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Compensation of State-Dependent
Input Delay for Nonlinear Systems

Nikolaos Bekiaris-Liberis and Miroslav Krstic

Abstract—We introduce and solve stabilization problems for
linear and nonlinear systems with state-dependent input delay.
Since the state dependence of the delay makes the prediction
horizon dependent on the future value of the state, which means
that it is impossible to know a priori how far in the future the pre-
diction is needed, the key design challenge is how to determine the
predictor state. We resolve this challenge and establish closed-loop
stability of the resulting infinite-dimensional nonlinear system for
general non-negative-valued delay functions of the state. Due to
an inherent limitation on the allowable delay rate in stabilization
of systems with time-varying input delays, in the case of state-de-
pendent delay, where the delay rate becomes dependent on the
gradient of the delay function and on the state and control input,
only regional stability results are achievable. For forward-com-
plete systems, we establish an estimate of the region of attraction
in the state space of the infinite-dimensional closed-loop nonlinear
system and for linear systems we prove exponential stability.
Global stability is established under a restrictive Lyapunov-like
condition, which has to be a priori verified, that the delay rate be
bounded by unity, irrespective of the values of the state and input.
We also establish local asymptotic stability for locally stabilizable
systems in the absence of the delay. Several illustrative examples
are provided, including unicycle stabilization subject to input
delay that grows with the distance from the reference position.

Index Terms—Delay systems, feedback, nonlinear control
systems.

I. INTRODUCTION

A. Motivation

S TATE-DEPENDENT delays are ubiquitous. For example,
in control over networks, it makes sense to send control sig-

nals less frequently when the state is small and more frequently
when the state is large [11]. Network congestion control typi-
cally ignores the dependency of the round-trip time (RTT) from
the queue length, which can lead to the instability of the under-
lying network [28]. In the control of mobile robots, the mag-
nitude of the delay depends on the distance of the robot from
the operator interface [42]. A priori known functions of time
are employed to model state-dependent delays in transmission
channels of communication networks, which are used for the re-
mote stabilization of unstable systems [57]. In supply networks,
state-dependent delays appear due to the transportation of ma-
terials [51], [52], [55]. In milling processes, speed-dependent

Manuscript received April 23, 2011; revised October 19, 2011; accepted April
10, 2012. Date of publication July 25, 2012; date of current version January 19,
2013. Recommended by Associate Editor Jessy W. Grizzle.
The authors are with the Department of Mechanical and Aerospace Engi-

neering, University of California, San Diego, La Jolla, CA 92093-0411 USA
(e-mail: nikos.bekiaris@gmail.com; krstic@ucsd.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TAC.2012.2208294

delays arise due to the deformation of the cutting tool [1]. The
reaction time of a driver is often modeled as a pure [46] or dis-
tributed [53] delay. However, the delay depends on the intensity
of the disturbance, the size of the tracking error to which the
driver is reacting, the speed of the vehicle, the physical situation
of the driver, etc. [10]. In irrigation channels, the dynamics of a
reach are accurately represented by a time-varying delayed-inte-
grator model [27]. In population dynamics, the time required for
the maturation level of a cell to achieve a certain threshold can
be modeled as a state-dependent delay [29]. In engine cooling
systems, the delay in the distribution of the coolant among the
consumers depends on the coolant flow [9]. Finally, models of
constant delays can be used to approximate state-dependent de-
lays in chemical process control [22], [39].

B. Literature

Compensation of constant input delays in unstable linear
plants is achieved using predictor-based (finite spectrum as-
signment) techniques [4], [23], [30], [36], [38], [40], [50],
[59], [60]. Recent extensions of these designs to linear systems
with simultaneous input and state delay are found in [6], [13],
and [15]. Predictor-based techniques are developed for linear
systems with unknown plant parameters [41], [58] and with
unknown delays [5], [7], [8]. Control schemes for nonlinear
systems with input delay are developed in [20], [24], [26],
[32]–[35], whereas nonlinear systems with state delays are
considered in [12], [14], [17]–[19], [31], [47], [48], and [56].
Although there are numerous results for plants with constant

input delays, the problem of compensation of long time-varying
input delays, even for linear systems, is tackled in only a few [4],
[25], [43], [44]. Even more rare are papers that deal with the
compensation of time-varying input delay in nonlinear systems
[17]. No results exist for the compensation of a state-dependent
input delay, even for linear plants.

C. Results

We present a methodology for compensating state-dependent
input delays for both linear and nonlinear systems. For non-
linear systems with state-dependent input delay which are, in
the absence of the input delay, either forward complete and
globally stabilizable or just locally stablilizable (by a possible
time-varying control law), we design a predictor-based com-
pensator (Section II). Our controller uses predictions of future
values of the state on appropriate prediction horizons that de-
pend on the current values of the state. Due to a fundamental
restriction on the allowable magnitude of the delay function’s
gradient (the control signal never reaches the plant if the delay
rate is larger than one), we obtain only a regional stability result,
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even for the case of forward-complete systems. We give an esti-
mate of the region of attraction for our control scheme based on
the construction of a strict, time-varying Lyapunov functional
(Section III). We present a global result for forward-complete
systems under a restrictive Lyapunov-like condition, which has
to be a priori verified, that the delay rate be bounded by unity
irrespective of the values of the state and input (Section V). We
also deal with linear systems, treating them as a special case of
the design for nonlinear systems, for which we prove exponen-
tial stability. We present several examples, including a linear
example in Section II, illustrating the impossibility of a global
result in general, and stabilization of the nonholonomic unicycle
subject to distance-dependent input delay in Section IV.

Notation

We use the common definition of class , , and func-
tions from [21]. For an -vector, the norm denotes the usual
Euclidean norm. We say that a function
belongs to class if it is of class with respect to its first
argument for each value of its second argument and continuous
with respect to its second argument. It belongs to class if
it is in and in with respect to its first argument.

II. PROBLEM FORMULATION AND CONTROLLER DESIGN

We consider the following system:

(1)

where , , ,
, is locally Lipschitz with

and the following holds:

(2)

for a class function .
Let denote the value of the state at the time when

the control applied at time reaches the plant. We refer to
as the “predictor” state. For systems with constant delays,

, it simply holds that . For sys-
tems with state-dependent delays, it is trickier. The time when
reaches the system depends on the value of the state at that time,
namely, the following implicit relationship holds

(and ). Nevertheless, even
for state-dependent delays, is simply the “predictor” of the
future state, at the time when the current control will have an
effect on the state. Since is related to through an im-
plicit relationship, it is evident that a predictor-based compensa-
tion of a state-dependent input delay faces a challenge, which is
absent in the case where the delay is merely time-varying. We
resolve this challenge by performing our design and analysis
using transformations of the time variable
and . The difficulty with these transforma-
tions, besides not being available explicitly, is that the “predic-
tion horizon” is, in general, different from the delay

.

We design a predictor-based controller for the plant (1) as

(3)

where for all

(4)

(5)

for . The initial predictor ,
is given by (4) for .
It is somewhat of a challenge to comprehend the mathemat-

ical meaning of the relationship (4), where appears on both
sides of the equation. It is helpful to start from the linear case,

with a constant delay . In that
case, the predictor is given explicitly using the variation of con-
stants formula, with the initial condition , as

. For
systems that are nonlinear and even for linear systems with a
state-dependent delay, cannot be written explicitly, for the
same reason as a nonlinear ODE cannot be solved explicitly.
So we represent implicitly using the nonlinear integral (4).
(An additional mathematical explanation of the role that plays
in the analysis, and how it is related to the vector state and
the functional input state , is forthcoming in Fig. 3.)
The computation of from (4) is straightforward with

a discretized implementation where is assigned values
based on the right-hand side of (4), which involves earlier values
of and the values of the input . At each time step, the integral
in (4) can be computed using a method of numerical integration
(e.g., the trapezoidal rule) with a total number of discrete points
, given by , where is the time-de-

scretization step and denotes the integer part of . The im-
plementation of the predictor in (4) might be unsafe when the
discretization method of the predictor in (4) is not appropriately
chosen [38], whereas a careful discretization yields a safe im-
plementation [37].
To see that given in (4) is the time

units ahead predictor of , differentiate (4) with respect to
, set and perform a change of variables in
the ODE for given in (1) (where is replaced by ), to
observe that satisfies the same ODE in as . Since
from (4) for and , it follows that

, by defining

(6)

(7)

we have . Hence, indeed
for all .
Noting from (6) and (7) that , differ-

entiates this equation, we get for all

(8)



BEKIARIS-LIBERIS AND KRSTIC: COMPENSATION OF STATE-DEPENDENT INPUT DELAY FOR NONLINEAR SYSTEMS 277

Fig. 1. Functions (dashed line) and (solid line) in the undesirable
case where the infinite slope of causes their noninvertibility.

The possible division by zero in (8) indicates that is not
a priori guaranteed to be invertible. Another way to see this
challenge is to note that the prediction horizon is governed by

which, in case of division by zero, can result in the reversal
in the direction of the control signal reaching the plant at time

, as displayed in Fig. 1.
Motivated by the need to keep the denominator in (4) and (8)

positive, throughout this paper, we consider the condition on the
solutions which is given by

(9)

for . We refer to as the feasibility condition of the
controller (3)–(5).
1) Example 1: We consider a scalar unstable system with a

Lyapunov-like delay

(10)

The delay-compensating controller is

(11)

where for all

(12)

In Fig. 2, we show the response of the system and the function
for four different initial conditions of the state

and with the initial conditions for the input chosen as
0, . We choose 0.15, 0.25, 0.35, .
With , we denote the critical value of for the given

Fig. 2. Response of system (10) with the controller (11)–(12) with initial con-
ditions 0, and four different initial conditions for
the state 0.15, 0.25, 0.35, 0.43.

Fig. 3. Interconnections between the predictor states and with the trans-
formations and in (21) and (24). The direct backstepping transformation
is defined as and is given in (21), where
is given as a function of and through relations (4)–(5). Analogously,
the inverse transformation is defined as and
is given in (24), where is given as a function of and through
relation (25).

initial condition of the input, such that for any ,
the control inputs produced by the feedback law (11), (12)
for positive never reach the plant. We calculate this time
as follows: The function has a

maximum at if . Since

has to be positive for the

control to reach the plant, it follows .
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III. STABILITY ANALYSIS FOR FORWARD-COMPLETE
NONLINEAR SYSTEMS

Assumption 1: and is locally
Lipschitz.1

Assumption 2: The plant is strongly forward
complete, that is, there exists a smooth positive definite function
and class functions , and such that

(13)

(14)

for all and for all .
This property differs from the standard forward completeness

[2] in that we assume that and, hence, is posi-
tive definite. Assumption 2 guarantees that system (1) does not
exhibit finite escape time, that is, for every initial condition and
every locally bounded input signal, the corresponding solution
is defined for all .
Assumption 3: The plant

satisfies the uniform in the time input-to-state stability property
with respect to , and the function is locally Lipschitz in both
arguments and uniformly bounded with respect to its first argu-
ment, that is, there exists a class function such that

(15)

Theorem 1: Consider the plant (1) together with the control
law (3)–(5). Under Assumptions 1, 2, and 3, there exists a class
function , a class functions , and a class

function such that for all initial conditions for which is
locally Lipschitz on the interval and which
satisfy

(16)

for some , where

(17)

there exists a unique solution to the closed-loop system with
Lipschitz on , Lipschitz on , and

(18)

for all . Furthermore, there exists a class function
such that for all

(19)

(20)

We prove Theorem 1 using Lemmas 1 – 8, which are pre-
sented next.

1To ensure uniqueness of solutions.

Lemma 1 (Backstepping Transform of Actuator State): The
infinite-dimensional backstepping transformation of the actu-
ator state defined for all by

(21)

together with the predictor-based control law given in relations
(3)–(5) transform the system (1) to the “target system” given by

(22)

(23)

Proof: Using (3) and the facts that
and , which are immediate conse-

quences of (4)–(5), we get the statement of the lemma.
The role of in our analysis is as an output of a mapping

of the state and input history . For in-
stance, in the linear case with a constant delay, this mapping is
given explicitly as

. In the nonlinear case, the mapping
is given implicitly by (4). The mapping is an in-
termediate step in transforming the original system into
the target system , as displayed in Fig. 3. The transfor-
mation is important because the stability
analysis can be conducted in the variables , but not in
the original variables .
Lemma 2 (Inverse Backstepping Transform): The inverse of

the infinite-dimensional backstepping transformation defined in
(21) is given for all by

(24)

where for all

(25)

(26)

Proof: By direct verification, noting also that
for all , where is driven by the
transformed input , whereas is driven by the input

. (See Fig. 3.)
It may be slightly puzzling why we present two versions of

the predictor and which are, in fact, the same. The reason
why we use two distinct symbols for the same quantity is that,
in one case, is expressed in terms of and , for the di-
rect backstepping transformation, while, in the other case, is
expressed in terms of and for the inverse backstepping
transformation. Since the actual system operates in the
variables and the analysis is conducted in the variables,
the direct and backstepping transformations are important.
Lemma 3 (Stability Estimate for Target System): For any pos-

itive constant , there exist a class function and a class
function such that for all solutions of the system satis-

fying (9) for , the following holds:

(27)

(28)
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for all , where

(29)

Proof: Based on Assumption 3 and [16] (Remark 3.2),
there exists a smooth function
and class functions , , , and such that

(30)

(31)

(32)

Consider now the following Lyapunov functional for the “target
system” given in (22) and (23)

(33)

where

(34)

with . We now upperbound and lowerbound in
terms of . From (9) for
we get that . Integrating the relation

from to and since
, we have for all

(35)

Since there exists a function
such that

(36)

Therefore

(37)
Similarly, using the fact that and since

is increasing we obtain

(38)

Therefore, with the help of (38), we have

(39)

Taking the time derivative of , with (23) we obtain

(40)

Using (9), we have and, hence,
. With this inequality and (31), taking the derivative of

(33) we obtain
. With the help of (39) and choosing , we

get . Using (30), the definition
of in (34) and (33), we conclude that there exists a class
function such that . Using the com-

parison principle and [21, Lemma 4.4], there exists a class
function such that . Using (30),
the definition of in (33) and the properties of class func-
tions, we arrive at
for some class function . Using relations (37) and (39),
the lemma is proved.
There is conservativeness involved in passing between

and in both directions, just like there is a loss
to a currency exchange customer both when buying and selling.
With Lemma 4, we quantify a bound when going from
to via , and with Lemma 5, we quantify a bound
when going back from to via .
Lemma 4 (Bound on the Predictor in Terms of Actuator

State): There exists a class function such that for
all solutions of the system satisfying (9) for , the
following holds for all :

(41)

Proof: Consider the following ODE in which follows by
differentiating (4):

(42)

With the change of variables

(43)

we rewrite (42) as

(44)

Using (14), we get

(45)
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With (9), we have for all

(46)

Using the comparison principle and (36), one gets

(47)

for . With standard properties of class
functions, we get the statement of the lemma where the

class function is given as

(48)

Lemma 5: (Bound on Predictor in Terms of Transformed Ac-
tuator State): There exists a class function such that for
all solutions of the system satisfying (9) for , the fol-
lowing holds for all :

(49)

Proof: Under Assumption 3 and [16], there exists class
function and class function such that

(50)

where is the solution of
. Using the change of

variable (43) and definitions (25), (44), we have

(51)

Using (50), we have

(52)

where the class function is defined as .
With the properties of class functions, we obtain the statement
of the lemma, where is of class .
Lemma 6: (Equivalence of Norms for Original and Target

System): There exists a function of class and a class
function such that for all solutions of the system satis-

fying (9) for , the following holds:

(53)

(54)

for all , where and are defined in (17) and in (28),
respectively.

Proof: With the inverse backstepping transformation (24)
and the bound (49), we get the bound (53) with

. Using the direct backstepping transformation (21)
and the bound (41), we get the bound (54) with

.
Lemma 7: (Ball Around the Origin Within the Feasibility Re-

gion): There exists a function of class such that all of
the solutions that satisfy

(55)
for , also satisfy (9).

Proof: Since , there exists a class
function such that2

(56)

If a solution satisfies

(57)

for , then it also satisfies (9). Using Lemma 4, we
conclude that (57) is satisfied for as long as (55)
holds, where the class function is defined as

(58)
and with , we denote the inverse function of with respect
to ’s first argument.
Lemma 8 (Estimate of the Region of Attraction): There exists

a class function such that for all initial conditions of the
closed-loop system (1), (3), (4), (5) that satisfy relation (16), the
solutions of the system satisfy (55) for and, hence,
satisfy (9).

Proof: Using Lemma 6 with the help of (27), we have

(59)

where is defined in (17). By defining the class function
as , we obtain

(60)

Hence, for all initial conditions that satisfy the bound (16)
with any class choice ,
where is the inverse of the class function

with respect to ’s

2Estimate (56) is derived based on the nonrestrictive assumption that the delay
is a continuously differentiable function of . Using bound (56), one can restrict
the gradient of the delay (which is needed for (9)) by restricting the size of
the state . This enables one to estimate the region of attraction of the proposed
control law (see Lemma 8).
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Fig. 4. Sets arising in the proof of Theorem 1 in the infinite-dimensional state
space . : the ball of initial conditions allowed
in the proof of the theorem. : the ball inside where the ensuing solutions
are trapped.

first argument, the solutions satisfy (55). Furthermore, for
all of those initial conditions, the solutions verify (9) for all

. Fig. 4 illustrates the set relationships in
the proof.

Proof of Theorem 1: Using (59), we obtain (18) with
and . From

(1), the Lipschitzness of on guaran-
tees the existence and uniqueness of , where

, the system (22), (23) guarantees
the existence and uniqueness of , and the
boundedness of and (22) guarantee that is continuous at

. By integrating (22) between any two time instants, it is
shown that is Lipschitz on with a Lipschitz constant
given by a uniform bound on the right-hand side of (22). Since

, where and

for , Assumption 1 (Lipschitzness of ), Assumption 3
(Lipschitzness of in both arguments), and (9) ensure that the
right-hand side of the -ODE is Lipschitz, which guarantees
that . Since is Lipschitz
in on , so is . Using Lemma 8, (36), and (56), we get
(19) and (20) with any class function .
Remark 1: The proof of the existence, uniqueness, and reg-

ularity portion of Theorem 1 is rather straightforward because
the input function , which includes the dependence on the
state , is a part of the system’s vector field. This is in con-
trast with the existence analysis in [45], which is considerably
more complex, despite being scalar, because the state-de-
pendent delay acts on the state rather than on an input. Para-
doxically, even though control design is typically vastly more

difficult for systems with delays on the input than on the state,
the existence analysis is easier when the delay affects only the
input and not the state, even when the delay is state dependent.
We note here that for linear plants, that is, when system (1) is

(61)

Assumption 3 is satisfied when the pair is stabilizable
and Assumption 2 is satisfied for any by means of

(62)

The controller for the linear case is

(63)

with the predictor given by

(64)
for . The predictor is not given ex-
plicitly even for the linear case. We next establish the following
result with explicit estimates that highlight the nonlinear role of
the delay function and exponential decay in time.
Theorem 2: Consider the plant (61) together with the control

law (63), (64), and chosen such that is Hurwitz,
namely, , for some

and . Under Assumption 1, for all initial
conditions of the plant that satisfy

(65)

for some , the following holds:

(66)

for all , where is defined in (17), , ,
and are given by

(67)

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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and is an arbitrary positive constant. Furthermore, inequalities
(19) and (20) hold with .

Proof: For the special case of linear systems, Lemma 3 is
applied using the Lyapunov function

(75)

Using the fact that , together with (39) and (37),
we get

(76)

where . With relations
(37), (39), (75), (76), and (9) for we establish that

(77)

where is defined in (28). Using (48) together with (62), re-
lation (41) holds with replaced by . Using (49)
with , Lemma 6 applies with

(78)

(79)

As in the proof of Lemma 7, condition for in (9)
is satisfied when

(80)

where with , we denote the inverse function of the class
function with respect to its first argument. Using Lemma
6 together with(78) and (79) and Lemma 3 together with (77),
we obtain (66). Using (65) and (66) with , we get (80).
Bounds (19)–(20) follow from (80), (36).

IV. EXAMPLE: NONHOLONOMIC UNICYCLE SUBJECT TO
DISTANCE-DEPENDENT INPUT DELAY

We consider the problem of stabilizing a mobile robot mod-
eled as

(81)

(82)

(83)

subject to an input delay that grows with the distance relative to
the reference position as

(84)

where is the position of the robot, is heading,
is speed, and is the turning rate. When 0, a time-

varying stabilizing controller for this system is proposed in [49]
as

(85)

(86)

(87)

(88)

with

(89)

The proposed method replaces (89) with

(90)

(91)

(92)

(93)

(94)

The initial conditions are chosen as
1 and 0 for all .
From the given initial conditions, we get the initial conditions
for the predictors (90)–(92) as for all

. From the above initial conditions for the predic-
tors, one can verify that the system initially lies inside the fea-
sibility region. The controller “kicks in” at the time instant at
which . Since 0 for ,
we conclude that for all and,
hence, . In Fig. 5, we show the trajectory of the robot in
the plane, whereas in Fig. 6, we show the resulting state-de-
pendent delay and the controls and . In the case of
the uncompensated controller (85)–(88), (89), the system is un-
stable, the delay grows approximately linearly in time, and the
vehicle’s trajectory is a divergent Archimedean spiral. The com-
pensated controller (85)–(88), (90)–(94) recovers the delay-free
behavior after 2 s. From Fig. 5, one can also conclude that the
heading in the case of the compensated controller con-
verges to zero with damped oscillations, whereas in the case of
the uncompensated controller, it increases toward negative in-
finity (the robot moves clockwise on a spiral).

V. GLOBAL STABILIZATION

The key challenge for the stabilization of systems with state-
dependent input delay is to maintain the feasibility condition
(9) (i.e., to keep the delay rate below one). This condition can
be satisfied a priori by making the following restrictive but ver-
ifiable assumption.
Assumption 4: for some

and all .
Corollary 1: Consider the plant (1) together with the control

law (3)–(5). Under Assumptions 1, 2, 3, and 4 there exists a class
function and a class function such that

(95)

for all and some , where is defined in (17).
1) Example 2: We consider the scalar system

(96)
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Fig. 5. Trajectory of the robot, with the compensated controller (85)–(88),
(90)–(94) (solid line), and the uncompensated controller (85)–(88), (89) (dashed
line) with initial conditions 1 and 0
for all .

with

(97)

Taking the time derivative of and using Young’s in-
equality, one gets that

(98)
Since system (96) and (97) satisfies Assumption 1, 2, 3, and 4,
Corollary 1 applies. The control law has the form

(99)

(100)

(101)

(102)

where is given in (97). In Fig. 7, we show the response of the
system with initial conditions as 1.5, 0 and

Fig. 6. Left: The delay with the controller (85)–(88), (90)–(94) (solid line)
and the controller (85)–(88), (89) (dashed line) with initial conditions

1 and 0 for all .
Right: The control efforts and with the controller (85)–(88), (90)–(94)
with initial conditions 1 and 0 for all

0.

for all . Initially, runs in
open loop and grows exponentially, while grows roughly
linearly, because of (97). This goes on until control “kicks in”
at 0.4835. For , the
controller starts bringing back to zero. As decays ac-
cording to the target system , the
delay also decays. Starting from , first decays
roughly linearly in , making the decay of logarithmic.
When becomes small, its decay becomes exponential and
the decay of is also exponential. Initially, decays
linearly in and later decays exponentially. The decay of

follows the same pattern as .

VI. STABILITY ANALYSIS FOR LOCALLY STABILIZABLE
NONLINEAR SYSTEMS

In Section III we proved a local stability result under assump-
tions of global stabilizability (Assumption 3) and forward com-
pleteness (Assumption 2) of the delay-free system. It is reason-
able to ask whether a local stability result can be established
under a less restrictive assumption of local stabilizability of the
delay-free system. In this section we provide an affirmative an-
swer to this question. Our proof of this result does not employ
a Lyapunov construction and, as such, provides an illustrative
alternative to the proof technique in Section III.
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Fig. 7. Response of system (96) with the controller (99)–(100) and initial con-
ditions 1.5, 0, for all .

Assumption 5: There exists a locally Lipschitz feedback con-
troller that satisfies (15), a positive constant
and a class function such that for the system

, the following holds for all :

(103)

Theorem 3: Consider the plant (1), together with the predictor
controller (3)–(5), and define as in (17). Under Assumptions
1 and 5, there exists a function of class and a class

function such that for all initial conditions for which is
locally Lipschitz on the interval and which
satisfy

(104)

for some , there exists a unique solution to the
closed-loop system with Lipschitz on , Lipschitz
on , and

for all (105)

Furthermore, (19) and (20) hold with

, where is defined in (36).
The idea of the proof of Theorem 3 is captured by the two

plots in Fig. 8. The top plot in Fig. 8 depicts four possibilities
(not an exhaustive list) that may arise with closed-loop solu-
tions: 1) control never reaches the plant; 2) control reaches the
plant but the state has already exited the region of attraction

Fig. 8. Top: Possible transients of the state . Bottom: An example of a
favorable transient of the delay together with an estimate of its up-
perbound as defined in (36) and (107).

of the delay-free closed-loop system; 3) the state is within the
region of attraction of the delay-free closed-loop system when
the control reaches the plant but the subsequent transient leads
the state outside the controller’s feasibility region and, thus, to
the reversal of the direction of the control signal; and 4) control
reaches the plant while the state is within the region of attrac-
tion of the delay-free closed-loop system and the solution re-
mains within the controller’s feasibility region, so that the con-
trol signal is never retarded to earlier values, and the delay re-
mains compensated for all subsequent times. The proof of The-
orem 3 estimates a set of initial conditions from which all of the
solutions belong to category 4).
The bottom plot in Fig. 8 depicts the strategy of the proof

of Theorem 3. The exact time when the control reaches
the plant is not known analytically. We find an upperbound

by using an upperbound
on the delay and by estimating an upperbound on the open-loop
solution , where . The up-
perbound is then determined from the fixed-point problem

. The solution to
the fixed-point problem is a function of the size of the initial
condition . By reducing sufficiently, we can ensure that
the control signal reaches the plant before has exceeded
, namely, before has exceeded the known bound

.
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Fig. 9. Left: a representative form of the function in Lemma 9.
Right: Restricting the initial conditions in Lemma 11 to so that
when the control kicks in, which is no later than , the delay is no greater
than and, consequently, the plant state is no greater than .

The actual proof of Theorem 3 consists of Lemmas 9–13,
which are presented next.
Lemma 9 (A Bound on Open-Loop Solutions): For the plant

(1), there exists a function , where

(106)

with the following properties:
a) is increasing in both of its arguments and ;
b) is continuous in its domain of definition and, more-
over, uniformly in ;

such that for all
, where

, it holds that

(107)

where .
Proof: The existence of the function is proved by con-

struction. A representative form of is shown graphically in
Fig. 9. Since for all , the system runs in open loop, for all

it holds that

(108)

Setting , we get

(109)

Consider now the following ODE

(110)

Define for any , the function for all as

(111)

The function is continuous and strictly increasing for all
since . The range of the func-

tion is , where and
. Note that can be and can

be . From (110), we obtain .
By defining (since from now on, we treat as a
paramater), we get for all and

. Thus, for all and
. Define for all

(112)

From (112), we observe that

and, moreover, is increasing in both of its arguments since
is increasing. From its definition, is continuous in its domain.
To see this, first note that is continuous in its domain with an
exception maybe at the points . Yet, since from (110) it
holds that , by continuity of
with respect to its initial conditions, for all

. Therefore,
uniformly in . Using the comparison principle and (109), we
get the statement of the lemma.
Lemma 10: (For Small Initial Conditions, The Upperbound

on the Delay as a Function of the Time When the Control Kicks
in is a Contraction): There exists a sufficiently small such
that for all , the mapping

is a contraction in .
Proof: We start by setting . Based on

Lemma 9, since satis-
fies there exists a sufficiently small
such that for all initial conditions it holds that

and, hence, is
continuous in .
Since (which allows us to choose

) and by continuity of and the fact that
uniformly in , there exists a suf-

ficiently small such that for all ,
(e.g.,

), that is, the mapping
maps the set into itself. Differentiating
(112) with respect to and using the fact that ,
we get .
Hence, , where

. Using the facts that , , and
is continuous with uniformly in , there

exists a sufficiently small such that for all and

(113)
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where . With [21, Lemma 3.1]
, for all

, where ,
, and satisfies . Reference [21,

Theor. B.1] guarantees that the mapping is a
contraction in for all ,

.
Lemma 11: (For Small Initial Conditions, the Plant State is

Within the Delay-Free Region of Attraction When Control Kicks
In): There exists a sufficiently small such that for all
solutions of the closed-loop system satisfying (9) for
and for all initial conditions of the plant (1) satisfying

(114)

there exists a such that and,
moreover

(115)

That is, is inside the region of attraction of the controller.
Proof: As long as the solutions of the closed-loop system

satisfy (9) for , the function is increasing, with
. Hence, there exists a time at which
and, moreover, based on (36), is finite

when is finite. Consider now the fixed-point problem

(116)

Since by Lemma 10, is a contraction in
, the fixed-point problem (116) has

a unique solution .
Differentiating (116) with respect to , we get

Using (113), the fact that and the fact that
for all

, we have and, hence, is increasing.
Since is continuous for we conclude that
is also continuous for . Since uni-
formly in and , we have from (116) that
given any , there exists a sufficiently small such that

and, hence, is continuous also at
zero. Since the function is monotonically increasing, it is in-
vertible. Denote , as
depicted in Fig. 9 (right). Then, thanks to (116)

(117)

for all . The proof is completed if since
then bound (115) holds. Assume that and since
is increasing, we have . Since , using
Lemma 9, we have , for all .
Therefore

(118)

Consequently, , which
contradicts the assumption. Thus, . Using (117) and the
fact that the function is increasing in , we get (115).
Lemma 12 (Stability Estimate): There exists a class

function such that for all solutions of the closed-loop system
(1), (3)–(5) that satisfy (9) for , it holds that

(119)

for all , where is defined in (17).
Proof: Under Assumption 5 and using Lemma 11, we get

(120)

Using Lemma 9 and the fact that without loss of generality,
, with (120), we get for all

(121)

Since for all , with (120) and
(15) we get for all

(122)

Moreover, for , we have

(123)
Hence, for all

(124)

Combining bounds (121), (122), and (124), we get the statement
of the lemma.
Lemma 13: (Ball of Initial Conditions That Guarantees Con-

troller Feasibility): There exists a class function
such that for all initial conditions of the plant that sat-

isfy (104) with , the solutions of the
closed-loop system (1), (3)–(5) satisfy (9) for .

Proof: Using (43), we have that for all
. Comparing (44) with (1) and using

Lemma 9, we get for all

(125)

By noting that for all , with the help of
bound (121), we have that

(126)

Therefore, using the fact that from (125) and (126),
we get for all that

(127)
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Using (122) and (124), we get for all that

(128)
The solutions of the system lie inside the feasibility region as
long as (57) holds for all and for all

. With the help of the fact that and using
bounds (125), (127), and (128), (57) holds if

(129)

Condition (129) is satisfied if (104) holds with any class
choice , where
and . Using the fact that is a
monotonically increasing function, is also increasing with

0. Hence, is continuous and in-
creasing, with 0.

Proof of Theorem 3: Bound (105) follows from Lemma
12 and the fact that is increasing, and

, with

(130)

The rest of the results follow as in the proof of Theorem 1.
1) Example 3: We consider the scalar system

(131)
The origin of (131) is neither locally exponentially stabilizable
nor globally asymptotically stabilizable (because it is not reach-
able for ). In the delay-free case, the controller

yields a closed-loop system
,which is locally asymptotically stable, with .

We assume for simplicity of the analysis that 0 for all
0. Denoting

the controller “kicks in” at the time , where
satisfies

(132)

Let 0.543. Solving (132), we obtain 0.46 and
0.678, which is almost at . The

predictor controller is

(133)

Fig. 10. State , the control effort , and the function
of system (131) with the delay-compensating controller (solid line), the

uncompensated controller (dashed line), and the nominal controller for a system
without delay (dotted line) for 0.543 and 0 for all 0.

where

In Fig. 10, we show that the predictor feedback achieves local
asymptotic stabilization.

VII. CONCLUSIONS

The paper’s key design idea is how to define the predictor
state (4). The gradient-of-delay term in the denominator of (4)
is the result of a change in the time variable, which allows the
predictor to be defined using an integral from the known delayed
time until present time , rather than an
integral from the present time until the unknown prediction
time .
Though the stability results in this paper are not global, the

size of the delay is not limited. By examining the estimates in
detail, the reader can observe that when the delay
is large, namely, when the system is regulated to an equilib-
rium where the delay is necessarily large, the stability estimates
dictate that the initial conditions of the state and the input be
small. However, no restrictions on are imposed. A
tradeoff exists between the size of the state-dependent delay and
the achievable region of attraction in closed loop.
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With the Lyapunov construction in the case of forward-com-
plete systems, one can, in principle, pursue a robustness study
when the uncertainties on the delay and its gradient are restricted
(which can be done in some cases by shrinking the state )
and when the uncertainty in the parameters is sufficiently small.
Paper [23], where robustness to delaymismatch is proven for the
case of linear plants with constant delay, constitutes a starting
point.

REFERENCES

[1] Y. Altintas, S. Engin, and E. Budak, “Analytical stability prediction
and design of variable pitch cutters,” ASME J. Manuf. Sci. Eng., vol.
121, pp. 173–178, 1999.

[2] D. Angeli and E. D. Sontag, “Forward completeness, unboundedness
observability, and their Lyapunov characterizations,” Syst. Control
Lett., vol. 38, pp. 209–217, 1999.

[3] D. Angeli, E. D. Sontag, and Y. Wang, “A characterization of integral
input-to-state stability,” IEEE Trans. Autom. Control, vol. 45, no. 6, pp.
1082–1096, Jun. 2000.

[4] Z. Artstein, “Linear systems with delayed controls:A reduction,” IEEE
Trans. Autom. Control, vol. AC-27, no. 4, pp. 869–879, Aug. 1982.

[5] N. Bekiaris-Liberis and M. Krstic, “Delay-adaptive feedback for linear
feedforward systems,” Syst. Control Lett., vol. 59, pp. 277–283, 2010.

[6] N. Bekiaris-Liberis and M. Krstic, “Stabilization of strict-feedback
linear systems with delayed integrators,” Automatica, vol. 46, pp.
1902–1910, 2010.

[7] D. Bresch-Pietri andM. Krstic, “Delay-adaptive predictor feedback for
systems with unknown long actuator delay,” IEEE Trans. Autom. Con-
trol, vol. 55, no. 9, pp. 2106–2112, Sep. 2010.

[8] D. Bresch-Pietri and M. Krstic, “Adaptive trajectory tracking despite
unknown input delay and plant parameters,” Automatica, vol. 45, pp.
2074–2081, 2009.

[9] M. Hansen, J. Stoustrup, and J.-D. Bendtsen, “Modeling of nonlinear
marine cooling systems with closed circuit flow,” presented at the 18th
IFAC World Congr., Milan, Italy, 2011.

[10] D. Helbing, “Traffic and related self-driven many-particle systems,”
Rev. Modern Phys., vol. 73, pp. 1067–1141, 2001.

[11] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138–162,
Jan. 2007.

[12] M. Jankovic, “Control Lyapunov-Razumikhin functions and robust sta-
bilization of time delay systems,” IEEE Trans. Autom. Control, vol. 46,
no. 7, pp. 1048–1060, Jul. 2001.

[13] M. Jankovic, “Forwarding, backstepping, and finite spectrum assign-
ment for time delay systems,” Automatica, vol. 45, pp. 2–9, 2009.

[14] M. Jankovic, “Cross-term forwarding for systems with time delay,”
IEEE Trans. Autom. Contol, vol. 54, no. 3, pp. 498–511, Mar. 2009.

[15] M. Jankovic, “Recursive predictor design for state and output feed-
back controllers for linear time delay systems,” Automatica, vol. 46,
pp. 510–517, 2010.

[16] I. Karafyllis and J. Tsinias, “Non-uniform in time input-to-state sta-
bility and the small-gain theorem,” IEEE Trans. Autom. Control, vol.
49, no. 2, pp. 196–216, Feb. 2004.

[17] I. Karafyllis, “Finite-time global stabilization bymeans of time-varying
distributed delay feedback,” Siam J. Control Optim., vol. 45, no. 1, pp.
320–342, 2006.

[18] I. Karafyllis, “Lyapunov theorems for systems described by retarded
functional differential equations,” Nonlinear Anal., vol. 64, pp.
590–617, 2006.

[19] I. Karafyllis, P. Pepe, and Z.-P. Jiang, “Stability results for systems de-
scribed by coupled retarded functional differential equations and func-
tional difference equations,” Nonlinear Anal., vol. 71, pp. 3339–3362,
2009.

[20] I. Karafyllis, “Stabilization bymeans of approximate predictors for sys-
tems with delayed input,” presented at the 9th IFACWorkshop on Time
Delay Systems, Prague, Czech Republic, 2010.

[21] H. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ: Pren-
tice-Hall, 2002.

[22] C. Kravaris and R. A. Wright, “Deadtime compensation for nonlinear
processes,” AIChE J., vol. 35, pp. 1535–1542, 1989.

[23] M. Krstic, “Lyapunov tools for predictor feedbacks for delay systems:
Inverse optimality and robustness to delaymismatch,”Automatica, vol.
44, pp. 2930–2935, 2008.

[24] M. Krstic, “On compensating long actuator delays in nonlinear con-
trol,” IEEE Trans. Autom. Control, vol. 53, no. 7, pp. 1684–1688, Aug.
2008.

[25] M. Krstic, “Lyapunov stability of linear predictor feedback for time-
varying input delay,” IEEE Trans. Autom. Control, vol. 55, no. 2, pp.
554–559, Feb. 2010.

[26] M. Krstic, “Input delay compensation for forward complete and feed-
forward nonlinear systems,” IEEE Trans. Autom. Control, vol. 55, no.
2, pp. 287–303, Feb. 2010.

[27] X. Litrico and V. Fromion, “Analytical approximation of open-channel
flow for controller design,” Appl. Math. Model., vol. 28, pp. 677–695,
2004.

[28] S. Liu, T. Basar, and R. Srikant, “Pitfalls in the fluid modeling of RTT
variations in window-based congestion control,” presented at the IEEE
INFOCOM, Miami, FL, 2005.

[29] J. M. Mahaffy, J. Bélair, and M. Mackey, “Hematopoietic model with
moving boundary condition and state dependent delay: Applications in
erythopoiesis,” J. Theor. Biol., vol. 190, pp. 135–146, 1998.

[30] A. Z. Manitius and A. W. Olbrot, “Finite spectrum assignment for sys-
tems with delays,” IEEE Trans. Autom. Control, vol. AC-24, no. 4, pp.
541–553, Aug. 1979.

[31] F. Mazenc and P.-A. Bliman, “Backstepping design for time-delay
nonlinear systems,” IEEE Trans. Autom. Control, vol. 51, no. 1, pp.
149–154, Jan. 2006.

[32] F. Mazenc, M. Malisoff, and Z. Lin, “Further results on input-to-state
stability for nonlinear systems with delayed feedbacks,” Automatica,
vol. 44, pp. 2415–2421, 2008.

[33] F. Mazenc, S. Mondie, and R. Francisco, “Global asymptotic stabi-
lization of feedforward systems with delay at the input,” IEEE Trans.
Autom. Control, vol. 49, no. 5, pp. 844–850, May 2004.

[34] F. Mazenc and M. Malisoff, “Stabilization of a chemostat model with
Haldane growth functions and a delay in the measurements,” Auto-
matica, vol. 46, pp. 1428–1436, 2010.

[35] F. Mazenc and S.-I. Niculescu, “Generating positive and stable
solutions through delayed state feedback,” Automatica, vol. 47, pp.
525–533, 2011.

[36] W. Michiels and S.-I. Niculescu, Stability and Stabilization of Time-
Delay Systems: An Eignevalue-Based Approach. Philadelphia, PA:
SIAM, 2007.

[37] L. Mirkin, “On the approximation of distributed-delay control laws,”
Syst. Control Lett., vol. 51, pp. 331–342, 2004.

[38] S. Mondie and W. Michiels, “Finite spectrum assignment of unstable
time-delay systems with a safe implementation,” IEEE Trans. Autom.
Control, vol. 48, no. 12, pp. 2207–2212, Dec. 2003.

[39] H. Mounier and J. Rudolph, “Flatness-based control of nonlinear delay
systems: A chemical reactor example,” Int. J. Control, vol. 71, pp.
871–890, 1998.

[40] S.-I. Niculescu, Delay Effects on Stability. New York: Springer,
2001.

[41] S.-I. Niculescu and A. M. Annaswamy, “An adaptive Smith-controller
for time-delay systems with relative degree ,” Syst. Control
Lett., vol. 49, pp. 347–358, 2003.

[42] G. Niemeyer and J.-J. E. Slotine, “Toward bilateral internet teleopera-
tion,” in Beyond Webcams: An Introduction to Online Robots. Cam-
bridge, MA: MIT Press, 2001, pp. 193–213.

[43] M. Nihtila, “Adaptive control of a continuous-time system with time-
varying input delay,” Syst. Control Lett., vol. 12, pp. 357–364, 1989.

[44] M. Nihtila, “Finite pole assignment for systems with time-varying
input delays,” in Proc. IEEE Conf. Dec. Control, 1991, pp.
927–928.

[45] R. Nussbaum and J. Mallet-Paret, “Boundary layer phenomena for dif-
ferential-delay equations with state-dependent time lags I,” Arch. Ra-
tional Mech. Anal., vol. 120, no. 2, pp. 99–146, 1992.

[46] G. Orosz and G. Stepan, “Subcritical Hopf bifurcations in a car-fol-
lowing model with reaction-time delay,” Proc. Roy. Soc. London A,
vol. 462, pp. 2643–2670, 2006.

[47] P. Pepe and Z.-P. Jiang, “A Lyapunov-Krasovskii methodology for
ISS and iISS of time-delay systems,” Syst. Control Lett., vol. 55, pp.
1006–1014, 2006.

[48] P. Pepe, I. Karafyllis, and Z.-P. Jiang, “On the Liapunov-Krasovskii
methodology for the ISS of systems described by coupled delay differ-
ential and difference equations,” Automatica, vol. 44, pp. 2266–2273,
2008.

[49] J.-B. Pomet, “Explicit design of time-varying stabilizing control laws
for a class of controllable systems without drift,” Syst. Control Lett.,
vol. 18, pp. 147–158, 1992.

[50] J.-P. Richard, “Time-delay systems: An overview of some recent ad-
vances and open problems,” Automatica, vol. 39, pp. 1667–1694, 2003.



BEKIARIS-LIBERIS AND KRSTIC: COMPENSATION OF STATE-DEPENDENT INPUT DELAY FOR NONLINEAR SYSTEMS 289

[51] R. Sipahi, S. Lammer, S.-I. Niculescu, and D. Helbing, “On stability
analysis and parametric design of supply networks under the presence
of transportation delays,” presented at the ASME-IMECE Conf.,
Chicago, IL, 2006.

[52] R. Sipahi, Delay modeling in supply network dynamics: Performance,
synchronization, stability. Northeastern Univ., Boston, MA, 2007.
[Online]. Available: http://hdl.handle.net/2047/d10011882

[53] R. Sipahi, F. M. Atay, and S.-I. Niculescu, “Stability of traffic flow
behavior with distributed delays modeling the memory effect of the
drivers,” SIAM J. Appl. Math., vol. 68, no. 3, pp. 738–759, 2007.

[54] E. Sontag and Y. Wang, “On characterizations of the input-to-state sta-
bility property,” Syst. Control Lett., vol. 24, pp. 351–359, 1995.

[55] J. D. Sterman, Business Dynamics: Systems Thinking and Modeling for
a Complex World. New York: McGraw-Hill, 2000.

[56] A. R. Teel, “Connections between Razumikhin-type theorems and the
ISS nonlinear small gain theorem,” IEEE Trans. Autom. Control, vol.
43, no. 7, pp. 960–964, Jul. 1998.

[57] E. Witrant, C. C. de-Wit, D. Georges, and M. Alamir, “Remote stabi-
lization via communication networks with a distributed control law,”
IEEE Trans. Autom. Control, vol. 52, no. 8, pp. 1480–1485, Aug. 2007.

[58] Y. Yildiray, A. Annaswamy, I. V. Kolmanovsky, and D. Yanakiev,
“Adaptive posicast controller for time-delay systems with relative de-
gree ,” Automatica, vol. 46, pp. 279–289, 2010.

[59] Q.-C. Zhong and L. Mirkin, “Control of integral processes with dead
time—Part 2: Quantitative analysis,” Proc. Inst. Elect. Eng., vol. 149,
pp. 291–296, 2002.

[60] Q.-C. Zhong, Robust Control of Time-Delay Systems. New York:
Springer, 2006.

Nikolaos Bekiaris-Liberis received the B.S. degree
in electrical and computer engineering from the
National Technical University of Athens, Athens,
Greece, in 2007, and is currently pursuing the Ph.D.
degree in mechanical and aerospace engineering at
the University of California, San Diego.
His research interests include the control of delay

systems and control of distributed parameter systems
and nonlinear control.

Miroslav Krstic received the Daniel L. Alspach
Chair and is the Founding Director of the Cymer
Center for Control Systems and Dynamics, Univer-
sity of California, San Diego. He has coauthored
nine books on adaptive, nonlinear, and stochastic
control, extremum seeking, and control of PDE
systems, including turbulent flows and control of
delay systems.
He is a Fellow of IEEE and IFAC and serves

as Senior Editor of IEEE TRANSACTIONS ON

AUTOMATIC CONTROL AND AUTOMATICA. He served
as Vice President of the IEEE Control Systems Society, and Chair of the IEEE
CSS Fellow Committee. He is a recipient of the PECASE, National Science
Foundation, and ONR Young Investigator Awards, as well as the Axelby and
Schuck Paper Prizes. He was the first recipient of the UCSD Research Award
in the area of engineering and has held the Russell Severance Springer Distin-
guished Visiting Professorship at UC Berkeley and the Harold W. Sorenson
Distinguished Professorship at UCSD.


