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Minimum-Seeking for CLFs: Universal Semiglobally
Stabilizing Feedback Under Unknown
Control Directions

Alexander Scheinker, Student Member, IEEE, and Miroslav Krsti¢, Fellow, IEEE

Abstract—Employing extremum seeking (ES) for seeking
minima of control Lyapunov function (CLF) candidates, we de-
velop 1) the first systematic design of ES controllers for unstable
plants, 2) a simple non-model based universal feedback law that
emulates, in an average sense, the “L,V controllers” for stabiliza-
tion with inverse optimality, and 3) a new strategy for stabilization
of systems with unknown control directions, as an alternative to
Nussbaum gain controllers that lack exponential stability, lack
transient performance guarantees, and lack robustness to changes
in the control direction. The stability analysis that underlies our
designs is inspired by an analysis approach synthesized in a recent
work by Diirr, Stankovic, and Johansson, which combines a Lie
bracket averaging result of Gurvits and Li with a semiglobal
practical stability result under small parametric perturbations by
Moreau and Aeyels.

Index Terms—Control Lyapunov functions (CLF), extremum
seeking (ES), lie bracket averaging.

I. INTRODUCTION

1) Motivation: Stabilization and control Lyapunov functions
(CLF) have been seminal accomplishments in the control field
since the introduction of Sontag’s formula in 1989 [54] and fol-
lowed by constructive developments of CLF’s throughout the
1990s for systems with known models [34], [53], unknown pa-
rameters [33], [34], [58], uncertain nonlinearities [20], and sto-
chastic and deterministic disturbances [33].

In the CLF theory, a central place is occupied by “L,V con-
trollers” (damping controllers) [33], [53], which are capable of
ensuring not only stability but also inverse optimality, and of
which a representative example is Sontag’s universal controller
[54].

In developing stabilizing controllers for uncertain systems,
the most challenging class of uncertainties is the unknown con-
trol direction, also referred to as the case with an unknown sign
of the high frequency gain. This problem has a history that pre-
cedes CLF’s and goes to the early period of development of ro-
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bust adaptive control. Posed in the early 1980s by Morse and
first solved by Nussbaum [49], the problem of stabilization in
the presence of unknown control direction has recently received
increased attention in adaptive control of nonlinear systems but
the classical parameter-adaptive solutions suffer from poor tran-
sient performance and fail to achieve exponential stability even
in the absence of other uncertainties.

Extremum seeking (ES) is a control framework that, at a first
glance, appears unrelated to both CLF’s and stabilization under
unknown control direction. ES has traditionally been developed
as a methodology for optimizing steady states for stable sys-
tems, rather than for stabilizing unstable plants, experiencing a
resurgence since its stability proof appeared in [36]. A first ef-
fort towards applying ES to unstable plants was presented in
[67] but only for simple linear examples and only for problems
where instability is an obstacle to achieving optimization, rather
than stabilization being the goal. An extension of [67] is pre-
sented in [43].

A recent result by Diirr et al. [17], [18], which studies
application of ES to autonomous vehicles performing source
seeking, reveals a striking connection between ES and Lya-
punov stabilization. First, it provides a link between Lie bracket
averaging theory and Lypunov stability, introducing an analysis
framework for guaranteeing semi-global stability of extremum
seeking schemes, without a tradeoff between the rate of conver-
gence and region of attraction. Second, it makes an observation
that the unknown map, whose maximization or minimization is
the goal in extremum seeking, is a Lyapunov function candidate
in the study of stability using Lie bracket averaging.

In this paper we build on the connection between ES,
Lyapunov functions, and Lie bracket averaging, to develop a
general framework for stabilization of systems with unknown
models using CLF’s and L,V -like controllers. In simple terms,
we design ES controllers that achieve semi-global practical
stabilization by seeking the minimum of a control Lyapunov
function.

Since our approach does not require the knowledge of the
control direction (for systems affine in control, the input vector
field g is allowed to be unknown), as a byproduct of our ef-
fort in designing ES-based L,V -like controllers we provide a
new solution to the problem of stabilization of systems with un-
known direction. The new solution guarantees exponential con-
vergence and does not suffer from poor transients that are char-
acteristic of solutions that employ Nussbaum gain techniques.

2) Summary of Literature on ES for Optimization of Stable
Plants: The extremum seeking (ES) method, a real-time non-
model-based optimization approach, has seen significant theo-
retical advances during the past decade, including the proof of
local convergence [3], [5], [11], [51], [59], extension to semi-
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global convergence [57], development of scalar Newton-like al-
gorithms [44], [48], inclusion of measurement noise [56], [56],
extremum seeking with partial modeling information [1], [2],
[15], [19], [23], and learning in noncooperative games [21],
[55].

ES has also been used in many diverse applications with
unknown/uncertain systems, such as steering vehicles toward
a source in GPS-denied environments [12], [13], [65], active
flow control [6]-[8], [28], [31], [32], aecropropulsion [45], [61],
cooling systems [38], [39], wind energy [14], photovoltaics
[37], human exercise machines [66], optimizing the control of
nonisothermal continuously stirred tank reactors [24], reducing
the impact velocity of an electromechanical valve actuator [50],
controlling Tokamak plasmas [9], [10], and enhancing mixing
in magnetohydrodynamic channel flows [40].

3) Results of the Paper: In this paper we employ ES for
semi-global stabilization of unstable and time-varying systems,
in which control direction is not only unknown, but allowed
to persistently change sign. Our design is inspired by a recent
extremum seeking design by Diirr ef al. [17], where an inno-
vative combination of certain Lie bracket-based averaging re-
sults by Gurvits and Li [25]-[27] was combined with results
of Moreau and Aeyels [46] on semiglobal practical stability
for nonlinear systems with small parametric perturbations, to
achieve semiglobal practical stabilization of the Nash equilib-
rium in certain games involving multiple mobile robots.

We briefly introduce our general idea next, for nonlinear sys-
tems affine in control

&= f(z)+ g(z)u. (1)

We employ a nonlinear time-varying control law of the form
u = Vw [ cos(wt) — ksin(wt)V ()] 2)

where V (x) is a CLF for (1).

The major differences between the controller (2) and typical
ES schemes are the +/w gain on the perturbing high-frequency
terms and the fact that we are minimizing a known function
V(z) for an unknown system f(x), g(x), which contains its
own integrator and is possibly unstable, rather than for a system
that is open-loop stable and fast, as in typical ES-schemes. The
\/w term is a necessity for the application of Lie Bracket aver-
aging and intuitively can be understood by the fact that a highly
oscillatory term on average may have little or no influence on
a system’s overall dynamics unless its amplitude is appropri-
ately increased. As in classical ES approaches we add a small
perturbing term of the form (after integration) («//w) sin{wt),
which we then mix with a large signal of the same frequency
vwsin(wt) in order to extract an estimate of the gradient of
V(z). One would expect that induced oscillations of any form
such as square or triangular waves could successfully achieve
similar ES results, as long as care is taken to match frequency
and amplitude relationships, which may require more analysis
when using non-smooth perturbations with infinite frequency
spectrum.

As stated, the controller (2) is, in fact, a minimum-seeking
controller for V(). Under this controller, the Lie bracket av-
erage system is

OV (E)

7= f(7) - kag(z)g" () (T)T - 3)
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This average system clearly displays that the ES algorithm in-
troduces a gradient of the CLF V' with respect to the state i,
multiplied by the unknown square positive semidefinite ma-
trix g(#)gT (z). Under suitable conditions, the choice of a suf-
ficiently high gain product ko > 0 makes the gradient term
dominate the term f(Z) and globally asymptotically stabilizes
the average system (3) and semi-globally practically stabilizes
the original system (1) for sufficiently high w.

For linear time-varying plants, & = A(#)z + B(t)u, the con-
trol law u = \/w[a cos(wt) — ksin(wt)|x|?], results in the Lie
bracket average LTV system 7 = [A(t) — kaB(#)BT(t)]z,
which, under a persistency of excitation condition on the vector-
valued function B(t), is stabilized for sufficiently high ke > 0.

In all our ES designs, the first step is the construction (or a
guess) of a CLF V(x), the second step is a choice of sufficiently
high gains k£ and o of the ES algorithm, such that the product
ko is large enough to stabilize the Lie bracket average system,
and the third step is the choice of a sufficiently high w to sat-
isfy the requirements of the Lie bracket averaging theorem of
Gurvits and Li [25]-[27] and of the semiglobal practical sta-
bility theorem of Moreau and Aeyels [46]. In the time-varying
case, intuitively speaking, relative to the system dynamics, we
must choose w large enough such that the control oscillations
are on a separate time-scale from the time-varying dynamics,
w > |A(#)|.|B(t)|. The choice of w is related to the region of
attraction of our closed loop systems, with larger w resulting in
a smaller perturbing term (a/\/w)sin(wt) and providing sta-
bility for larger initial conditions.

Although the Lie bracket averaging analysis leads to a suffi-
ciency condition for the product %k« to be high enough, the indi-
vidual terms % and « play significantly different roles in the ES
algorithm and have different influences on the required choice
of w. The choice of w is less sensitive to «, because the dithering
term, after integration, is of the order of av/+/w. The choice of w
is much more sensitive to the value of &, which is a control gain
that increases the convergence rate as well as decreases the size
of the residual convergence set. For example, once a stabilizing
choice of k« is made and a large enough w is chosen, if one dou-
bles & while halving o and thereby maintaining a fixed product
ko, if w is not increased the system may possibly have large
overshoot and may even become unstable. If, on the other hand,
one halves the value of & while doubling «, the same choice of
w will usually maintain stability.

Clearly, our approach is of a high-gain type in requiring that
both ko and w be large, furthermore we introduce fast oscil-
lations into the system, which may become impractical, due to
actuator capabilities, for very large choices of w. When con-
sidering problems with an unknown control direction, unlike
the approach by Nussbaum [49] and Mudgett and Morse [47]
(which we refer to as the “MMN approach”), our approach is
neither global nor asymptotic—it guarantees semiglobal expo-
nential practical stability. As such, our results are robust to dis-
turbances in the process, as well as to deterministic or random
disturbances in the measurement of x that do not generate a
component at or near the probing frequency in V' {(x). Further-
more, unlike the MMN approach, we can not only handle un-
known signs of the high frequency gains, but also signs that
change with time. In particular, we can allow B(#) to go through
zero. The price we pay, besides the lack of globality and of
perfect regulation to the origin, is that our high-gain choice of
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ka requires that we know a lower bound on a mean value of
B(t)BT(t) and upper bounds on mean-square values of A(#)
and B(1).

The MMN controller is designed for the case of constant
plant parameters. When it is applied to a system that is time-
varying, and when the control coefficients are quickly varying
with time, passing through zero, and alternating signs, such as
when B(t) contains sinusoids, then the MMN type controllers
simply cannot keep up and repeatedly overshoot with greater
and greater error magnitude. We illustrate this with an example.
The controllers developed in this paper do not suffer from any
such overshoots because the extremum seeking control scheme
is by design operating on a faster time scale than the dynamics
in the system’s coefficients, and the system’s behavior, as esti-
mated by an averaged system, does not depend on the control
coefficients’ signs. Apart from the limited effort in [67], this
paper provides the first results making extremum seeking appli-
cable to unstable plants.

4) Organization: In Section II we state definitions of sta-
bility used throughout the rest of the paper and provide a review
of a Lie bracket averaging result of Gurvits and Li [25]-[27] in
order to derive an averaged system of our original system. We
then use the result of Moreau and Aeyels [46] to show that sta-
bility of the averaged system implies stability of the original
system. In Section III we present a general framework for the
design and analysis of stabilizing controllers for systems with
unknown models by combining the ES approach with CLF’s.
In Section IV we present the first of our major results, for sta-
bilization of unstable n-dimensional linear time-varying sys-
tems whose control vector coefficients may not only be of un-
known sign but also of persistently changing sign. In Section V
we consider unknown linear systems in strict-feedback form,
as a representative of readily tractable but more notationally
burdensome nonlinear systems in strict-feedback form, and de-
sign a stabilizing ES controller based on the backstepping ap-
proach [34], [58], which allows all the coefficients of the plant
to be unknown, with only two mild conditions on bounds on
the coefficients, which does not imply the knowledge of any
of the coefficients’ signs. In Section VI we present results for
MIMO nonlinear systems with matched uncertainties and il-
lustrate how to achieve stabilization for uncertain nonlineari-
ties of arbitrary growth, which allows us, for example, to sta-
bilize systems with polynomial nonlinearities without requiring
the knowledge of the nonlinearities’ polynomial order, using ex-
ponential feedback of the state’s norm. Finally, in Section VII
we illustrate the controllers’ performance on examples that in-
clude an unstable two-dimensional time-varying system and a
scalar unstable nonlinear systems. We also compare the perfor-
mance of our controller with the MMN controller for a scalar
time-varying system.

II. BACKGROUND ON LIE BRACKET AVERAGING AND
SEMIGLOBAL PRACTICAL ASYMPTOTIC STABILITY

The Lie bracket averaging results of Gurvits and Li [25]-[27]
apply to systems of the form

m

i= bilx)us(t,0) “4)
i=1

1109

where

1
uf(t 6’) = Q_I,Z(t) + W’&L(t f)
and 4;(t, ) is T-periodic in § = t/e, T € (0,00) and has
zero average, fOT 4;(t,0)dé = 0. Along with the system (4),
the following approximation model is considered:

(6))

5= Z bi(z)a(t) + %Z[bi, b)(2)vi (),  2(0) = z(0)

i<y
(6)
where
T 8
vi j(t) = G (t, 70, (¢, 0)dTd8 (7
/]
bl = D) - BB

Noting that a T-periodic function is also nT'-periodic, If we
replace T' with nT', n € N and apply the arguments of the
original proof [25]-[27] as well as [18, Lemma 2], the systems
(4) and (6) then satisfy the following approximation result.

Lemma 1 ([4], [18], [25]-[27]): For period T" > 0 and n €
N, there exists € such that for all ¢ € (0,€*), the trajectory
of system (4) is within a A(nT, €)-distance of the solution of
system (6), namely

max [a(t) - 2(8)| = [|r = Zllopur) < AWTie) ()

te[0,nT])

where A(nT.¢) — Oase — 0.

Before we can take advantage of these averaging results we
make the following definitions as in Moreau and Aeyels [46].
In what follows, given a system:

&= f(t,z) (10)
¥(1,ty, x0) denotes the solution of (10) which passes through
the point x¢ at time %g.

Definition 1: Global Uniform Asymptotic Stability (GUAS):
An equilibrium point of (10) is said to be GUAS if it satisfies
the following three conditions:

Uniform Stability: For every ¢y € (0, 50) there exists ¢ €
(0, o) such that for all #; € R and for all zy € R™ with
H.’II(]” < c1, ||1/)(t,t0,7‘0)” < 9 vVt € [to,OC).

Uniform Boundedness: For every ¢1 € (0, oc) there exists
¢a € (0,00) such that for all £, € R and for all z; € R"
with HZL'[)H < ¢1, ||1/J(t7t(),ZL‘())H < o Vi e [t(),OO).
Global Uniform Attractivity: For all ¢, ¢3 € (0, 00) there
exists T € (0, oc) such that for all ¢, € R and for all zy €
R™ with ||zg|| < c1, |[(2, to, x0)|| < ca ¥Vt € [to+T, oc).

In conjunction with (10), we consider systems of the form

= f(t, ) 11

whose trajectories are denoted as ¢*(¢, to, xg).

Definition 2: Converging Trajectories Property: The systems
(10) and (11) are said to satisfy the converging trajectories prop-
erty if forevery 7’ € (0, 00) and compact set K C R™ satisfying
{(t,tg,20) ERXRXR" : ¢ € [to,t0+T], 20 € K}C Domyp,
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for every d € (0, 00) there exists €* such that for all t; € R, for
all zp € K and for all e € (0, €*)

g€ (t, to, z0) — Y(t, to, wo)|| < d, Vit € [to.to +T]. (12)

We then define the following form of stability for system (11).

Definition 3: e-Semiglobal Practical Uniform Asymptotic
Stability (e-SPUAS): An equilibrium point of (11) is said to be
e-SPUAS if it satisfies the following three conditions:

Uniform Stability: For every ¢o € (0,00) there exists

¢1 € (0,00) and € € (0, 00) such that for all £, € R and

for all 9 € R™ with ||zg]| < ¢ and for all € € (0, ¢€),

||(/)E(t,t0.,.’ﬂo)|| < ¢y Vit € [f,(), OO)

Uniform Boundedness: For every ¢; € (0, oc) there exists

ca € (0,00) and € € (0, 00) such that for all £y € R and

for all zp € R™ with ||z¢]| < ¢1 and for all € € (0,¢),
||(]5E(t,t0,.’1§0)|| < oVt € [to, ).

Global Uniform Attractivity: For all ¢1, ¢ € (0, oc) there

exists T € (0,0c) and € € (0, oc) such that for all ty € R

and for all zy € R” (0,¢6),

||(Z56(t,t0,.7)0)|| < e Vi€ [to + T, OO)

With these definitions the following result of Moreau and
Acyels [46] is used in the analysis that follows.

Theorem 1 ([46]): 1f systems (11) and (10) satisfy the con-
verging trajectories property and if the origin is a GUAS equi-
librium point of (10), then the origin of (11) is e-SPUAS.

Corollary 1: 1f the origin of system (6) is GUAS, then the
origin of system (4) is e-SPUAS.

Proof: Given any T>0 , taking n € N such that nT" > T.
by Lemma 1 the solutions of (6) and (4) satisfy the converging
trajectories property. Since the origin of (6) is GUAS, by The-
orem 1, the origin of (4) is e-SPUAS. [ |

IITI. CLF-BASED EXTREMUM SEEKING: THE BASIC IDEA

Our interest is in stabilization of the origin of systems

& = f(a) + glo),

where z € R",u € R, and the vector fields f and g are un-
known. Though our approach permits a time dependence in f
and ¢, as long as they can be represented as sums of products
of functions of 2 and functions of ¢, as required by the analysis
methodology in Section II, for clarity we concentrate in this sec-
tion on time-invariant f and g.

Consider a controller in the form

u = w[acos(wt) — ksin(wt)V ()] (14)

where «, & > 0 and the function V is soon to be discussed. The
Lie bracket average of the system (13), (14) is given by

7 = J(7) - kag(z) (L,V(#)"

where we use the standard Lie derivative notation L,V =
(8V/0x)g. The form of the system (15) motivates the fol-
lowing assumption.

Assumption 1 (Strong L,V -Stabilizability): There exists a
positive definite, radially unbounded, continuously differen-
tiable function V' : R® — R, and a constant 5 > 0 such that

(16)

F0y=0 (13)

(15)

LyV — B(L,V)? <0, Ya#£0.
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With Corollary 1 we establish the following result.

Theorem 2: For given V and 3, denote by S(V, 3) the class
of all systems (13) for which Assumption 1 is satisfied. Under
the control law (14) all the systems in S(V, 3) are 1/w-SPUAS
for all kaw > f3.

It is relevant to explore the special case of linear systems

&= Ax + bu 17

with control

u =V [acos(wt) — ksin(wt)z” Px] (18)
where P is a positive definite and symmetric matrix. The Lie
bracket average of the system (17), (18) is given by
T = (A — kabb” P)z. (19)
Hence, the linear analog of Assumption 1 is that there exists a
positive definite and symmetric control Lyapunov matrix (clm)
P and a positive constant 8 such that
PA+ ATP —28PWTP < 0. (20)
Corollary 2: For given P and 3, denote by (P, 3) the class
of all pairs (A4, b) for which (20) is satisfied. Under the control
law (18) all the systems (17) in 3( P, 3) are 1/w-SPUAS for all
ka > 3.

A. Is Assumption 1 Equivalent to Stabilizability?

It is well known that a system (13) with smooth f and g is
stabilizable by feedback continuous at the origin and smooth
away from the origin if and only if there exists a control Lya-
punov function (CLF) with a suitable “small control property”
(scp) [54], namely, a positive definite radially unbounded func-
tion W with the properties that L,#W = 0 = L;W < 0 and
LW 4+ L,Wa, < 0 whenever z # 0, for some continuous
function ..

Assumption 1 is somewhat stronger than mere stabilizability.
For example, for the system

&=+ z%u (21)
which is stabilizable by simple smooth feedback » = —2x, no
function V exists that satisfies (16) for some 3 > 0, and yet
W = 22/2 is a CLF with an scp.

However, Assumption 1 is satisfied for any stabilizable
system whose CLF W satisfies not only the CLF condition
LW = 0 = LW < 0 but also a strong small control
property (sscp) that

V4 T
lim max L()
£—0 rfxv( y>0 (L V[/( ))

and

(22)

Under condition (22), it can be shown, by slightly modifying the
proof in [35, (75)—(80)], that Assumption 1 is satisfied for any
£ > 1 by anew CLF V constructed as

w

V= /p(r)dr

0

(23)
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strongly

stabilizable LgV- stabilizable

<—]

Jclf + scp

<

Fig. 1. Existence of a CLF with sscp is equivalent to the system being strongly
L,V -stabilizable, which implies that the system is stabilizable. It is well known
[54] that stabilizability is equivalent to the existence of a CLF with scp, there-
fore, as shown above, existence of a CLF with sscp implies existence of a CLF
with scp.

Jclf + sscp

where

LV + J(L;V)2+ (L,V)*

pr)=14+2 (L, V)?

(24)

sup
:V(xz)<r

In simple terms, a system is strongly L,V -stabilizable if
it has a CLF with a sscp. The converse is also true and
follows trivially by noting that from (16) it follows that
L,V = 0 = L;V < 0 whenever z # 0 and thus
lime o maxz,vs»o (LiV(x)/(L,V(2))?) < f < .

Fig. 1 shov&gdrgllat'ions between stabilizability and Assump-
tion 1 by highlighting that both assumptions are equivalent to
the existence of a CLF, but with different small control proper-
ties.

Though violated for the example (21), condition (22) is satis-
fied for many systems, including all systems in strict-feedback
and strict-feedforward forms. Hence Assumption 1 is far from
being overly restrictive, despite not being equivalent to stabiliz-
ability by continuous control.

In the linear case, the inequality (20) is simply a Riccati in-
equality and by no means appears to be a restrictive condition.
However, when (4, b) are unknown, the designer can only guess
a P, rather than solving (20) for a given matrix on the right-hand
side of the inequality. As we shall see next, simple guesses will
often violate (20). However, as we demonstrate in the rest of the
paper, good guesses for a clm are available for some non-trivial
classes of systems with unknown model parameters, including
unknown control direction.

B. Is Assumption 1 Reasonable for Systems With Unknown
Models?

Given how hard it is to find a CLF when f and g are known,
how can the designer have V" and [ that satisfy (16) when f and
g are unknown?

For instance, for the scalar example & = f(z) + » with
f(x) = 2%, the CLF V = 22 violates Assumption 1, though the
CLF V = z* verifies the assumption. In Section VI we present
an approach that allows the designer to construct a CLF that ver-
ifies Assumption 1 despite not knowing f.

0 0
b = [{], which is completely controllable, a simple clm P = T
violates (20) since PA + ATP — 23PbbTP = f _lﬁ
cannot be made negative definite for any 5 > 0. Yet, as we shall

For the second-order linear example with A = {1 1],

1111

see in Section V, a more complicated, valid clm P that does not
require exact knowledge of A and b can be constructed which,
in conjunction with the injection of a periodic perturbation and
the averaging principle, ensures stabilization.

IV. LINEAR TIME-VARYING SYSTEMS WITH UNKNOWN AND
POSSIBLY ALTERNATING CONTROL DIRECTIONS

The problem of stabilizing a linear time-invariant system is
difficult when the system is unstable and the coefficients of
the control input have unknown signs, even when the system’s
dynamic order is one. This problem was posed by Morse and
solved by Nussbaum [49], whose solution was refined and
simplified by Mudgett and Morse in adaptive control of general
linear systems [47]. The work of Nussbaum, Mudgett, and
Morse inspired a wide range of extensions utilizing the so
called Nussbaum-type gain technique, achieving stabilization
of first-order nonlinear systems [42], parametric-strict-feedback
nonlinear systems [64], and output-feedback nonlinear systems
with unknown control directions [ 16]. The Nussbaum technique
was also utilized to allow for control direction uncertainty in
the backstepping [34] approach for strict-feedback systems
[68]. The Nussbaum-gain techniques were also extended to
n-th order single input nonlinear strict-feedback systems with
time-varying control coefficient of unknown but constant sign
in both continuous [52], [62], [63] and discrete time [22]. Ro-
bust control is designed in [30] for systems where the control
coefficient is allowed to change sign and pass through zero but
it is required that the nominal system be stable.

Nussbaum-gain type controllers guarantee global stability
without any a priori knowledge on the system parameters.
However, they suffer from a large initial overshoot when the
initial guess of the sign of the control coefficient is incorrect.
Furthermore, these controllers are tuning-based, involving dy-
namic feedback even in the case of full-state measurement, and
lacking exponential stability. Consequently, these controllers
are prone to parameter drift and robustness problems, as all
other conventional adaptive controllers.

While the mentioned Nussbaum-gain extensions allow for
control coefficient uncertainty and even for time-varying control
coefficients, the control coefficient is always assumed to remain
non-zero for all time, namely, it is never allowed to pass through
zero and change sign. We remove this “control coefficient sign
constancy” restriction in this section, for linear-time-varying
plants. In fact our result allows the control coefficient to os-
cillate, passing through zero persistently. Another advantage of
our approach over existing approaches is that our control law is
very simple and given as feedback of the norm of the state with
time-varying coefficients.

Before we state our results we introduce the notation
s+A

Al
(ZYa(s) = x Z(T)dr (25)
for Z : R — R, and note that, for any column vector B, BB <
|BJ21.

Our main result for general n-th order LTV systems is given
in Theorem 3. However, for clarity, we first present a simpler re-
sult for a scalar LTV case in Proposition 1, which is not a corol-
lary to Theorem 3 but is proved under less restrictive conditions.

Proposition 1: Consider the system

& =a(t)r + b(l)u
u = a/w cos(wt) — kv/w sin(wt)z?

(26)
@7



1112

and let there exist A > 0, By > 0,a > 0, and T' > 0 such that
a(t) and b(t) satisfy

1 s+‘A
A B (r)dr >fo, Vs>T (28)
(la)a (s) <a, Vs2>T (29)
If .
ka > — (30)

0

then the origin of (26), (27) is 1 /w-SPUAS with a lower bound
on the average decay rate given by

Y. = kafy —a > 0. 3D
Proof: System (26), (27) in closed loop form is
& = a(t)z + b(t)a/w coswt — b(t)ky/wsin(wt)z?  (32)
which has a Lie bracket average
7 = [a(t) — kab®(t)] 2. (33)
If kee > a/f3y we have from (28) that
s+‘A
ka / b (r)dr > Aa. (34)

Therefore, for any s > T, N € N the integral
s+NA
[a() — kab*(T)] dr

5

N1 fTUEDA
= Z [a(T) — kab®(7)] dr
=0 A
~ 1 [stE+na PENGESIVN
= a(t)dr — kab?(T)dT
=0 efa sHia

is, by application of (28), (29) and (30), bounded by

stNA N-1

/ [a(7)—kab®(1)] dr< Z [Aa— Akafy]

—Z — Ay, )=—NA7,<0 (35)

5

ie.
<—li7()éb >Z\A( ) < —Yr

where v, > 0 is defined in (31). Hence, forany s > T', N € N

(36)

A [a(‘r)fkozbz (T)](IT

e VAT, (37)

Because 7, > 0 the state Z(¢) converges to zero. To study the
convergence rate, for any ¢ > T we denote N = [(t — T)/A],
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where || is the floor function. We then proceed to show that
|Z(t)| < Moe 7*|z(0)], for all ¢ > 0, for some My > 0, and
then, with the help of Corollary 1, complete the proof of the
proposition. [ |

Next we consider the general n-dimensional case, which is
complicated by the possibility of cross talk between different
components of vectors, a difficulty only possible in higher
dimensions.

Theorem 3: Consider the system

& =A(t)z + B(t)u
u = an/w cos(wt) —

(3%)

ky/w sin(wt)|z|? (39)
where z € R", A € R"*", B € R", u € R, and let there exist
A>0,b, >y >0,a, > 0,and T > 0 such that A(¢) and
B(t) satisfy

s4+A
% | / B(r)BY(r)dr > oI, V¥s>T (40)
(IBI*) , (s) by, Vs>0 (41)
(lAP) ( (s) Sax, Vs >0. (42)

The origin of system (38), (39) is 1/w-SPUAS with a lower
bound on the average decay rate given by

1 1
where
B kaAS,
Y= T gAY “44)
4kaA3b
Yo = u (45)

14+ 2E2a2A%h2
under either of the two conditions:

(i) Given ka > 0 and A > 0, a, is in the interval (0, a.),
where

A+\/A2+wzln(%)

(ii) Fora given a,, the window A satisfies A € (0, A), where

A= N min{Aq, As} (47)
where
11n (72\/51’* )
_ 2 2v/2b, — B0
Ay =———Fr——~ (48)
14 ¥
14 ,\/1 +v2In (z\j—{bjﬁfj

V2
and ka > 1 is selected such that

| 1
ko € ,
“ (2\/§Ab* 9V2Ab,

+ Ai((L*,b*,ﬂ();A)) (50)
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where

\/ﬂg 8621

8AL2 [1 - e‘m(ﬁﬂ—:)]

— ()]’

> 0. (51)

Remark 1: Theorem 3(i) is a robustness result. For any ko >
0, the controller (39) allows some perturbation A(¢)x in the
system (38), as long as the mean of A(t) is sufficiently small,
as quantified by (46). Theorem 3(ii) is a design result. If the
window A is small enough, as quantified by (47) and known (it
is reasonable to assume that A is known because otherwise the
a priori bounds (40)—(42) would have no meaning for the user),
then £k« can be chosen in the interval (50) to guarantee stability.
In summary, the controller (39) cannot dominate an arbitrarily
large A(t), but if B(t) is persistently exciting (PE) over A that
is sufficiently small in relation to the size of A(#), then the con-
troller (39) can stabilize the system (38). Furthermore the allow-
able k« is not arbitrarily large but is within an interval. Overly
large ko results in instability despite B(t) being PE because,
for a given A, an overly large ko forces (%) to evolve within
the time-varying null space of BT (¢), rather than forcing z(#)
to converge to zero.

Proof: The closed-loop system (38), (39) is given by

i = A(t)z+ B(t)avw cos(wt) — B(t)kvwsin(wt)|z|? (52)

which we decompose as

" n

I—ZZba” )lgq5(t —&—Zb“ Wwie (1, 6)
+Zbu Wity j(,60),  (53)
where
i g (0) = a5(6), s (t,6) = by(1) cos(wt)
Qs (£, 8) =b;(¢) sin(wt)
and

baii(x) = mie;, bej(x) =acj, byi(z)=—klz|]e;

where ¢; is the standard j-th basis vector of R™. Applying Lie
bracket averaging, we obtain the averaged system

= A()Z — kaB(t)BT (1)z.

;.)‘.

(54)

Parts of this proof use steps developed in the proof of Theorem
4.3.2 (iii) in the second half of Section 4.8.3 in [29]. With the
following Lyapunov function candidate:

v = 22 (55)
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we get
V(z)=z"2 = 2T A()z — kaz® B(t)BT (t) (56)
Therefore, for any s > T we have
s+.A
V(is+ A)=V(s) — ka / |.LT(T)B(T)|2 dr
I
s+A
+ / iT(T)A(T)i(T)dT (57)
I
We first consider the term /1 and rewrite
1 (1)B(r) = 2" (s)B(7) + [2(r) — &(s)]" B(r).  (58)

We can apply the inequality (z+y)* > (1/2)2* —y?, obtaining

[#7(r)B(r)]” >

Thus, with (57) and (59) we get

(39

s+A

/ B(r)BY(1)drx(s)

)T

< —kam(;

With (40) and (55) it readily follows that:

kaAIByZ(s) = —kaAGV(T).

Iy < —“2) (61)

Next we address /2. Using (52) we get

:/A(J).T:(U)da—koz/B(U)BT(J)E(U)dU. (62)
Transposing (62) and multiplying by B(7) we get

T

[2(r) —a(s)]" B(r) = / z" (o)A (0)do B(r)

5
T

ko /ET(G)B(J)BT(J)B(T)dU. 63)

S



1114

By using the representation in (63) together with the inequality
(z —y)? < 222 4+ 292 we get

s+A T 2
Iy < 2k / /QZ‘T((I)AT(J)daB(T) dr
1‘1,3

S—|—.A |' T 2

+2ka/ [koz/.’L‘T(J)B(U)BT(J)B(T)([U} dr.

& 5

~

-~

I1s

Next we consider the term 14, to which we apply the Cauchy-
Schwartz inequality followed by a change in the order of inte-
gration and obtain:

s+_A
1, < 2k303A? <|B|2>2A / (:Z'T(J)B(o))2 do.

8

(64)

Now we consider the term I3, whose bound is given by

s+A T 2

Iy < 2ka / EIGIE / |A(0)| |z(a)|do | dr

s+A

< 4ko / B(7)? / |A(Q)* d¢ / V(o)dodr (65)

and, changing the order of integration, we get
s+A
/ V(o)do.

k-1

Iy < 4kaN?{|B%)  (JA]%) (66)

Combining results (60), (61), and the bounds on /73 and I14
s—}—‘A

I € —kalABV(Z) + 2k P A2 /

s

[fET((I)B(J)] ? do

s+ A
+4kaA?b,a, / V(e)do. (67)

3

Moving the second term on the right hand side of (67) to the
left, we obtain

—kaABV (E) + 4kaAba, [T V(o)do

I, <
' 1+ 2k2a2A%b2

(68)

Now we turn our attention to the term /s in (57). Noting that

() A(T)z(r) < |A(T)| 272 = 2|A(7)| V(1) (69)
we get
s+A
I <2 / |A(T)| V(T)dr (70)
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Combining (57), (68) and (70) we obtain
s+A
Vis4+A)<AV(s)+2 / |A(T)| V(r)dr
4kaA%b,a, f:—'—A Vio)do
14 2k202A%p2

which can be rewritten as
s 4k A
o 0y

where v is defined in (44). Noting that

koA Gy Bo
14+ 2k2a2A202 — 9./2,

(72)

and that 3y < b,, we get that v € ((2v/2 — 1/2v/2), 1), which
implies that v is positive. We now apply the Bellman-Gronwall
lemma, and get that for all s > T'

s+A AkaaBbyay
(2/: ‘A(T”(‘T*m)v(e) (73)

V(s + A) < ve
We note that the Cauchy-Schwartz inequality yields
j:+A |A(T)|dT < A/a, so we get, forall s > T
dbaA3bya,

2A\/a SRR v
«+ 14282628282

V(s+A) < 76( >V(s). (74)

Evidently for convergence we require that

— | 4kaA3bia,
ve <2A\/a*+ 1425202242

[ hadp ) (eave i)
1+ 2k202A%H2
<1 (75)
or equivalently
o 3 ok
koA By ~(2avars thealss ) 76

—— <
1+ 2k2a2azp2 ¢

To prove the theorem under condition (i), we now calculate the
requirement on a, for (76) to hold. We take In of both sides of
(76) which gives us

dkaA3b, (1 kaAfy <0
n — 55 5.5 .
S 2k2a2 A2+ 2A Ja, 1+2k2a2 A2)?
(77)
We define 2 as (45) and set the left side of (77) equal to zero,
obtaining

ayy2 + 2A/a, + In(v) = 0. (78)

Since /a4 must be positive, we only consider the positive root

*A‘I'HAZ‘I"YQIH(%)

Y2

Ay =

(79)
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which is positive because 72 > 0 and v € ((2v/2 — 1)/2V/2)
implies that o In(1/7) > 0. So we have

In (%)
VA2 +’y2111<%/) + A

Since the left side of (77) is increasing as a function of a, > 0,
for all a,, € (0,a,) we satisfy (75). To study the convergence
rate of our system we denote (75) as

2

(80)

0y =

5 4haA S bay
(Mva**m) <1 1)

Forany ¢ > T we denote N = |(t — T")/A], where |-] is the
floor function. Then for ¢ > 1" we have

Yr =€

t—T t—T
t_T+A<T_{TJ>+NA (82)
and from (74) we have the bound
, t—=T t—T
<AV TH+A|— - | —— .
s (rea(SE 5w

This bound is obtained by noting from (74) and (81) that V(s +
NA) < y¥V(s) and by substituting s = T+A(((t—T)/A) —
[(t — T)/A]). Recalling that

V =2 [A(t) — kaB(t)BT(t)] T

<2|A(t) — kaB(H)BT ()| V (84)

for A(((t = T)/A) — |(t = T)/A]) < A we get the bound

t—1T t—1T

TH+HA| — — | ———
vires (5 [50)
THA | o T
§ezjo |[A(r)—kaB(r)B (T)‘{f,TV(O) (85)

and therefore

g [TT2 caB(r)BY (+)|dr 7
V(t) < 2o AR BOBIElT Ny ) (g6
We now consider the term v2 . Since
Nl UTAE ST eTea o
B A - A
and 7, € (0, 1) it follows that:
- t—T—A
< S (88)
With (86) and (88) we obtain
A , _T4s p
V() < o2 (]O |A(T)7kaB(7‘)BT(7‘)‘dTﬁYT S0EV0). (89)
We now define
rra —kaB(T)BY (P)|dr —1Le
My = o2 i A kBB @lar (90)
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and rewrite

2 1\ (<)
e = (—) =e T2 L 91)
Vr
Recalling that v, € (0,1) we define
In (%)
R(ka, A, By, by, a,) = . 0 92
( , 7/0; ) CL*) 2A > ( )
and write the exponential decay of V' as
V(t) < MZe 2BV (0). (93)

Substituting (81) into (92), we obtain (43). Finally recalling the
definition of V() we write the exponential decay of |Z(%)| as
|2(1)] < Moe™ ™" |2(0)] - (94)
Therefore, by Corollary 1, the origin of system (38), (39) is
1/w-SPUAS, which proves the result under condition (i). Pro-
ceeding to the proof of the theorem under condition (ii), for any
given a, we want to find a range of stabilizing values of ko as
a function of A. For a given 3, by, a, we first consider over

what range of A € (0, cc) it is possible to satisfy the conver-
gence condition (76). We define the function

k’()éAﬁ()

-~ ) Akar3b,ay
(QAV axt 1+2k2 a2 AZ62 )
1+ 2k202A202

Flka,A) =

(95)

which must achieve a value larger than 1 for (76) to be satisfied.

In order to consider the maximum possible value of (95) we first
fix A and set the derivative, with respect to ke, of Fi(ka, A)
equal to zero, to find that F'(ka, A) has its maximum value at

1
ka)y, = —— 96
(ko) = 96)
and the maximum value is
3 , SA
F ((lﬁf(){)m, A) /{0 + 67(2A\/a*+\/2,32a*)‘ (97)

- 2/2b,

The convergence condition requires this maximum value
(97) to be greater than 1. We note that F'((ka)m,A) is
strictly decreasing as a function of A & (0, oc). Therefore if
F((ka)m, A*) = 1, it follows that F'((ka)y, A) > 1 for all
A € (0, A*). The condition F'((ka)y,, A*) = 1 implies that

2v/2b
IAVay +V2A%, —In | ——F— | =0 98
7 ay — In (2\/56* — ﬂ(]) (98)

from which we obtain the positive root

5 2v/2b,
ool ,\/1 + V2 (72@*%)
A* = o : (99)
*

Therefore it is possible to stabilize the system when 0 < A <
A* by choosing ko = (ka)y, as in (96). By continuity, for
any 0 < A < A* there must be an interval containing (ko)
such that all values of k« within that interval satisfy condition
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(76). For A € (0, A*) we consider all values of k« that achieve
F(ko, A) > 1. Recalling the definition of F'(kc, A)

4ban3by0
]f?OéAﬂO 7<2A\’a*+1+2k;2a21;2:'3

[=2i2a?A%2 T° ) (100)

F(ka,A)=

to remove the ko dependence from the exponential in (100) we
restrict our attention to ko > 1, in which case

3
Y YN a.+M) o
e ( v 1426202 A%52 >€72A(\/a*+ﬁ).

(101)
We satisfy (100) by restricting k« to satisfy
kaAfy —aa(yarir)
———— e *T 1. 102
1+ 2iazay *° > (102)
Setting (102) equal to 1, we solve for £« as
2A 2y]?
o £ /32 — 8b2 [1 e Wﬂ*w)}
koo = — (103)
AAB? [1 - e*m(wwﬁ)}
To ensure %« is real valued we impose the condition
axy72
B3 > 802 [1 - e 2A (V)] (104)
which implies
e A(VEHE) 5 P (105)
T 2V2b,
Taking In of each side of (105) we obtain the condition
— Ay 30 )
—2A ae+ — | >In{1—-— 106
(meie) > (- gm) oo

which implies that the new requirement on the possible values
of Ais

1

_ %
2264

In
0 <A< A =min \/ VAN
(ve+ )

(107)

With (99) and (107) we obtain (47). Returning to (103) and re-
calling the value (ko) = 1/v/2Ab, we have the roots

(ka)m

kao=——, ka=(ka)un (108)
n
where
2A ax )12
Go + ,\/ﬁg =862 [1 - e V)]
n= = (109)
2v2b, [1 - e 22V ]
Therefore the system is stable for
k m
ka € <&,(/€o¢)mn> . (110)
n

We have thus derived sufficient conditions on A and ke« to guar-
antee stability of our system. For each window A we have given
an interval of stabilizing values of &k, (110). However we now
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proceed to restrict our conditions on k¢ in order to give a more
intuitive condition (50). We show that the interval (110) con-
tains (kev)y, by recalling (104) and calculating

ax ]2
\/ﬁg =852 [1 - oAbV )]
n>14

> (111)
2/2b, [1 - e‘M(WJFK)]
and
RN e
- < < 1. (112)

] Bo

Therefore the interval (110) contains the more restrictive, but
more illustrative interval (50), where we have explicitly written
out the value (ka)y, = 1/v/2Ab,. From the presence of A
in the denominator we see that this interval of stability grows
unbounded in length as the window A decreases. u

Remark 2: We recall from (47) that A must not exceed A;.
By recalling that b, > (3, by using the fact that In(2v/2/(2v/2—
1)) < 1/+/2 and by noting that

2v/2b, 24/2b, 2v2
In (2\@7*7(30) In (2\/51;*71;*) _ In (2\/571> 1
2(\/a_|_ z_j> 2\/(L* 2\/(L* 2\/2(],*
(113)

we get that Al <1 /2+/2a.,.. Hence, the stabilizing values of ke«
in the interval (50) must satisfy

1 1 ay
— > — > .
2v2Ab, T 2¢/2A4b, by

The condition (114) is very similar to the stability requirement
that is established in the one-dimensional case, in Proposition
1. As a, increases, stability is ensured by increasing k.

V. LINEAR SYSTEMS IN STRICT-FEEDBACK FORM
In this section we consider linear systems in strict-feedback
form and design a controller based on the backstepping ap-
proach [34], [58].
Theorem 4: Consider the plant

ko >

(114)

ii= Y ai(t)wj+wipr, 1<i<n—1 (115)

=1

diy = Z ani () + b(t)u (116)
i=1
with the control law
n—1 n—1 2
u=ov/w cos(wt) — kv/wsin(wt) Z H ¢ | it
i=1 \ j=i
(117)

and let 5y > 0 and a.,.x > 0 be known such that for some
T>0and A > 0,foralls > T

S+{A
%/iﬁ(ﬂ(h’ > 0y

s

(118)

s+A
1
L / i (7) dr < ammer Virj.  (119)
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Ifci,es, ..., ¢, are chosen recursively so that

Ci > Qmax + 4 C1iy max Chy,cio1p, 1<i<n—1
2<j<i=2

where ¢y = 0 and

(77, - 1)2(1 + (Zi,'i—l):)

Cy; = -
4d; 151
(n— 1)20?7‘
Coiy = =7 —
4dy;
and
- = 1<:<n
dij=0max + GmaxCj + Ci—1di—1 5, 1 S; S_i 9
dii=Ci — Ci1 + Omax, 1<i<mn—1

dnn:kaa — Cp—1 + Qmax

then if

Cn—1 T Gmax

Bo

the origin of system (115)—(117) is 1/w-SPUAS.
Proof: We define

i1 fi—1
zi::r,i—i—g ch T, 1<i1<n
k=1 \j=Fk

ka >

and rewrite the controller (117) as
u = av/w cos(wt) — kv/wsin(wt)z2.

We get the Lie bracket averaged system (115)—(117) as

(120)

(121)

(122)

(123)

(124)
(125)

(126)

(127)

(128)

(129)

(130)

z=Dz
where
—d1 1 0 0
da1 —da 0 0
D= . .
{]'71,71,1 d/nfl,Q _dnfl,nfl 1
dn 1 dn2 dn n—1 - dnn
with the diagonal terms of (130) satisfying
diy =c¢;—¢i_1—ay, 1<i<n—1
don = b2k — ¢n1 — .
The oft-diagonal terms are defined as
1<:<n,
dij = aij — a; jy1c5 + cio1di 15, 1 S; <i-o.

Considering the Lyapunov function

1 n -
V:igz?

(131)
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we get
n n n i—2
V=- Z d”Z_LZ + Z(l +dii1)ZiZi1+ Z Z (Zi]‘ZL‘Zj
i=1 i=2 i=3 j=1
which we rewrite as
n—1 n d d
o i _2 - = ii 22
V= Z Z {_n — %t (1 +d;i)ziz; — p— 12]}
=1 yj=i+1
(132)
Note that d;; > 0 Ve for ¢; and k« that satisfy
G > C1F Cmax. 1<i<n—1, ¢ =0. (133)
We now rewrite (132) as
_9 n—1 n 2 T P
V= di; “I Dy |t 134
DI VN [l [0 I IET
i=1 J=1+1 J J
where
) 1 1 (71,71)d(1.+dij)
D;; = 5 | Ge-n4as) dﬁ . (135)
dis di;

To ensure that V' < 0, the matrices ﬁij # D,,, are made posi-
tive definite by choosing

di;

(n =11 +d;;1)

2<i<n (136)

di—141 2d; 1,1
and
dﬁ (71, - 1)(17']' . . .
—>—"— 3<:<n, 2<3<1-2 (137)
djj 2dy,

which is accomplished by choosing ¢; such that

(n—12(1+d;;-1)?

¢ =a +di > a0y + , 2<1<mn
dd; 151
(n— 1)2dz27‘ 3<1<n,
Cﬂi—&ii+dii>aii+Tjj 2<j<i—2.
Finally, by choosing
]{70& > Cn—1 + Amax (138)

o

we ensure that ]:+A D, (7)d7 < 0, and proceeding as in the
proof of Proposition 1, we ensure that V(s + A) < V(s) for
all s > T, and as in Theorem 1 we guarantee that the origin
is an exponentially stable equilibrium point of system (129).
Therefore by Corollary 1, the origin of system (115)—(117) is
1/w-SPUAS. [ |

A closer look at the control law (117) and the CLF (131),
along with (127), shows that the control law is not exactly in
the forms (14) and (18). The terms z3,...,2z2 | are omitted
because L,V = L,(22/2) = z,.
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VI. NONLINEAR MIMO SYSTEMS WITH
MATCHED UNCERTAINTIES

While in Section III we presented a general approach for non-
linear systems based on an assumed availability of a CLF V" that
satisfies the strong L4,V -stabilizability condition, in this section
we turn our attention to a specific construction of such a CLF
for a limited but relevant class of systems that illustrates how to
overcome the challenge of dealing with unknown nonlinearities.

In this section we study multi-input systems with the same
number of controls and states. Admittedly, this is a class of “glo-
rified first-order systems.” However, we use this class to illus-
trate clearly how to deal with nonlinearities that are not only un-
known but also have arbitrary growth (super-linear, exponential,
or even faster than exponential). For systems with more states
than controls, such as nth order systems in the strict-feedback
form with one control and with only bounds on nonlinearities
known, CLFs satisfying Assumption 1 can be constructed using
the approach introduced in [41, see Theorem 3.1, with (26) and
(27) being the key steps], which we have actually used for linear
strict-feedback systems in Section V.

We consider only time-invariant nonlinear systems in this
section. Time-varying systems, albeit linear, have already been
dealt with in Section IV. The nonlinear systems studied in this
section can be approached similarly but, for the sake of clarity,
we choose not to pursue time-varying extensions here. Since the
systems we consider here have the same number of controls and
states, the input matrix is square. Given that the input matrix is
not time-varying and thus persistency of excitation cannot be
exploited in stabilization, we make an assumption that the input
matrix multiplied by its transpose is positive definite for all ,
which means that the system is completely controllable, though
its control directions are unknown. Furthermore, the non-zero
assumption on the input matrix G(x) is motivated by the pos-
sible finite escape time of general nonlinear systems.

Theorem 5: Consider the system

&= f(z)+ G(z)u

where w, 2 € R", and f : R® — R", G : R" — R"*™ and
let there exist By > 0, and € K. such that f(x) and G(x)
satisfy the following bounds for all x € R":

(139)

G(x)G"(x) > fol (140)
|f ()| < (fa]) (141)
If k& and « are chosen such that
ko > ! (142)
>
Bo

then the controller

Wi = oJww] cos (wwlt) — ky/ww! sin (wwit) V(z) (143)

where

(144)
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and the frequencies w/ are rational and distinct, renders the
origin of (139), (143) 1/w-SPUAS.

Proof: A common period for all of the controller compo-
nents is given by 7' = 27rLCM{1/w.}. Therefore

T
/ cos (wwjt) cos (wwit) di

0

sin (wwit) sin (wwit) dt

c\,H o\'ﬂ

= [ sin(wwjt) cos (wwjt) dt =0, Vi#j  (145)
Consider the closed loop system
—l—\/—Z[aG ei/whcos (wi6)
—kG(x)e;V(z)\/w!sin (w]8) } 6 =wit. (146)

System (146) is in the form of system (4) to which we can apply
Lie bracket averaging. Considering property (145), terms of dif-
ferent frequency combinations integrate to zero. Therefore the
Lie bracket terms we are left with are

i e ) , avE\"
[G(@)ei, G@)eV (7)] = G@)eie] GT (@) | —— ) -
(147)
Combining all terms of the form (147) we get
oV 1%
> Geiel GT (-_) =GGT ( ) (148)
— oz 0%
resulting in the Lie bracket averaged system
ko T
= @) - S G@G @n () o (149)
where we have used the fact that
ov(z)y . xzf
5 = (7 (150)
With another Lyapunov function candidate
=2
W(z) = % (151)
we get
W(z) =275 = 27 £(z) - ka T'_”"TD #G(7)GT(3)z. (152)
T
From (141) we have
2" 1 < [zl ] < |zln (|z) (153)
and from (140) we have that
n(zl) _r T ndzl) ,
ko T G()GT(7)T > ka2 Bl (154)
|7 |7
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Plugging (153) and (154) into the equation for W (z) we get

W) <2l (7)) - kabolzln (7))
— (1 - kafo)aln (|7 (155)
therefore by our choice of ko > 1/, we guarantee that (155)
is negative definite and therefore the Lie bracket averaged
system (149) is globally uniformly asymptotically stable. By
Corollary 1, system (139) is 1/w-SPUAS. [
Remark 3: Condition (140) can be relaxed to a functional
lower bound G(x)GT (z) > B(|z|)I for some 3 € K. Then,
for the average system, the Lyapunov inequality (155) is re-
placed by W(z) < (1 — kaf(|7]))|Z|n(|Z|), which guaran-
tees that, for ke > 1/3(cc), the averaged system is glob-
ally uniformly ultimately bounded (GUUB) with an ultimate
bound 3~1(1/ke). Though Theorem 1 only allows us to relate
global asymptotic stability (GUAS) of the averaged system with
1/w-SPUAS stability of the actual system, a similar relationship
can be established between GUUB and what we would refer
to as 1 /w-Semiglobal Practical Uniform Ultimate Boundedness
(1/w-SPUUB) of a system. The 1/w-SPUUB property and its
applications in tracking for unknown systems are the subjects
of ongoing research and beyond the scope of the present paper.

VII. SIMULATION RESULTS

A. LTV Stabilization

To demonstrate the extremum seeking controller’s ability to
handle unknown, quickly time varying control direction we con-
sider the system

2| | 2.1
Za | | =75

A physical motivation for this example can be that x = (1, z2)
is the planar coordinate of a mobile robot, with its angular ve-
locity actuator failed and stuck at 10, and which has to be sta-
bilized to the origin using the forward velocity input u only,
in the presence of a position-dependent perturbation given by
21 4.9
7.5 3.6
at 2.85 £ 10.7¢. We apply ES control

u = ay/w cos(wt) — ky/wsin(wt) [27 () + 25(t)]

with w = 100, k = 4, « = 2 and starting from z1(0) = 1,
x2(0) = —1, Fig. 2 shows the system’s time response.

4.9 | =1 cos(10f + .3)
3.6] |:T2:| [Sin(l()t—i—ﬁ)} u. (156)

x. The uncontrolled system is unstable with poles

(157)

B. Strict-Feedback Form

Consider controlling the position and velocity of an object ex-
periencing destabilizing forces proportional to its velocity and
its distance from the origin, by applying a force » whose gain
b is of unknown sign. The dynamics are governed by Newton’s
law, Fiotal = ma = mi = kyx + k4 + bsin(10#)w, which
may be written in strict-feedback form

k k

z o b .
&y = —x1 + —x2 + —sin(10t)u.  (158)
m m m

.’];‘1 = Za,
We implement the feedback controller

u = avw cos(wt) — kvwsin(wt)(2z; + 22)%. (159)
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xp(f)—Black/Dashed

x;()— Blue/Solid

2 3 4

- fV\M}UW\WUU\!WNWWWWV\WUUWUWWWNWWJWU\WM

Time(s)

Fig. 2. After a transient which, in the average sense, is underdamped, the so-
lution of (156), (157) settles to an (){«x/+/w) neighborhood of the origin.

Forthe case k, = 1, k., = 2, m = 1, and b = 1, and with
controller parameters k¥ = 4, &« = 2, and w = 100, the simula-
tion, with initial condition 21(0) = 1, 22(0) = —1, is shown in
Fig. 3.

C. Nonlinear Scalar Example

We demonstrate the controller’s ability to stabilize nonlinear
systems with the following example:

&= flz)+ <1 — %sin(w)) u, fla) = 22 (160)

Assuming that we know that the nonlinearity f(x) is polyno-
mial, we know that f(x) satisfies a bound of the form | f(x)| <
v|z|el*!, for f(z) = 2%,y = 1. Assuming 7 to be known, and
noting that [ re"dr = (r — 1)e”, we choose the controller

u = av/w cos(wt) — ky/w sin(wt) [1 + (Jz| - 1) e‘””l} . (161)

With &k = 7.5, « = 0.25 and w = 70, simulation results starting
from x(0) = 2 are shown in Fig. 4.

D. Comparison With Nussbaum-Type Control

We now consider the scalar example

& =2+ cos(10t)u (162)
and compare our static time-varying feedback
u = av/w cos(wt) — kv/wsin(wt)z? (163)
to the dynamic feedback by Mudgett and Morse [47]
— 2 eorc ) -
u =y cos(y)x, Y= (164)
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Fig. 3. Although the sign of the applied force is unknown to the controller the
position x; and velocity #:2 of system (58), (59) quickly settle to O(1/+/2)
neighborhoods of the origin.

x(1)
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L
-100
0 2 4 6 8 10 12
Time (s)

Fig. 4. As system (160) settles to within a O(1/+/w) neighborhood of the
origin, the control effort, (161), initially large, settles to a steady state magni-
tude of /.

which admittedly was designed only for constant input coeffi-
cients. We simulate the two closed loop systems starting from
z(0) = 5, withw = 100, k = 5, « = 5 for our controller
and y(0) = 10 for the controller of Mudgett and Morse. As
shown in Fig. 5, the extremum-seeking method’s performance
is only slightly changed by the alternating sign of the input
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Fig. 5. Comparison of the extremum seeking (ES-Blue/Solid) and Mudgett-
Morse-Nussbaum (MMN-Black/Dashed) schemes for the system * = x +
cos(10t)wu, with 2(0) = 3, 4(0) = 10,k = 5, « = 3, and w = 100.
The repeated overshoot caused by the MMN-controller takes place whenever
cos(10t) cos(y(t)) > 0, furthermore, because, when : is non-zero, y is al-
ways growing, the overshoots grow in severity as time goes on.

coefficient, at most kicking the system «/\/w (the size of the
perturbing signal) in the wrong direction. The MMN method
on the other hand suffers from overshoot each time the sign
change happens as y(#) cannot change fast enough to maintain
cos(10t) cos(y(t)) < 0. Worse yet, the growing size of y(t)
causes growth of the overshoot size as well.

VIII. CONCLUSION

The ES algorithm creates a closed loop system that is inde-
pendent of the control coefficients’ signs. This is a useful prop-
erty which allows us to stabilize unknown, unstable, control di-
rection-varying systems using a particular form of time-varying
nonlinear high-gain feedback. The only restriction to the appli-
cability of the control law (39) is that, for a given bound on A(%),
the vector B(¥) be persistently exciting over a sufficiently short
window A, namely, that the variations of B(#) are sufficiently
fast.

The results presented in the paper put more emphasis on
linear problems for clarity, but their applicability to nonlinear
systems is also illustrated, both in the general case, where
the extremum seeking controller emulates —L,V controllers,
and in the special case of MIMO nonlinear systems, where a
universal CLF construction is presented that enables stabiliza-
tion for matched unknown nonlinearities of arbitrary growth
rate. Some minimal a priori knowledge is needed in all our
theorems in order to choose the gain ke« sufficiently high. As
an alternative, one would consider employing an adaptive gain
k(t) that raises the gain to a sufficient level to achieve stabi-
lization without requiring any a priori knowledge regarding the
uncertainties. For example, for all systems in Section VI, if the
vector field f(x) is polynomial of unknown polynomial order
with £(0) = 0 and hence satisfying | f(z)| < v|z|e*! for some
unknown v > 0, and if G(x) satisfies the condition (140) with
an unknown bound y, then the adaptive ES controller

1 = ay/w cos(wt) — ky/wsin(wt) [1 +(|z| = 1) e'w‘] (165)

i = [1 + (|2 - 1)&*"} 2| (166)

achieves global stability of the equilibrium # = 0, k = (v +
1)/ a3y of the average system and the convergence of the state
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component Z(t) of the average system to zero. However, since
this equilibrium is not globally asymptotically stable (k(#) is
not guaranteed to converge to (v + 1)/, though it is guar-
anteed to remain bounded), the perturbation theory of Moreau
and Aeyels [46] does not apply and hence we cannot conclude
that the original system is stable in a suitable semi-global prac-
tical sense. Worse yet, since z(£) can be expected to converge
only in a practical sense (near zero rather than to zero), the in-
tegrator for k() in (166) is expected to exhibit a drift towards
infinity, making this attempt towards removing all requirements
for a priori knowledge unfruitful. New research and ideas are
needed to find ways of adapting £ or determining a fixed suf-
ficiently large & so that stability is guaranteed without a priori
knowledge on f(z) and g(z).
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