function V:R* — R, is called a stochastic
control Lyapunov function (sclf) for system (2.1) if it satisfies

. i o2V
inf {LfV +5Tr {ngFx?gl} + L, Vu} <0, Vx#0. (2.2)

The existence of an sclf guarantees global asymptotic stabilizability in probability, as shown in the following
theorem whose proof we incorporate into the proof of Theorem 3.1 for completeness.

Theorem 2.1 (Florchinger [3]). The system (2.1) is globally asymptotically stabilizable in probability if
there exists an sclf.

3. Inverse optimal stabilization in probability

Definition 3.1. The problem of inverse optimal stabilization in probability for system (2.1) is solvable if there
exist a class ., function y, whose derivative y} is also a class #, function, a matrix-valued function R,(x)
such that Ry(x)=Ry(x)T>0 for all x, a positive definite radially unbounded function I(x), and a feedback
control law u =a(x) continuous away from the origin with «(0)=0, which guarantees global asymptotic
stability in probability of the equilibrium x =0 and minimizes the cost functional

J(u)=E {/0 [1x) + 2(|Ra(x)"2u))] dr}. (3.1)

In the language of stochastic risk-sensitive optimal control [1], the cost functional (3.1) would correspond
to the risk-neutral case.

In the next theorem we extensively use the Legendre-Fenchel transform given as follows: For a class
function 7y, whose derivative ' is also a class /., function, £y denotes

Iy(r)= /0 ()"} (s) ds. (32)

Theorem 3.1. Consider the control law

r¢02(1Lg, VR )

u=o(x)=—R; (L, V)
P Ly, VR 212

(33)

where V(x) is a Lyapunov function candidate, v, is a class A, function whose derivative is also a class
Hoo function, and Ry(x) is a matrix-valued function such that Ry(x)=R,(x)">0. If the control law (3.3)
achieves global asymptotic stability in probability for the system (2.1) with respect to V(x), then the control
law

(%) (1Lg, VR )
Ly, VR; |

T

u=o"(x)=— , pB=2 (3.4)

solves the problem of inverse optimal stabilization in probability for the system (2.1) by minimizing the
cost functional

Jw)=F { /O h {z(x) Ny (%mé/zuﬂ dr}, (3.5)
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where

- 1 v -
lx)=2p [f”fzﬂl«gz VRy P =LV = 5T {ﬂmgl H + BB = 2)/72(ILg, VRy ). (3.6)

Proof. Since the control law (3.3) globally asymptotically stabilizes the system in probability, then there
exists a continuous positive-definite function W : R” — R, such that

1 [ 182V
LViany =LV + ETT Jirw + Ly, Vou(x)

_ 1 %
= — (L, VR, P + LV + S Tr {ngEZ—gl} < - W(x). (3.7)

Then we have

I(x)=2BW (x) + B(B — 2)¢72(|Lg, VR, 2. (3.8)

Since W(x) is positive definite, f =2, and /7y, is a class #%, function (Lemma A.1), /(x) is positive definite.
Therefore J(u) is a meaningful cost functional.

Before we engage into proving that the control law (3.4) minimizes (3.5), we first show that it is stabilizing.
With Lemma A.1 we get

2

1 o°V
LV|zay =LV -+ ETr {ng

B _ B B
56791} - E'L‘“ VR, Y21(v5) "(ILg, VR, )

1 4 - _ —
=LV +5Tr {fﬂaygl} - g[m(mgz VR )+ 12((5)” (ILg VR )

< $V1(3_3)<0, Vx;éO, (3.9)

which proves that (3.4) achieves global asymptotic stability in probability and, in particular, that x(¢)— 0
with probability 1.
Now we prove optimality. Recalling that the 1to differential of V is

é
dV=2V(x)dt + a—Vgl(x)dw, (3.10)
X
according to the property of Itd’s integral [8, Theorem 3.9], we get
1
E { V(0)— V() 4—/ ,CZV(x(r))dr} =0. (3.11)
0

Then substituting /(x) into J(u), we have

JWu)=E {/000 [/(x) + B, <%|Ré/2ul>} dr}

= 2BE{V(x(0))} + E { /0 ) {2/331/1(2_1) + 1)+ e (.;.ueyzm)] dr} — 2§ lim E{V(x(1))}

2
B
2§ lim E{V(x())}. (3.12)

= 2BE{V(x(0))} + E { /0 h [ﬁzn ( |R§/2ul) + B2¢9a(|Le VR 1) + 2BLy, Vu} dr}
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Now we note that

( IRy *u |>=ngzVR;”2l, (3.13)

J(u) = 2BE{V(x(0))} + E { /0 ~ {ﬁzyz (‘%R;/Zu ) + By, <y; (‘%Rgﬂu* ))
— 2% (‘ﬁ 2y ) %R;ﬂu] dr} ~2B lim E{V(x(1))}. (3.14)
With the general Young’s inequality (Lemma A.2), we obtain
J(u) = 2BE{V (x(0))} +E{ /0 [/32 Q ﬂR‘%) + By, <y; ( %R;ﬂu* ))
b2 (‘%Réﬁu) -~ Ftr (v; (‘ER”Z ' ))]d} =26 lim E{V(x(1))}
= 2BE{V (x(0))} — 2 lim E{V(x(1))}, (3.15)

which yields

where the equality holds if and only if

2/BRY u*) 2 2/BR)*u)T
” (‘ 2Ry ) /B )y O R§/2u> /B 21/2u) ’ (3.16)
B 12/BR,"u | p 12/BR, " u|
ie. u=u*. Since u=u" is stabilizing in probability, lim,_,o, E{¥(x(¢))} =0, and thus
argminJ(u) =u", (3.17)
min J(u) = 2BE{V (x(0))}. (3.18)

To satisfy the requirements of Definition 3.1, it only remains to prove that «*(x) is continuous and «*(0) =0.
Because g;, R, and ¢¥/0x are continuous functions, and (y,)™! is a class #, function, «*(x) is continuous

away from L,, VR, 12 —0. 1 |Lg, VR, 2| -0, continuity can be inferred from the fact that

_ _ 1 1 R—I/Z
lim ~ Ja*(x)l=  lim |R '2||L,. VR; 1/21()’2) ( gZZ/z D
qu2 _1 2|_.0 IL"’Z VRz_m""’ |L92 VR2 |
= im ERRI08 L 0 =0 (3.19)
L, ¥R 2| —0 | 2

Since 0¥(0)/ox =0, L;,V(0)=0 and we have «*(0)=0. [

Remark 3.1. Even though not explicit in the proof of Theorem 3.1, ¥(x) solves the following family of
Hamilton—Jacobi-Bellman equations parameterized by f €[2,00):

Ix) _
28

In the next corollary we design controllers which are inverse optimal in the sense of Definition 2.1.

2

1 lint 4

Corollary 3.1. If the system (2.1) has an sclf, then the problem of inverse optimal stabilization in probability
is solvable.
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Proof. Let y,(r)=1r2, f=2, and

2Ly, V(Lo V)" Ly
- E] g2 ?é 0,
Ryx)=1{ @+ /@?+ (L V(Ly, V)Y (3.21)
any positive number, Lg,V=0.

Then, with (y})~!()=2r, the optimal control candidate (3.4) is given by Sontag’s formula [11]
0+ VO + Ly VL V)TV

(L, V)T, L,V #0,

Ut =o5(x)= Ly, V(L V)T (3.22)
0, L,V =0,
where
1 *v
w:LfV—i—ETr{ng—a—Fgl}. (3.23)

According to [11], this formula is smooth away from the origin because (2.2) implies that, when x #0,
Ly, V=0=w<0. (3.24)

We note that the control law ag(x) will also be continuous at the origin if and only if the sclf V' (x) satisfies
the small control property [11] (the property that there exist some control law continuous at the origin which
is stabilizing with respect to V(x)).

To prove that og(x) is inverse optimal, we prove that the control law (3.3) is stabilizing. Since £y2(r)=r?,
(3.3) becomes u = %czs(x). Then the infinitesimal generator of the system (2.1) with the control law u = %cxs(x)
is

1
LV =— 5 I:—C? + \/wZ + (Lg2 V(ng V)T)2 » (325)

which is negative definite because of (3.24). O

4. Inverse optimal stabilization via backstepping

The controller given in Table 1 in [2] is stabilizing but is not inverse optimal because it is not of the
form (3.4). In this section we will redesign the stabilizing functions o;(x) to get an inverse optimal control
law.

To design a control law in the form (3.4), we first note from V=37 | %z;‘ that for system

dx; = x4 dt + (%) dw, i=1,...,n—1, “.1n
dx, = udt + @,(%,)" dw, (4.2)

Ly, V =2z and, since u is a scalar input, Rp(x) is sought as a scalar positive function. The following lemma
is instrumental in motivating the inverse optimal design.

Lemma 4.1. If there exists a continuous positive function M(x) such that the control law
u=oa(x)=—M(x)z, (4.3)

globally asymptotically stabilizes system (2.1) in probability with respect to the Lyapunov function V =
Sor, izt then the control law

u* =o*(x)=%pu(x), p=2 (4.4)

solves the problem of inverse optimal stabilization in probability.
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Proof. Let
n(r)y= 1, (4.5)
Ry=(3M)™"2 (4.6)

Then the control laws (3.3) and (3.4) are given, respectively, as
u=o(x)=—3R; "z, (4.7)
ur=0*(x)=—1pR; 7z, (4.8)
By dividing the last two expressions, we get (4.4), and the lemma follows by Theorem 3.1. O
From the lemma it follows that we should seek a stabilizing control law in the form of (4.3). If we consider

carefully the parenthesis including » in (3.21) in [2], every term except the second, the third, and the sixth
has z, as a factor. We now deal with the three terms one at a time. The second term yields

Y s
- i+1
" 8x1

=z,
= I=1 k=1
n—1 1 1 n—1 1
D ID IR i
=1 k=i 407 {=2 497,
11/ da,_ 382/ G0, VP 3l o \&
_ .4 * - n—1 d n—1 2 n—1
|3+ (G)) X () I S (na)
n—1 n—1 1 n—1 1
+3 2 24—(-3—4— +y 154—2;‘, (4.9)
k=1 (R NS

where the inequality is obtained by applying Young’s inequality,

0oty 3 doy_ \?
3 1 < n—1
z, 6;1 EANRES ZZ: (Ol = ) + ZE;TZ?H’ (4.10)
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B0ty 3 b\ 1
3 n—1 4 n—1 4
<- — 4.
Ty TS 77 (51k o fxlk) +3 5?ka (4.11)
6dn_1 1 1 60(,1_1 2
_ <=+~ , 4.12
axn——l 2 + 2 (5):,,_1 ( )

and the last equation comes from changing the summation order in the second term. As to the third and the
sixth terms, in the first parenthesis in (3.21) in [2], we have

1 3 n—{\ 6206,,_1 L ! !
=% z:::,l o, 0%, ;kapk >z

3, 2 Pay_y 1 A EE 1,
<z S5 (Spa et Y vy
82" k= ( pakt 0x0xg l//pklllquk) " 2 \ 452ku &

pg=1 k=1 I=1 pg=1 k=1 I=1
3 =l P4 Py o3 ezl onmlasl P
—
S Y Y (G ) 43 A Y (“.13)
pg=1 k=1 [=1 P I=1  p=1 g=I k=1  pakl
and
n—1 n—1
3238 D 2Bk =3 D (2 BraBut )7
k=1 k=1
n—1 3 l 9 n—1 3 n—1 1
<3 [Z(§kﬁ'{nﬂnk)4/3zﬁ + 4—5421?] = szz' > (B Bu)*® + 3 > 5—4z,‘§. (4.14)
k=1 k k=1 k=1 "k

Substituting (4.9), (4.13) and (4.14) into (3.21) in [2], we have

1 1 5fxn_1 2 3 n—2 50€n—1 4/3 3 n—1 1 506,1—1 4/3
(E + _2— (8x,,_1 )) + Z — (51 6x1 ) + Z lzzl ; (5lk ax/ ik

r n—1n—1

n—1
+% Zn Z(ékﬁ;{nﬁnk)“/z' + %Zn Z Z Z sziﬁﬁkj 5lj
k=1

J=1 k=1 [=1 "nkl
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n—1 n—1
1

+23 | o +212454 —ET/321 + z 24
=1 on

p
p=1 g=1 k=1 qul

+‘§

N

3 3 R
+521/31T1ﬂ11 t7a Z 2312:11)

k=2 I=1

n~1 1 n—1

= 1 1= LA
+2213 ai+zzz464 +454 zZ + 2212 2454 454
k=1

i=2 I= p=1 gq=i
Oo; 1 = (?206 1 3 4/3 1 3
‘Z ; R U v e R C
pq=1 i—
i—1 3 i1 i=1 3, n o k—1
+3ﬁ5 szﬁlk+4zl 8 lk_] llj Z,' Z 2812“.1
k=1 j=1 k=1 |=1 "il k=i+1 1=1
If &5, 8pqit, and &; are chosen as
n—1 n—1 n—1 p
1 1 1 3 C1
S I3 IDY o
7 4 4
l=1 45]1 2 p:l q=1 k=1 46 k1 45 2
4 257 9o 2 7]
= 46y, 467, 2 i 45qu1 40 2

where ¢; and ¢; are those in [2, (3.22) and (3.23)], and
Uu=— M(x)zn:

3
Mx)=cy,+ + 3 ﬁnnﬁnn + 2

1
41y

1 1 (801 ¥\ 322/ 60,,\* 3%
+<§+§<ﬁxn_1)>+zz(6l Ox; +ZZ

k=1

where ¢;>0, i=1,...,n, and M(x) is a positive function, with (4.16)—(4.18), we get

1 n
$V< — 5 ;C,‘Z?

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

Thus, according to Lemma 4.1, we achieve not only giobal asymptotic stability in probability, but also inverse

optimality.
Theorem 4.1. The control law

u*: - %BM(X)Z,,, B>2

(4.21)
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guarantees that the equilibrium at the origin of the system (2.1) is globally asymptotically stable in prob-
ability and also minimizes the cost functional

_ = 27 -3 4
JW)=E {/0 [l(x)—i— 16,82M(x) u }d‘c} , (4.22)
for some positive definite radially unbounded function I(x) parameterized by f.

Remark 4.1. We point out that the quartic form of the penalty on u in (4.22) is due to the quartic nature
of the sclf.

Appendix

Lemma A.1 (Krsti¢ and Li [7]). If y and its derivative ' are class A, functions, then the Legendre—Fenchel
transform satisfies the following properties:

Ly(ry=r(y)7'(r) = W) = /Or(V')_l(S)ds, (A.1)
£ly=", (A2)
¢y is a class A function, (A3)
(' (r) =ry'(r) — (r). (A4)

Lemma A.2 (Young’s inequality [5, Theorem 156]). For any two vectors x and y, the following holds:

X'y <yl + £3(13]), (A.5)
and the equality is achieved if and only if
x y

y=y(x)=, ie for x=(")""(|y)= (A.6)
|| 5%
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