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a b s t r a c t

We extend the technique for compensating state-dependent delays from systems with delayed inputs to
systems with delayed states. We focus on predictor-feedback design for nonlinear systems in the strict-
feedback form, having a state-dependent state delay on the virtual input. The two key challenges are the
definition of the predictor state and the fact that the predictor design does not follow immediately from
the delay-free design. We resolve these challenges and we establish asymptotic stability of the resulting
infinite-dimensional nonlinear system for general nonnegative-valued delay functions of the state. Due
to an inherent limitation on the delay rate, and since the delay rate depends on the state, we obtain only
regional stability results. However, for forward-complete systems, we provide an estimate of the region
of attraction in the state space of the infinite-dimensional system. We finally provide two examples,
including an example of stabilization of a cooling system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

State-dependent state delays appear in many engineering
applications. Examples include milling processes [1], engine
cooling systems [2], irrigation channels [3], network congestion
control [4], population dynamics [5], supply networks [6,7] and
automatic landing systems [8].

Predictor-based techniques are an indispensable part of the
control design toolbox [9], for unstable linear plants with constant
delays affecting the input [10–13] or simultaneously affecting
inputs and states [14–17]. Various control schemes also exist
for nonlinear systems with constant delays affecting the input
[18–20] or state [21–23]. Yet, extensions of the predictor-feedback
design to nonlinear systems with constant input delay had not
been developed until recently [24,25]. Although in [26] (see
also [27]), a predictor-based controller for unstable linear plants
with time-varying input delay is developed, only recently a
Lyapunov function was provided [28]. Finally, although nonlinear
systems with simultaneous time-varying input and state delays
are considered in [29], predictor-like designs for nonlinear systems
with time-varying input delays [30] or simultaneous input and
state delays [31] were developed recently. In [32], we introduced
a technique for compensating state-dependent delays on the input
of a nonlinear system. In this paper, we generalize this technique

⇤ Corresponding author.
E-mail addresses: nikos.bekiaris@gmail.com, nbekiari@ucsd.edu

(N. Bekiaris-Liberis).

to systems that include state-dependent delays on the states of the
system.

We consider forward-complete systems that are globally
stabilizable in the absence of the delay. We then ‘‘backstep’’
one state-dependent integrator and design a predictor-based
control law for the overall system, using prediction intervals that
depend on the current value of the state (Section 2). Using an
invertible infinite-dimensional backstepping transformation we
derive explicit bounds for the norm of the closed-loop system.
Due to the fundamental limitation of the allowable magnitude of
the delay function’s gradient (the control signal never reaches the
plant if the delay rate is larger than one) we use these bounds
to estimate the region of attraction of the proposed controller
(Section 3). Two simulation examples illustrate the application of
the control design (Sections 4 and 5).

Notation: we use the common definition of class K , K1 and
K L functions from [33]. For an n-vector, the norm | · | denotes the
usual Euclideannorm.We say that a function ⇠ : R+⇥(0, 1) 7! R+
belongs to class K C if it is of class K with respect to its first
argument for each value of its second argument and continuous
with respect to its second argument. It belongs to class K C 1 if it
is in K C and also in K1 with respect to its first argument.

2. Problem formulation and controller design

We consider the following system

Ẋ1(t) = f1 (t, X1(t), X2 (t � D (X1(t)))) (1)

Ẋ2(t) = f2 (t, X1(t), X2(t)) + U(t), (2)
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where X1 2 Rn, X2, U 2 R and t � t0 � 0. We assume that
f1 : [t0, 1) ⇥ Rn+1 7! Rn is locally Lipschitz with f1(t, 0, 0) = 0
for all t � t0 and that there exists a class K1 function ↵̂ such that

|f1 (t, X1, X2) |  ↵̂ (|X1| + |X2|) , for all t � t0. (3)

We further assume that f2 : [t0, 1)⇥Rn+1 7! R is locally Lipschitz
with respect to (X1, X2) 2 Rn+1 with f2(t, 0, 0) = 0 for all t � t0.
The goal of the paper is to show that for (1), (2) there exist functions
P(✓) and � (✓), where t � D (X1(t))  ✓  t , such that the
controller

U(t) = �f2 (t, X1(t), X2(t)) � c2 (X2(t) �  (� (t), P1(t)))

+
@(� ,P1)

@�
+ @(� ,P1)

@P1
f1 (� (t), P1(t), X2(t))

1 � rD (P1(t)) f1 (� (t), P1(t), X2(t))
, (4)

where c2 is an arbitrary positive constant and

P1(✓) = X1(t)

+
Z ✓

t�D(X1(t))

f1 (� (s), P1(s), X2(s)) ds
1 � rD (P1(s)) f1 (� (s), P1(s), X2(s))

,

t � D (X1(t))  ✓  t (5)

� (✓) = ✓ + D (P1(✓)) , t � D (X1(t))  ✓  t, (6)

for t � t0, compensates the state-dependent state delay and
achieves asymptotic stability of the resulting closed-loop system.
We refer to the quantity P1(✓) given in (5) as ‘‘predictor’’ since P1(t)
is the D (P1(t)) time units ahead predictor of X1(t), i.e., P1(t) =
X1 (t + D (P1(t))). This fact can be seen as follows. Differentiating
relation (5) with respect to ✓ and setting ✓ = t we get

dP1(t)
dt

= f1 (� (t), P1(t), X2(t))
1 � rD (P1(t)) f1 (� (t), P1(t), X2(t))

. (7)

Performing a change of variables ⌧ = � (t) in the ODE for X1(⌧ )

given by dX1(⌧ )
d⌧ = f1 (⌧ , X1(⌧ ), X2 (⌧ � D (X1(⌧ )))), we have that

dX1(� (t))
dt

= d� (t)
dt

f1 (� (t), X1(� (t)), X2 (t)) . (8)

From (8) one observes that P1(t) satisfies the same ODE in t as
X1(� (t)) because from (6) to (8) it follows that

d� (✓)

d✓
= 1

1 � rD (X1(� (✓))) f1 (� (✓), X1(� (✓)), X2(✓))
,

t � D (X1(t))  ✓  t, (9)

provided that P1(t) = X1(� (t)). Since from (5) for t = t0 and
✓ = t0 � D (X1(t0)) it follows that P1 (t0 � D (X1(t0))) = X1(t0),
by defining

�(t) = t � D (X1(t)) , t � t0, (10)

� (✓) = ��1(✓), t � D (X1(t))  ✓  t, (11)

we have that P1(t0) = X1 (� (t0)). Noting from (10) and (11) that
D (X1(� (t))) = � (t) � t , differentiating this relation, we get
(9). Comparing (7) with (8) we conclude with the help of (9) that
indeed P1(t) = X1 (� (t)) for all t � t0.

Motivated by the need to keep the denominator in (5) and (9)
positive, throughout the paper we consider the condition on the
solutions which is given by

Gc : rD (P1(✓)) f1 (� (✓), P1(✓), X2(✓)) < c,
for all ✓ � t0 � D (X1(t0)) , (12)

for c 2 (0, 1]. We refer to G1 as the feasibility condition of the
controller (4)–(5).

3. Stability analysis for forward-complete systems

Throughout the section, we make the following assumptions
concerning the plant (1)–(2):

Assumption 1. D 2 C1 (Rn; R+) and rD is locally Lipschitz.1

Assumption 2. There exist a smooth positive definite function R
and class K1 functions ↵1, ↵2 and ↵3 such that for the plant Ẋ =
f1(t, X, !), the following hold

↵1 (|X |)  R (t, X)  ↵2 (|X |) (13)
@R (t, X)

@t
+ @R (t, X)

@X
f1 (t, X, !)  R (t, X) + ↵3 (|!|) , (14)

for all X, ! 2 Rn+1 and t � t0.

Assumption 2 guarantees that the plant Ẋ = f1(t, X, !) with !
as input is forward-complete.

Assumption 3. There exist functions  2 C1 ([t0, 1) ⇥ Rn; R)
and ⇢̂ 2 K1, such that the plant Ẋ(t) = f1

�
t, X(t), 

�
t, X(t)

�

+!(t)
�
is input-to-state stablewith respect to! and  is uniformly

bounded with respect to its first argument, that is,

|(t, X)|  ⇢̂(|X |), for all t � t0. (15)

Theorem 1. Consider the plant (1)–(2) together with the control
law (4)–(6). Under Assumptions 1–3, there exist a class K function
⇠RoA, a class K L function � and a class K C 1 function ⇠1 such that
for all initial conditions for which X2 is locally Lipschitz on the interval
[t0 � D(X1(t0)), t0] and which satisfy

|X1(t0)| + sup
t0�D(X1(t0))✓t0

|X2(✓)| < ⇠RoA (c) , (16)

for some 0 < c < 1, there exists a unique solution to the closed-loop
system with X1 2 C1[t0, 1), X2 2 C1(t0, 1), and

|X1(t)| + sup
t�D(X1(t))✓t

|X2(✓)|

 �

 

⇠1

 

|X1(t0)| + sup
t0�D(X1(t0))✓t0

|X2(✓)| , c
!

, t � t0

!

, (17)

for all t � t0. Furthermore, there exists a class K function �⇤, such
that for all t � t0 the following holds

D (X1(t))  D(0) + �⇤ (c) (18)
��Ḋ (X1(t))

��  c. (19)

The proof of Theorem 1 is based on Lemmas 1–8 which are
presented next.

Lemma 1 (Backstepping Transform of the Delayed State). The
infinite-dimensional backstepping transformation of the state X2
defined by

Z2(✓) = X2(✓) �  (� (✓), P1(✓)) ,

t � D (X1(t))  ✓  t, (20)

together with the predictor-based control law given in relations
(4)–(5) transform system (1)–(2) to the ‘‘target system’’ given by

Ẋ1(t) = f1 (t, X1(t),  (t, X1(t)) + Z2 (t � D (X1(t)))) (21)

Ż2(t) = �c2Z2(t). (22)

1 To ensure uniqueness of solutions.
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Fig. 1. Interconnections between the predictor states P1 and ⇧1 with the
transformations Z2 and X2 in (20) and (23). The direct backstepping transformation
is defined as (X1(t), X2(✓)) 7! (X1(t), Z2(✓)) and is given in (20), where P1(✓) is
given as a function of X1(t) and X2(✓) through relation (5). Analogously, the inverse
transformation is defined as (X1(t), Z2(✓)) 7! (X1(t), X2(✓)) and is given in (23)
where ⇧1(✓) is given as a function of X1(t) and Z2(✓) through relation (23).

Proof. Using (1) and the facts that P1 (t � D (X1(t))) = X1(t) and
� (t � D (X1(t))) = t , which are immediate consequences of (5)
and (6), we get (21). Setting ✓ = t in (20) and taking the derivative
with respect to t of the resulting equation we get (22) using (4), (7)
and (9). ⇤

Lemma 2 (Inverse Backstepping Transform). The inverse of the
infinite-dimensional backstepping transformation defined in (20) is
given by

X2(✓) = Z2(✓) +  (� (✓), ⇧1(✓)) ,

t � D (X1(t))  ✓  t, (23)

where ⇧1(✓) is defined in Box I.

Proof. By direct verification, noting also that ⇧1(✓) = P1(✓) for
all t � D (X1(t))  ✓  t , where ⇧1(✓) is driven by the trans-
formed state Z2(✓), whereas P1(✓) is driven by the state X2(✓) for
t � D (X1(t))  ✓  t . See Fig. 1. ⇤

Lemma 3 (Stability Estimate for Target System). There exists a class
K L function �⇤ such that for all solutions of system (1), (2) satisfy-
ing (12) for 0 < c < 1, the following holds for all t � t0
|X1(t)| + sup

t�D(X1(t))✓t
|Z2(✓)|

 �⇤
 

|X1(t0)| + sup
t0�D(X1(t0))✓t0

|Z2(✓)| , t � t0

!

. (25)

Proof. Solving (22), and using the facts that � (t0) = t0 + D
�
X1

(� (t0))
�
and that �(t) is increasing for all t � t0 we get

sup
t�D(X1(t))✓t

|Z2(✓)|
 sup

t0�D(X1(t0))✓t0
|Z2(✓)|

⇥ e�c2(t�D(X1(t))�t0), for all t � � (t0), (26)

where we have also used the trivial inequality |Z2(t0)| supt0�D(X1(t0))✓t0 |Z2(✓)|. Similarly, for all t0  t  � (t0) we
get

sup
t�D(X1(t))✓t

|Z2(✓)|  sup
t0�D(X1(t0))✓t0

|Z2(✓)|

+ sup
t0✓t� (t0)

|Z2(✓)| , (27)

and hence, combining (27) with (22), we get

sup
t�D(X1(t))✓t

|Z2(✓)|  2 sup
t0�D(X1(t0))✓t0

|Z2(✓)| ,

for all t0  t  � (t0). (28)

Therefore, using (26) and (28) we get

sup
t�D(X1(t))✓t

|Z2(✓)|

 2 sup
t0�D(X1(t0))✓t0

|Z2(✓)| ec2(D(0)+�1(|X1(t)|))e�c2(t�t0),

for all t � t0. (29)

Under Assumption 3 and [34], (see also [35,36]), there exist class
K L function �̂ and class K function �̂ such that

|X1(t)|  �̂ (|X1(s)|, t � s)

+ �̂

✓
sup
s⌧t

|Z2 (⌧ � D (X1(⌧ )))|
◆

,

for all t � s � t0. (30)

Setting s = t0 we have that

|X1(t)|  �̂ (|X1(t0)|, 0)

+ �̂

 

sup
�(t0)✓t0

|Z2(✓)| + sup
t0✓�(t)

|Z2(✓)|
!

,

for all t � t0, (31)

and hence,

|X1(t)|  �̂ (|X1(t0)|, 0) + �̂

 

2 sup
�(t0)✓t0

|Z2(✓)|
!

,

for all t � t0. (32)

Setting s = t+t0
2 in (30) we have that

|X1(t)|  �̂

✓����X1

✓
t + t0

2

◆���� ,
t � t0

2

◆

+ �̂

0

@ sup
�
⇣ t+t0

2

⌘
✓�(t)

|Z2(✓)|
1

A . (33)

We estimate now sup
�
⇣ t+t0

2

⌘
✓�(t)

|Z2(✓)|. Solving (22) we get

sup
�
⇣ t+t0

2

⌘
✓�(t)

|Z2(✓)|

 2 sup
t0�D(X1(t0))✓t0

|Z2(✓)| e�c2
⇣
�
⇣ t+t0

2

⌘
�t0

⌘

,

for all t � 2� (t0) � t0. (34)

With the help of relations (22) and (34) we get

sup
�
⇣ t+t0

2

⌘
✓�(t)

|Z2(✓)|  sup
�
⇣ t+t0

2

⌘
✓t0

|Z2(✓)| + sup
t0✓�(t)

|Z2(✓)|

 2 sup
t0�D(X1(t0))✓t0

|Z2(✓)| ,

for all t0  t  2� (t0) � t0. (35)

Hence, using the fact that �
� t+t0

2

� = t+t0
2 � D

�
X1
� t+t0

2

��
we get

for all t � t0

sup
�
⇣ t+t0

2

⌘
✓�(t)

|Z2(✓)|

 2 sup
t0�D(X1(t0))✓t0

|Z2(✓)|

⇥ ec2
⇣
D(0)+�1

⇣���X1
⇣ t+t0

2

⌘���
⌘⌘

e� c2
2 (t�t0). (36)
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⇧1(✓) = X1(t) +
Z ✓

t�D(X1(t))

f1 (� (s), ⇧1(s),  (� (s), ⇧1(s)) + Z2(s)) ds
1 � rD (⇧1(s)) f1 (� (s), ⇧1(s),  (� (s), ⇧1(s)) + Z2(s))

, t � D (X1(t))  ✓  t. (24)

Box I.

Setting s = t0 and replacing t by t+t0
2 we get from (30) that

����X1

✓
t + t0

2

◆����  �̂

✓
|X1 (t0)| , t � t0

2

◆

+ �̂

0

@ sup
�(t0)✓�

⇣ t+t0
2

⌘ |Z2(✓)|
1

A . (37)

Since,

sup
�(t0)✓�

⇣ t+t0
2

⌘ |Z2(✓)|  sup
�(t0)✓t0

|Z2(✓)| + sup
t0✓�(t)

|Z2(✓)|

 2 sup
t0�D(X1(t0))✓t0

|Z2(✓)| , (38)

we arrive at
����X1

✓
t + t0

2

◆����  �̂ (|X1 (t0)| , 0)

+ �̂

 

2 sup
t0�D(X1(t0))✓t0

|Z2(✓)|
!

,

for all t � t0. (39)

Combining (29), (32), (33), (36) and (39), we get the statement of
the lemma with

�⇤(s, t � t0) = �̂

✓
�̂ (s, 0) + �̂ (2s) ,

t � t0
2

◆

+ �̂

✓
2sec2

⇣
D(0)+�1

⇣
�̂(s,0)+�̂ (2s)

⌘⌘

e� c2
2 (t�t0)

◆

+ 2sec2
⇣
D(0)+�1

⇣
�̂(s,0)+�̂ (2s)

⌘⌘

e�c2(t�t0). ⇤ (40)

Lemma 4 (Bound on Predictor in Terms of System’s States). There
exists a class K C 1 function ⇠ such that for all solutions of
system (1), (2) satisfying (12) for 0 < c < 1, the following holds

|P1(✓)|  ⇠

 
|X1(t)| + sup

t�D(X1(t))⌧t
|X2(⌧ )| , c

!

,

t � D (X1(t))  ✓  t. (41)

Proof. Consider the following ODE in ✓ which follows by differen-
tiating (5) together with the initial condition P1 (t � D (X1(t))) =
X1(t)

dP1(✓)

d✓
= f1 (� (✓), P1(✓), X2(✓))

1 � rD (P1(✓)) f1 (� (✓), P1(✓), X2(✓))
,

t � D (X1(t))  ✓  t. (42)

With the change of variables

y = � (✓), (43)

we re-write (42) as

dP1(�(y))
dy

= f1 (y, P1(�(y)), X2 (y � D (P1(�(y))))) ,

t  y  � (t). (44)

Using (14) we get

dR (y, P1(�(y)))
d✓

d✓
dy

 R (y, P1(�(y))) + ↵3 (|X2 (y � D (P1(�(y))))|) . (45)

With (12) we have

dR (� (✓), P1(✓))

d✓

 1
1 � c

(R (� (✓), P1(✓)) + ↵3 (|X2(✓)|)) ,

t � D (X1(t))  ✓  t. (46)

Under Assumption 1, there exists a function �1 2 K1 \ C1 such
that

D (X1)  D(0) + �1 (|X1|) , (47)

and hence, using the comparison principle we have from (46) for
all t � D (X1(t))  ✓  t that

R (� (✓), P1(✓))  e
D(0)+�1(|X1(t)|)

1�c

 

R (t, X1(t))

+ sup
t�D(X1(t))⌧t

↵3 (|X2(⌧ )|)
!

. (48)

With standard properties of class K1 functions we get the
statement of the lemma with ⇠ 2 K C 1 given by

⇠(s, c) = ↵�1
1

✓
(↵2(s) + ↵3(s)) e

D(0)+�1(s)
1�c

◆
. ⇤ (49)

Lemma 5 (Bound on Predictor in Terms of Transformed System’s
States). There exists a class K function � such that for all solutions
of system (1), (2) satisfying (12) for 0 < c < 1, the following holds

|⇧1(✓)|  �

 
|X1(t)| + sup

t�D(X1(t))⌧t
|Z2(⌧ )|

!

,

t � D (X1(t))  ✓  t. (50)

Proof. Let Y (s) be the solution of dY (s)
ds = f1

�
s, Y (s), 

�
s, Y (s)

�

+ !(s)
�
for s � s0 � 0. Under Assumption 3 and [34], (see also

[35,36]), there exist class K L function �̂ and class K function �̂
such that

|Y (s)|  �̂ (|Y (s0)|, s � s0) + �̂

✓
sup

s0rs
|!(r)|

◆
,

for all s � s0. (51)

Using the change of variable (43) and definition (24), we have that

d⇧1 (�(y))
dy

= f1 (y, ⇧1 (�(y)) ,  (y, ⇧1 (�(y))) + Z2 (�(y))) ,

t  y  � (t). (52)
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Since ⇧1 (�(y)) satisfies the same ODE in y as the ODE for Y (s) in s
we have that

|⇧1(�(y))|  �̂ (|X1(t)|, y � t) + �̂

✓
sup

ty� (t)
|Z2(�(y))|

◆
,

for all t  y  � (t). (53)

Using (43) (which can be also written as ✓ = �(y)) with the fact
that �̂(s, r)  �̂(s, 0) for all r � 0, we get from (53)

|⇧1(✓)|  �̂ (|X1(t)|, 0) + �̂

 

sup
t�D(X1(t))⌧t

|Z2(⌧ )|
!

,

t � D (X1(t))  ✓  t. (54)

With the properties of class K functions we get the statement of
the lemma where � (s) = �̂(s, 0) + �̂ (s). ⇤

Lemma 6 (Equivalence of Norms for Original and Target Sys-
tem). There exist a function ⇠1 of class K C 1 and a class K1 func-
tion ↵4 such that for all solutions of system (1), (2) satisfying (12) for
0 < c < 1, the following holds

|X1(t)| + sup
t�D(X1(t))✓t

|Z2(✓)|

 ⇠1

 

|X1(t)| + sup
t�D(X1(t))✓t

|X2(✓)| , c
!

(55)

|X1(t)| + sup
t�D(X1(t))✓t

|X2(✓)|

 ↵4

 

|X1(t)| + sup
t�D(X1(t))✓t

|Z2(✓)|
!

, (56)

for all t � t0.

Proof. Using the direct backstepping transformation (20) and the
bounds (15), (41) we get the bound (55) with ⇠1(s, c) = s +
⇢̂ (⇠(s, c)). Using the inverse backstepping transformation (23)
and the bounds (15), (50) we get the bound (56) with ↵4(s) =
s + ⇢̂ (� (s)). ⇤

Lemma 7 (Ball Around the Origin within the Feasibility Region).
There exists a function ⇠̄c of class K C 1 such that for all solutions of
system (1), (2) that satisfy

|X1(t)| + sup
t�D(X1(t))✓t

|X2(✓)| < ⇠̄c(c, c), (57)

for 0 < c < 1 also satisfy (12).

Proof. Since D 2 C1 (Rn; R+) there exists class K1 function �2
such that

|rD(X1)|  |rD(0)| + �2(|X1|). (58)

If a solution satisfies

(|rD(0)| + �2 (|P1(✓)|)) ↵̂

 
|P1(✓)| + sup

t�D(X1(t))✓t
|X2(✓)|

!

 c, t � D (X1(t))  ✓  t, (59)

for 0 < c < 1, then it also satisfies (12). Using Lemma 4, (59) is
satisfied for 0 < c < 1 as long as bound (57) holds, where the
class K C 1 function ⇠c is given by

⇠c(s, c) = (|rD1(0)| + �2 (⇠(s, c))) ↵̂ (⇠(s, c) + s) , (60)

and with ⇠̄c we denote the inverse function of ⇠c with respect to
⇠c ’s first argument. ⇤

Fig. 2. A typical marine cooling system with one consumer.

Lemma 8 (Estimate of the Region of Attraction). There exists a class
K function ⇠RoA such that for all initial conditions of the closed-
loop system (1), (2), (4) and (5) that satisfy (16), the solutions of
system (1), (2) satisfy (57) for 0 < c < 1 and hence satisfy (12).

Proof. Using Lemma 6, with the help of (25) we have that

⌦(t)  ↵4
�
�⇤ (⇠1 (⌦(t0), c) , t � t0)

�
, (61)

where

⌦(t) = |X1(t)| + sup
t�D(X1(t))✓t

|X2(✓)| . (62)

Hence, for all initial conditions that satisfy bound (16) with any
class K choice ⇠RoA(c)  ⇠̄ ⇤

RoA
�
⇠̄c(c, c), c

�
, where ⇠̄ ⇤

RoA(s, c) is
the inverse of the function ⇠ ⇤

RoA(s, c) = ↵4 (�⇤ (⇠1(s, c), 0)) 2
K C 1 with respect to ⇠ ⇤

RoA’s first argument, the solutions satisfy
(57). Moreover, for all those initial conditions, the solutions verify
(12) for all ✓ � t0 � D (X1(t0)). ⇤

Proof of 1. Using (61) we get (17) with �(s, t) = ↵4 (�⇤(s, t)).
From (1), Assumption 1 and the Lipschitzness of X2 in [t0 �
D(X1(t0)), t0) guarantee the existence and uniqueness of X1 2
C1[t0, � (t0)) where � (t0) = t0 + D(X1(� (t0))). The target sys-
tem (21) and (22) guarantees the existence and uniqueness of
X1 2 C1(� (t0), 1), and (23) with the continuity of X2 at t0
guarantees that X1 2 C1[t0, 1). Using the fact that ⇧1 satis-
fies ⇧̇1 = f1(� (t),⇧1(t),(� (t),⇧1(t))+Z2(t))

1�rD(⇧1(t))f1(� (t),⇧1(t),(� (t),⇧1(t))+Z2(t))
for t � t0, the

local Lipschitzness of rD, relation (12) and Assumption 3 ( 2
C1 ([t0, 1) ⇥ Rn; R)) guarantee that ⇧1 2 C1(t0, 1). Using (23),
with the help of (22) and the fact that  2 C1 ([t0, 1) ⇥ Rn; R)
we get that X2 2 C1(t0, 1). Using Lemma 8 together with (47)
and (58) we get (18), (19) with any class K choice �⇤(c) �
�1
�
⇠̄c(c, c)

�
. ⇤

4. Example 1: application to cooling systems

In marine transportation of materials, the design of control
laws for the ship’s cooling system is of paramount importance
due to the significant potential of the cooling system in terms of
energy optimization [2]. In Fig. 2, we show a typical marine cooling
circuit with one consumer, denoted by C , and a Heat Exchanger.
We denote with Tin the input temperature towards the consumer,
i.e., the output temperature of the Heat Exchanger. Due to the
transportation time of the coolant (typically water) from the Heat
Exchanger to the consumer C , the actual input temperature Tin in
the consumer is delayed by H , namely, Tin(t � H). The delay time
H depends on the flow rate q2 which can be controlled through a
pump. In order to design a feedback law q2 we take into account
that the flow rate q2 has to be proportional to the temperature at
the other end of the consumer, which we denote with Tout. This
is because it makes sense to increase the flow rate if the outer
temperature of the consumer C is increasing. A simple choice is
q2 = k1Tin+k2. The control objective is to regulate the temperature
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Fig. 3. Response of the cooling model (63)–(64) with the predictor-based controller (65) (solid line) and in open-loop (dashed line).

Tout to a constant set-point, say Teq > 0. This is achieved by
controlling the flow rate q1 at the input of the Heat Exchanger
through a pump.

Denoting by Tout = X1, Tin = X2, q2 = k1X1 + k2, H = b
q2

= D
and q1 = U and by neglecting the effect of the hydraulics in
the system (since the hydraulic dynamics assumed to be much
faster than the heat dynamics [2]), the equations that describe the
thermodynamics of the cooling circuit of Fig. 2 are

Ẋ1(t) = a
✓
X1(t) � X2

✓
t � b

k1X1(t) + k2

◆◆

⇥ (k1X1(t) + k2) (63)

Ẋ2(t) = (k1X1(t) + k2) (X1(t) � X2(t)) � U(t), (64)

where a < 0, and b, k1, k2 > 0. Since the coolant flows only
in one direction q1 > 0, and hence U > 0. Since the coolant is
typically water, both Tout and Tin cannot fall below zero, and hence
X1, X2 > 0. In addition since the consumer always adds heat (due
to its functioning), Tout � Tin(t � H) and Tout � Tin, and hence
X1(t) � X2

⇣
t � b

k1X1+k2

⌘
� 0 and X1(t) � X2(t) � 0 for all

t � 0. Assumption 2 is satisfied (in the domain of interest) since X1
remains bounded because q2 = k1X1(t) + k2 � 0, which follows
form the fact that if q2 = 0 then Ẋ1(t) = 0 (so q2 cannot cross from
being positive to being negative). Assumption 1 is satisfied for all
X1 > 0 and Assumption 3 is satisfied since for q2 > 0, (63) is input-
to-state stable from the ‘‘disturbance’’w = X2

⇣
t � b

k1X1(t)+k2

⌘
.We

choose the control law  (X1) = X1 + c1
a

X1
k1X1+k2

, and hence, the
predictor-based control law for this system becomes

U(t) = (k1X1(t) + k2) (X1(t) � X2(t))

+ c2
✓
X2(t) � P1(t) � c1

a
P1(t) � Teq
k1P1(t) + k2

◆

�
0

B@1 + c1
ak1

Teq + k2
k1⇣

P1(t) + k2
k1

⌘2

1

CA

⇥ a (P1(t) � X2 (t)) (k1P1(t) + k2)
1 + bk1

(k1P1(t)+k2)2
a (P1(t) � X2 (t)) (k1P1(t) + k2)

, (65)

where P1(t) is defined in Box II. We choose the parameters of the
plant and of the controller as a = �1 and c1 = c2 = b = k1 =
k2 = 1 and the initial conditions as X1(0) = 1 and X2(✓) = 0.2
for all � b

k1X1(0)+k2
 ✓  0. We show in Fig. 3 the temperatures

Tout, Tin together with the input flow q1. We compare the response
of the systemwith the predictor-based controller (65) and with no
control. In the case of the open-loop response we observe that the
temperatures Tout, Tin converge to the same value but not at the
desired set-point. This is what one expects since the system has an
equilibrium at X1 = X2. In contrast, the predictor based controller
regulates the temperatures Tout, Tin at the desired set point Teq.

5. Example 2

We consider the system

ṡ(t) = v(t � r1 sin2 (!s(t))) (67)
v̇(t) = a(t), (68)

where the state variables are denoted with s and v and the con-
trol variable is denoted with a(t). This system has some resem-
blance with the model considered in [8] for the ‘‘soft’’ automatic
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P1(t) = X1(t) +
Z t

t� b
k1X1(t)+k2

a (P1(✓) � X2(✓)) (k1P1(✓) + k2)
1 + bk1

(k1P1(✓)+k2)2
a (P1(✓) � X2(✓)) (k1P1(✓) + k2)

d✓ . (66)

Box II.

Fig. 4. Response of system (67)–(68) with the controller (69)–(70) and initial conditions as s(0) = 1 and v(✓) = 0.1, for all �r1 sin2 (!s(0))  ✓  0.

landing. In view of condition (12) one should expect that global
stabilization is not achievable. This fact can be viewed in terms
of the system dynamics (67)–(68) and in particular from relation
v(t � r1 sin2 (!s(t))). Subsystem (67) is forward-complete from
v since it is linear, and the delay r1 sin2 (!s(t)) satisfies Assump-
tion 1. Hence, Theorem 1 applies. We choose the parameters of the
plant as r1 = 0.3 and ! = 15, the initial conditions of the plant
as s(0) = 1 and v(✓) = 0.1 for all �r1 sin2 (!s(0))  ✓  0 and
the parameters of the nominal controller as c1 = c2 = 0.5. The
predictor-based controller is given by

a(t) = �c2 (v(t) + c1P1(t))

� c1
v(t)

1 � r1! sin (!P1(t)) cos (!P1(t)) v (t)
, (69)

where for all t � r1 sin2 (!s(t))  ✓  t
P1(✓) = s(t)

+
Z ✓

t�r1 sin2(!s(t))

v (s) ds
1 � r1! sin (!P1(s)) cos (!P1(s)) v (s)

. (70)

The control signal reaches the state s at the time t⇤ which satisfies
0.3 sin2 (15(0.1t⇤ + 1)) = t⇤ = 0.0887. In Fig. 4, we show the
response of the system. As Theorem 1 predicts s(t), v(t) converge
to zero, whereas �(t) and � (t) remain increasing for all times.
From Fig. 4, we also observe that at the time instants where
0.3 sin2(15s(t1)) = 0 we have that �(t) = t = � (t). Moreover,

the peaks of the control signal a(t) occur at the time instantswhere
� (t) increases rapidly.

6. Conclusions

Although we consider plants with only state-dependent state
delay the results of this paper can be extended to the case of
simultaneous state-dependent input and state delays. The tools
that one has to use are the ones from the present paper and
from [31]. However, the stability analysis will be much more
involved: one has to satisfy not only one, but two (one for each
delay) feasibility conditions.

Since we obtain only regional results one may wonder if
the results of this paper can be applied to locally stabilizable
plants. The answer to this question is positive by applying similar
techniques to the ones from [32].
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