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Abstract 

After considering the stabilization of a specific class of stochastic nonlinear systems in a companion paper, in this 
second part, we address the classical question of when is a stabilizing (in probability) controller optimal and show that 
for every system with a. stochastic control Lyapunov function it is possible to construct a controller which is optimal with 
respect to a meaningful cost functional. Then we return to the problem from Part I and design an optimal backstepping 
controller whose cost functional includes penalty on control effort and which has an infinite gain margin. © 1997 Published 
by Elsevier Science B.'V. 
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1. Introduction 

After  considering the stabilization o f  strict-feedback stochastic systems in a companion paper [2], in this 
paper we present the following new results: For general stochastic systems affine in the control and noise 
inputs, we design stabilizing control laws which are also optimal with respect to meaningful cost functionals. 
This result is a stochastic counterpart o f  the inverse optimality result o f  Freeman and Kokotovi6 [4] for systems 
with deterministic uncertainties. Furthermore, we show how our backstepping design from [2], which achieves 
stability, can be rede,figned to also achieve inverse optimality. In contrast to the design o f  Pan and Ba~ar [9], 
our cost functional includes penalty on the control effort and has an infinite gain margin [10] (namely, the 
property that it remains stabilizing when multiplied by any constant no smaller than one), which is one o f  
the main advantages of  inverse optimality. 

2. Stochastic control Lyapunov functions 

Consider the system which, in addition to the noise input w, has a control input u: 

dx = f ( x )  dt  + ~fl(X) dw 4- g2(x)u dt, (2.1) 
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where f ( 0 ) = 0 ,  g l ( 0 ) = 0  and u E ~m. We say that the system is globally asymptotically stabilizable in 
probability if there exists a control law u = c~(x) continuous away from the origin, with ~ (0 )=  0, such that 
the equilibrium x = 0 of the closed-loop system is globally asymptotically stable in probability. 

Definition 2.1. A smooth positive-definite radially unbounded function V:R~--~ N+ is called a stochastic 
control Lyapunov function (sclf) for system (2.1) if it satisfies 

in( {Lf  V+ 1T f TO2V } } ~c~"' ~ r~gl~-~x2gl +Lg:Vu <0, Vx#0.  (2.2) 

The existence of an sclf guarantees global asymptotic stabilizability in probability, as shown in the following 
theorem whose proof we incorporate into the proof of Theorem 3.1 for completeness. 

Theorem 2.1 (Florchinger [3]). The system (2.1) is globally asymptotically stabilizable in probability if 
there exists an sclf 

3. Inverse optimal stabilization in probability 

Definition 3.1. The problem of inverse optimal stabilization in probability for system (2.1) is solvable if there 
exist a class X ~  function Y2 whose derivative 7~ is also a class ~c~ function, a matrix-valued function R2(x) 
such that R2(x)=R2(x) T >0  for all x, a positive definite radially unbounded function l(x), and a feedback 
control law u--c~(x) continuous away from the origin with ~ (0 )=  0, which guarantees global asymptotic 
stability in probability of the equilibrium x --- 0 and minimizes the cost functional 

J(u)= E { fo~[l(x) + y2([R2(x)'/2u[)]dz} . (3.1) 

In the language of stochastic risk-sensitive optimal control [1], the cost functional (3.1) would correspond 
to the risk-neutral case. 

In the next theorem we extensively use the Legendre-Fenchel transform given as follows: For a class Soo 
function 7, whose derivative 7' is also a class ~ffoo function, f7 denotes 

/o r fy(r)  = (y ' ) - l ( s )  ds. (3.2) 

Theorem 3.1. Consider the control law 

( 2(ILg2 (3.3) u = o ~ ( x ) = - - R 2 1 ~  g~ ,, ]Lg2VR21/212 

where V(x) is a Lyapunov Junction candidate, 72 is a class av{'~ function whose derivative is also a class 
Y ~  function, and R2(x) is a matrix-valued function such that R2(x)=Rz(x)T >O. If  the control law (3.3) 
achieves global asymptotic stability in probability for the system (2.1) with respect to V(x), then the control 
law 

u* = ~*(x) = - ~R2I(L~2V) T(y~z)-~(IL'°2VR2~/21) /~>2 (3.4) 
z ]Lg 2 VR21/21 ' 

solves the problem of inverse optimal stabilization in probability for the system (2.1) by minimizing the 
cost functional 

J ( u ) = E { f o ~ [ l ( x ) + ~ z y 2 ( ~ l R ~ / 2 u l ) ] d z ) ,  (3.5) 
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where 

l(x) -- 2fl If72(]i,~ 
l 

f TO2U )] 
VR21/2]) - LfV - ~Tr ~gl ~-~-~1 -~ f l ( f l  -- 2 ) ~ 2 ( I L g 2  VR21/2])  • (3.6) 

Proof. Since the control law (3.3) globally asymptotically stabilizes the system in probability, then there 
exists a continuous positive-definite function W: ~n--* [~+ such that 

f Tc~2V } 

1 f T~Zv } 
= -- ~2'([Lg2 VR2I /2])  + L f V  ~- 5Yr J gl ~ - g l  -- ~< -- W(x). (3.7) 

Then we have 

l(x)>~ZflW(x) + fl(fl - 2)fV2(lLg2 VR21/2]). (3.8) 

Since W(x) is positiw~ definite, fl~>2, and (~2 is a class ~ function (Lemma A.1), l(x) is positive definite. 
Therefore J(u) is a meaningful cost functional. 

Before we engage into proving that the control law (3.4) minimizes (3,5), we first show that it is stabilizing. 
With Lemma A.1 we get 

] ( T~2U 
~V[(3.4) = LfV + ~Tr ~gl 0-~-g, } -  fl'Lg2VR21/2[(,t2)-I(]Lo2VR21/2[) 

1 ( TOZv 
= L fV-~-~Tr  ~gl ~-~5-g' } -  ~[EV2([LgzVR2U2[) + 72(('I2)-I([Lg2VR21/2[))] 

~< ~V1(3.3)<0, Vx¢0,  (3.9) 

which proves that (3.4) achieves global asymptotic stability in probability and, in particular, that x( t )~ 0 
with probability 1. 

Now we prove optimality. Recalling that the It6 differential of V is 

?V dV = 5¢V(x)dt + ~xga(x)dw, (3.10) 

according to the prope.rty of It6's integral [8, Theorem 3.9], we get 

E {V(O)-  V(t)~- fot~V(x(z))dz)=O. (3.11) 

Then substituting l(x) into J(u),  we have 

{loCI =-2flE{V(x(O))} +E 2fl~('V](2.1) + l(x) + fl272 IR~/2u] d~ - 2fl lim E{V(x(t))} 
I ---'* (X3 

-2fl  lim E{ V(x(t))}. (3.12) 
/ ---> OC 
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Now we note that 

7~2 (~[R12/2u*') = ILo2VR21/21, (3.13) 

which yields 

2 1/2 , -2fl7~ ( ~ R 2 u  ) (2/flR~/2u*)-TRl/2u] dr}- 14) 
i2/3Ra2/2u, i 2 j 231imE{V(x(t))}. (3. 

With the general Young's inequality (Lemma A.2), we obtain 

2 1/2 , 

= 2/~E{ V(x(O))} - 211 tfina E{ V(x(t))}, (3.15) 

where the equality holds if and only if 

i.e. u = u*. Since u = u* is stabilizing in probability, limt-~o~ E{ V(x(t))} = 0, and thus 

arg min J(u)  = u*, (3.17) 
U 

min J(u) = 23E{ V(x(0))}. (3.18) 

To satisfy the requirements of Definition 3.1, it only remains to prove that c~*(x) is continuous and c~*(0)= 0. 
Because g2, R2 and 8V/Sx are continuous functions, and (y~)-I is a class ~o~ function, ~*(x) is continuous 
away from Lg 2 VR21/2= O. If [Lo2 VRfl/2[---~ O, continuity can be inferred from the fact that 

t - -1  - - 1 / 2  
lim I~*(x)l = lim 3 -l/2 VR-1/2 (?2)-t(ILozVR2 

iLo VR;,21_  ° IL =VR;'21  IR2 IIG "'2 IGVR;1/21 f, 

= lim {~IR21/21(Y'2)-l(ILgzVR21/21)}=O, (3.19) 
IG2 VR~- 1'2 I--+0 

Since 8V(O)/Ox=O, Lg~V(0)=0 and we have ~*(0)=0.  [] 

Remark 3.1. Even though not explicit in the proof of Theorem 3.1, V(x) solves the following family of 
Hamilton-Jacobi-Bellman equations parameterized by fi E [2, oc): 

1 f T (~2V 1 ~dT2([Lo2rgfl/21 l(x) L fV + ~Tr ~91 ~Yx2 9, f - ) + ~fi- = O. (3.20) 

In the next corollary we design controllers which are inverse optimal in the sense of Definition 2.1. 

Corollary 3.1. I f  the system (2.1) has an sclf then the problem of inverse optimal stabilization in probability 
is solvable. 



H. Deng, M. Krstik/Systems & Control Letters 32 (1997) 151-159 155 

Proof.  Let 1 2 72 ( r )=  ~r , f l = 2 ,  and 

2Lo2 V(L02 V) T 
R2(x )=I  0..+ V/CO 2 +(Lg2V(Lg2V)T) 2' Lo2V ¢O' 

any positive number, Lo~ V = 0. 

Then, with ( 7 ~ ) - 1 ( r ) = 2 r ,  the optimal control candidate (3.4) is given by Sontag's formula [11] 

(3.21) 

co + V/co 2 + (L~gV(Lg2V)T)2(Lo2V)T ' Lg2V¢O , 
u* = as(X) = Lo 2 V ( Lo 2 V)T (3.22) 

O, Lg 2 V ---- O, 

where 

co=LsV+ ~rr g~7~-x2gl . (3.23) 

According to [11], this formula is smooth away from the origin because (2.2) implies that, when x ¢ 0, 

Lg~ V = 0 => co < 0. (3.24) 

We note that the control law ~ ( x )  will also be continuous at the origin if and only if the sclf V(x) satisfies 
the small control property [11] (the property that there exist some control law continuous at the origin which 
is stabilizing with respect to V(x)). 

To prove that as(X) is inverse optimal, we prove that the control law (3.3) is stabilizing. Since # ? 2 ( r ) = r  2, 
(3.3) becomes u = ½a~(x). Then the infinitesimal generator of  the system (2.1) with the control law u = ½a~(x) 
is 

~ V  = - ~ - c o +  oo2 + (Lg~V(Lg~V)T) 2 , (3.25) 

which is negative definite because of  (3.24). [] 

4. Inverse optimal stabilization via backstepping 

The controller given in Table 1 in [2] is stabilizing but is not inverse optimal because it is not of  the 
form (3.4). In this section we will redesign the stabilizing functions ai(x) to get an inverse optimal control 
law. 

To design a control law in the form (3.4), we first note from V = ~-~in__l 1 4 that for system ]zi 

dxi =x/+1 dt + ~gi(~fi)Tdw, i =  1 . . . .  ,n -- 1, (4.1) 

dx, = u dt + (p,(2n) T dw, (4.2) 

Lg 2 V =Zn 3 and, since u is a scalar input, R2(x) is sought as a scalar positive function. The following lemma 
is instrumental in motivating the inverse optimal design. 

Lemma 4.1. I f  there exists a continuous positive function M(x)  such that the control law 

u = a(x) = - M(x)z ,  (4.3) 

globally asymptotically stabilizes system (2.1) in probability with respect to the Lyapunov function V = 
~ i n l  1 4 then the control law ~Zi , 

u* =a*(x )=  ~flc~(x), fl>~2 (4.4) 

solves the problem of  inverse optimal stabilization in probability. 
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Proof. Let 

y 2 ( r )  = arl 4, 

R2 = ( 4 M ) - 3 / 2 -  
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(4.5) 

(4.6) 

(4.9) 

(4.1o) 

n - I  
3 G~n-- 1 

--Zn ~--~ ~ x l  x,+, 
/=1 

~ n - -  1 
3 Zl+l jr_ Z Z k O Q k  = --Zn Z ~X l 

l=l  k=l 

n - 2  n -1  / 
3(~0~n--1 ~ - ~  3~0~n_l__ ~-~ZkO~lk 

= -- Zn40~"1-- lt~_Xrt_ 1 L Z n ' - ~ X I  Zl+l -- 2-~Zn ~Xl 
l -1  /=1 k=l 

+ ~ 2 ~  3z. " + 

n--I l n--I 
1 4 

+ Z Z ~z4  + Z 4¢--7 z, 
/=1 k= l  46tg t=2 

= z .  + g  \ a x . _ , ) )  + 7  l=~ t=l k:, 

n--I n--i n--1 

+Zz,  Z ~ +  
k=l t=k = 461-1  

where the inequality is obtained by applying Young's inequality, 

3 00~n-- 1 3 4 " "~ -,4/3 1 4 

~< 4zn 46 t 

Then the control laws (3.3) and (3.4) are given, respectively, as 

u = e ( x ) =  3,,-2/3 (4.7) --~1~ 2 Zn, 

U* = O~ * (X ) = - l  f lR22/3z n. ( 4 . 8 )  

By dividing the last two expressions, we get (4.4), and the lemma follows by Theorem 3.1. [] 

From the lemma it follows that we should seek a stabilizing control law in the form of  (4.3). If we consider 
carefully the parenthesis including u in (3.21) in [2], every term except the second, the third, and the sixth 
has z, as a factor. We now deal with the three terms one at a time. The second term yields 
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/ 6~n_l -,~4/3 
3 OO~n-I ~Z4t6lk---~-~X#OQk ) Zn ~X'-~-ZkO~lk + ~14 z2 (4.11) 

46tk 

c~n-1 ~<1 1 (c~,,_l'~ ~, (4.12) 
--OXn--~---~ 2 + 2 \OXn-,J 

and the last equation comes from changing the summation order in the second term. As to the third and the 
sixth terms, in the first parenthesis in (3.21) in [2], we have 

n--I a2o[n_ 1 (pT~Oq 

Z oxp,  q 
p,q=l 

C32~n-1 ZkqJpk Zl~ql =_ z3 S; 
p,q=l 

: - - 2  Z : Z  tZn ~ p ~  qlPkl[Iq') ZkZ, 
p,q=l ~=1 /=1 

1 n-I J~ ~ F3~4/3 4 /,~2 ,,4/3 Z 
p,q=l k::l /=1 

n-- 1 p q / "~2 ,,4/3 

<~ Z4 Z ~ Z 6pqkl~xp~Xq~tP k+qlZk ~- 
p,q=l k=l /=1 

3 4 n--l p q ( "~2 7/3 0 0 ~ n _  1 T 
: 8 Zn Z ~ ~ 6pqkl~p~Xq~tpk~lqlZk ~- 

p,q=l k=l /=1 

46 pqkl J 

1 n--1 p q 1 4 

~ S] S: Z .~-Tz, 
p,q=l k=l /=1 ~VPq kl 

1 n--1 n - 1  n--I p 1 

Z z ;  ~ Z ~ 4 6 4  ks 
1=1 p=l q=l k=l Pq 

(4.13) 

and 

n--1 n-1 

3 T ZZkf lnk=3 Z(Znflnnflnk)Z k 3z.[3.. 3 T 

k=l k=l 

n--I n--1 ~ 1  l 
~<3 Z 3 T 4/34 1 4 9 4 Z(6kflnnflnk ) jr_ z 4. ~ = ~z , ,  ~(Ok[3nnflnk) Zn + 40 k 6 k 

k=l k=l k=l 
(4.14) 

Substituting (4.9), (4.13) and (4.14) into (3.21) in [2], we have 

~ v ~ .  ~ u+ .~ , , ,  +~t~X.-lJ)+~ t Ox, ) + ~ Z E t , ° ' ~ < ' q  J l=l l=1 k=l 

3 ,4 3 //~ a ~ n - 1 - ' r -  \ 1 3 T 

p,q=l k=l  #=1 

n--| ~ n--! n--I } 
9 Z(~..~n~) + ~Zn E ~  1 .~ .~ ~_ 4 Zn T 4/3 3 
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n-1 1 3 1 n--1 n-1 p 1 3 1 
4-Z; O~ 1 Jr- Z l E @ll + 4 e4/3zl -~- 7 zl Z Z E 4(54 k~'-~ + ~ ~11 Z l 

/=1 p=l q=l k=l Pq 

3r ) 
+~ z, flT, fl,1 + -~ z, ~ 821l 

k=2 l=1 
! 

n - i  ( n-1 1 1 
+ 

i=2 l=i 

1 n--1 , - 1  p 1 3 1 

p=l q=i k=l pqki 

i-I &q-I  1 ~ ~2~i_ 1 (pTIpq -[- 3 4/3_ 1 3 
- Z -~-~-x# x'+l - 7 &p&q 4e4 1Zi - -  ~8 i ai q- - -  "-~ Zi~iT flii 

/=1 p,q=l 

i - - 1  3Z '~ - '~ i - - l i - -1  2, 3r ~-'~ k-1 ) 4  Zt 2 
+ 3flY Z z k f l i k  + 4 '  Z Z I_a2 1"42 ~_ __ . E l ; k i t  

k=l j= l  k=l 1=1 8ttdPikjtJilj 
D 

k=i+l 1=1 

If  8li, (~pqil, and 6i are chosen as 

n-1 1 1 n-1 n - I  p 1 3 _ _  Cl 

E 4 - - - - ~ I + 2 Z Z Z  4 464 2 '  
l=l p=l q=l k=l 4~pq kl 

. - I  1 1 1 . - I  . - 1  p 1 3 c i y .  Z Z Z  
~='----7 464 464_1 2 p=l q=i k=l 434qki 464 2' 

where cl and ci are those in [2, (3.22) and (3.23)], and 

u = - M(x)Zn, 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

~ n--1 n--1 

IJ nkj IJ n lj m(x) = Cn + ~ + -~flnnflnn "~ ~ j= l  k=l 1=1 e'nkl 

1 ~ l O0~n_ 1 1 (00~n_l '~2~ 3 ((~l~0~n_1~4/3 3 " - - '  t , ~ ,,4/3 

Jr- -t-7 ~'~Xn--lJ)-t-4 l=1 ~ OXI ) -t- 4 Z E t~lk~x-~Xl k= l  

n-I 
3 n-1 p q ( ~2°~n-I T ? / 3  9 Z((~knnnnnk) , + ~ • ~ Z tt6Pqk'~eOxqqS;kqSqtzk j + ~ T 4/3 

p,q=l k=l l=1 k=l 
(4.19) 

where c i>0 ,  i =  1 . . . . .  n, and M(x) is a positive function, with (4.16)-(4.18) ,  we get 

n 
1 Eciz4. (4.20) 

i=I 

Thus, according to Lemma 4. I, we achieve not only global asymptotic stability in probability, but also inverse 
optimality. 

T h e o r e m  4.1. The control law 

U * =  -- 2flM(x)Zn, fl>~2 (4 .21 )  
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guarantees that the equilibrium at the origin of  the system (2.1) is globally asymptotically stable in prob- 
ability and also minimizes the cost functional 

=E + I~2M(x) -3u  4 dr J(u) { f 0 ~ [ / ( / )  /~ ] } ,  (4.22) 

for some positive definite radially unbounded function l(x) parameterized by ~. 

Remark 4.1. We point out that the quartic form of the penalty on u in (4.22) is due to the quartic nature 
of the sclf 

Appendix 

Lemma A.1 (Krsti6 and Li [7]). If7 and its derivative 7' are class ~ff~ functions, then the Legendre-Fenchel 
transform satisfies t,he following properties: 

~7(r)=r(y')-l(r) - ~((7')-I(r))= (? ' )- l (s)  ds, (A.1) 

( E7 = 7, (A.2) 

f? is a class ~'~ function, (A.3) 

~7(7'(r)) = rT'(r) - 7(r). (A.4) 

Lemma A.2 (Young's inequality [5, Theorem 156]). For any two vectors x and y, the following holds: 

xWy<~(Ixl) + g y(lyl), (A.5) 

and the equality is achieved if and only if 

, IxlX Y = ~ (1xl)7--7, ie. forx=(7 ' ) - l ( lY l )  • (1.6) 
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