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non-linear systems afine in unknown parameters and control input. The 
cost functional incorporates penalty on the tracking error, control, and the 

terminal parameter error. 

Key Words-Inverse- optimality; adaptive tracking control: Lyapunov functions; backstepping; 
Sontag’s formula; transient performance. 

Abstract-We pose and solve an ‘inverse optimal’ adaptive 
tracking problem for non-linear systems with unknown 
parameters. A controller is said to be inverse optimal when it 
minimizes a meaningful cost functional that incorporates 
integral penalty on the tracking error state and the control, 
as well as a terminal penalty on the parameter estimation 
error. The basis of our method is an adaptive tracking control 
Lyupunou function (arc/f) the existence of which guarantees 
the solvability of the inverse optimal problem. The 
controllers designed in this paper are not of certainty- 
equivalence type. Even in the linear case they would not be a 
result of solving a Riccati equation for a given value of the 
parameter estimate. Our abandoning of the certainty- 
equivalence approach is motivated by the fact that, in 
general, this approach does not lead to optimality of the 
controller with respect to the overall plant-estimator system, 
even though both the estimator and the controller may be 
optimal as separate entities. Our controllers, instead, 
compensate for the effect of parameter adaptation transients 
in order to achieve optimality of the overall system. We 
combine inverse optimality with backstepping to design a 
new class of adaptive controllers for strict-feedback systems. 
These controllers solve a problem left open in the previous 
adaptive backstepping designs, i.e. obtaining transient 
performance bounds that include an estimate of control 
effort, which is the first such result in the adaptive control 
literature. @ZJ 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

Because of the burden that the Hamilton- 
Jacobi-Bellman (HJB) PDEs impose on the 
problem of optimal control of non-linear 
systems, the efforts made over the last few years 
in the control of non-linear systems with 
uncertainties (adaptive and robust) (see e.g. 
Krstic et al. (1995) and Marino and Tomei 
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(1995) and the references therein) have been 
focused on achieving stability rather than 
optimality. Recently, Freeman and Kokotovic 
(1996a, b) revived the interest in the optimal 
control problem by showing that the solvability 
of the (robust) stabilization problem implies the 
solvability of the (robust) inverse optimal control 
problem. Further extensive results on inverse 
optimal non-linear stabilization were presented 
by Sepulchre et al. (1997). 

The difference between the direct and the 
inverse optimal control problems is that the 
former seeks a controller that minimizes a giuen 
cost, while the latter is concerned with finding a 
controller that minimizes some ‘meaningful’ cost. 
In the inverse optimal approach, a controller is 
designed by using a control Lyapunov function 
(CLF) obtained by solving the stabilization 
problem. The CLF employed in the inverse 
optimal design is, in fact, a solution to the HJB 
PDE with a meaningful cost. 

In this paper we formulate and solve the 
inverse optimal adaptive trucking. problem for 
non-linear systems. We focus on the tracking 
rather than the (set-point) regulation problem 
because, even when a bound on the parametric 
uncertainty is known, tracking cannot (in 
general) be achieved using robust techniques- 
adaptation is necessary to achieve tracking. The 
cost functional in our inverse optimal problem 
includes integral penalty on both the tracking 
error state and control, as well as a penalty on 
the terminal value of the parameter estimation 
error. To solve the inverse optimal adaptive 
tracking problem we expand upon the concept of 
adaptive control Lyapunov functions (ACLFs) 
introduced in our earlier paper (Krstic and 
Kokotovic, 1995) and used it to solve the 
adaptive stabilization problem. 
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Previous efforts to design adaptive ‘linear- 
quadratic’ controllers (see e.g. Ioannou and Sun, 
1995) were based on the certainty equivalence 
principle: a parameter estimate computed on the 
basis of a gradient or least-squares update law is 
substituted into a control law based on a Riccati 
equation solved for that value of the parameter 
estimate. Even though both the estimator and 
the controller independently possess optimality 
properties, when combined they fail to exhibit 
optimality (and even stability becomes difficult 
to prove) because the controller ‘ignores’ the 
time-varying effect of adaptation. In contrast, the 
Lyapunov-based approach presented in this 
paper results in controllers that compensate for 
the effect of adaptation. 

A special class of systems for which we 
constructively solve the inverse optimal adaptive 
tracking problem in this paper are the parametric 
strict-feedback systems, a representative member 
of a broader class of systems dealt with in Krstic 
et al. (1995), which includes feedback lineariz- 
able systems and, in particular, linear systems. A 
number of adaptive designs for parametric 
strict-feedback systems are available; however, 
none of them is optimal. In this paper we present 
a new design which is optimal with respect to a 
meaningful cost. We also improve upon the 
existing transient performance results. The 
transient performance results achieved with the 
tuning functions design in KrstiC et al. (1995), 
even though the strongest such results in the 
adaptive control literature, still provide only 
performance estimates on the tracking error but 
not on control effort (the control is allowed to be 
large to achieve good tracking performance). 
The inverse optimal design in this paper solves 
the open problem of incorporating control effort 
in the performance bounds. 

The optimal adaptive control problem posed 
in the present paper is not entirely dissimilar 
from the problem posed in the award-winning 
paper by Didinsky and Basar (1994) and solved 
using their cost-to-come method. The difference 
is two-fold: (a) our approach does not require 
the inclusion of a noise term in the plant model 
in order to be able to design a parameter 
estimator; and (b), while Didinsky and Basar 
only go as far as to derive a Hamilton-Jacobi- 
Isaacs equation the solution of which would yield 
an optimal controller, we actually solve our HJB 
equation and obtain inverse optimal controllers 
for strict-feedback systems. A nice marriage of 
the work by Didinsky and Basar (1994) and the 
backstepping design in Krstic et al. (1995) was 
brought out in the paper by Pan and Basar 
(1996), who solved an adaptive disturbance 
attenuation problem for strict-feedback systems. 

Their cost, however, does not impose a penalty 
on control effort. 

This paper is organized as follows. In Section 
2, we pose the adaptive tracking problem 
(without optimality). The solution to this 
problem is given in Sections 3 and 4, which 
generalize the results of Krstic and KokotoviC 
(1995). Then, in Section 5 we pose and solve the 
inverse optimal problem for general non-linear 
systems, assuming the existence of an adaptive 
tracking control Lyapunov function (ATCLF). A 
constructive method for designing ATCLFs 
based on backstepping is presented in Section 6, 
and then used to solve the inverse optimal 
adaptive tracking control problem for strict- 
feedback systems in Section 7. A summary of 
the transient performance analysis is given in 
Section 8. 

2. PROBLEM STATEMENT: ADAPTIVE TRACKING 

We consider the problem of global tracking 
for systems of the form 

1= f(x) + F(x) 8 + g(x) U, 

Y = h(x), 
(1) 

where x E R”, u E R, the mappings f(x), F(X), 
g(x) and h(x) are smooth, and 8 is a constant 
unknown parameter vector which can take any 
value in Rp. To make tracking possible in the 
presence of an unknown parameter, we make 
the following key assumption: 

Assumption 1. For a given smooth function y,(t), 
there exist functions p(t, 0) and a$, 0) such 
that 

d&y 0) 
~ = f(p(t, 0)) + F(p(t, e))e 

dt 

+ g(P(t, e))ar(t, e), 
(2) 

y,(t) = qp(t, e)), vt 2 0, ve E w. 0 
Note that this implies that 

--$bp(t,8)=0, vt20,vedP. (3) 

For this reason, we can replace the objective of 
tracking the signal y,(t) = h 0 p(t, 0) by the 
objective of tracking y,(t) = h 0 p(t, 8(t)), where 
8(t) is a time function - an estimate of 8 
customary in adaptive control. 

Consider the signal x,(t) = p(t, 8(t)), which is 
governed by 

i 
r 

_ aP(t7 6) ; aP(t, 8) Q 

at ai9 

=f(xr) + WG) 6 + g(G) q.(t, 6) + 7 
ah, 6) Q 

. 

(4) 
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We define the tracking error e =x -x, = x - 
p(t, 4) and compute its derivative: 

t =f(x) -f(-%) + [g(x) - g(&)l%(~~ 8) + F(x) 0 
wt, 6) A - F(q) e - ___ &j EJ + g(x)[u - 49 @I 

=f+FtI+&$+gfi, (5) 

where 8 = 8 - fi and 

f(G e, @:=0x) -f(&) + [g(x) -&,)]a,(& h)P 

Qt, e, 8) := F(x) - F(x,), 

F,(f, 6) := F(x,), 
(6) 

E:=u - (Y,(t, 6). 

(With a slight abuse of notation, we will write 
g(x) also as g(t, e, d).) The global tracking 
problem is then transformed into the problem of 
global stabilization of the error system (5). This 
problem is, in general, not solvable with static 
feedback. This is obvious in the scalar case 
n =p = 1 where, even in the case yr(t) = 
xr(t) = 0, a control law u = (Y(X) independent of 
8 would have the impossible task to satisfy 
x[f(x) + F(x)8 + g(x)a(x)] < 0 for all x # 0 and 
all 8 E IR. Therefore, we seek dynamic feedback 
controllers to stabilize system (5) for all 8. 

Definition 1. The adaptive trucking problem for 
system (1) is solvable if Assumption 1 is satisfied 
and there exist a function E(t, e, 6) smooth on 
IR, x (R” \{O}) x IRP with 5 (t, 0, 6) = 0, a smooth 
function r(t, e, a), and a positive definite 
symmetric p X p matrix I, such that the dynamic 
controller 

ii = G((t, e, b), 

Q = I?r(t, e, e), 

guarantees that the equilibrium 
the system (5) is globally stable 

(7) 

(8) 

e=O, iJ=O of 
and e(t)+0 as 

t + 00 for any value of the unknown parameter 
8 E w. 0 

3. ADAPTIVE TRACKING AND ATCLFs 

Our approach is to replace the problem of 
adaptive stabilization of (5) by a problem of 
non-adaptive stabilization of a modified system. 
This allows us to study adaptive stabilization in 
the Sontag-Artstein framework of CLFs (Art- 
stein, 1983; Sontag, 1983, 1989). 

Definition 2. A smooth function V, : aB+ X Iw” X 

uP+Iw+, positive definite, decrescent, and 
proper (radially unbounded) in e (uniformly in t) 
for each 8, is called an adaptive trucking control 
Lyupunou function (ATCLF) for (1) (or, 

alternatively, an adaptive control Lyapunov 
function (ACLF) for (5)), if Assumption 1 is 
satisfied and there exists a positive definite 
symmetric matrix I E Rpxp such that for each 
0 E I?‘, V,(t, e, f3) is a CLF for the modified 
non-adaptive system: 

that is, V, satisfies 

In the sequel we will show that in order to 
achieve adaptive stabilization of (5) it is 
necessary and sufficient to achieve non-adaptive 
stabilization of (9). Noting that for a(t) = 0 the 
system (5) reduces to the non-adaptive system 

c; =f + Ee + gii, (11) 

and we see that the modification in (9) is 

m(~~-$r(~F)T. (12) 

Since these terms are present only when I is 
non-zero, the role of these terms is to account 
for the effect of adaptation. Since V,(t, e, 0) has 
a minimum at e = 0 for all t and 8, the 
modification terms vanish at the e = 0, so e = 0 is 
an equilibrium of (9). 

We now show how to design an adaptive 
controller (7)-(8) when an ATCLF is known. 

Theorem 1. The following two statements are 
equivalent: 

(i) There exists a triplet (&, V,, JJ) such that 
6 (t, e, 0) globally uniformly asymptotically 
stabilizes (9) at e = 0 for each 8 E IP with 
respect to the Lyapunov function V,(t, e, 0). 

(ii) There exists an ATCLF V,(t, e, f3) for (1). 

Moreover, if an ATCLF V,(t, e, 0) exists, then 
the adaptive tracking problem for (1) is solvable. 

0 

Proof. That (i) $ (ii) is obvious because (i) 
implies 
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that there exists a continuous function W :W+ X 

R” X W + R,, positive definite in e (uniformly 
in t) for each 0, such that 

:+z[f+Ee+Fr(%)= 

-zr (zFY+g&] ‘: -W(t, e, 0). (13) 

Thus V,(t, e, 0) is a CLF for (9) for each 8 E R?, 
and therefore it is an ATCLF for (1). 

The proof of (ii) j (i) is based on Sontag’s 
formula (Sontag, 1989). We assume that V, is an 
ATCLF for (l), that is, a CLF for (9). Sontag’s 
formula applied to (9) gives a control law 
smooth on II%+ X (UP \{O}) X UP: 

:g(t, e, e) = 0, 

(14) 

where 

T=P+Pe+m ($)=-$r(~F)=. (15) 

With the choice (14), inequality (13) is satisfied 
with the continuous function 

W(f, e, e) = 

I( 2 (t, e, e) + zf(t, e, e))l 

(16) 
which is positive definite in e (uniformly in t) for 
each 0, because (10) implies that 

zg(t,e, e)=Oj:(t,e, e) 

+ zf(t, e, e) < 0, ‘de # 0, t 2 0. (17) 

We note that the control law &(r, e, fI), which is 
smooth away from e = 0, will be also continuous 
at e = 0 if and only if the ATCLF V, satisfies 
the following property, called the small control 
property (Sontag, 1989): for each 0 E R’ and for 
any E>O there is a S>O such that, if e#O 

satisfies lels S, then there is some i? with Ial 5 E 
such that 

for all t Z 0. 
Assuming the existence of an ATCLF, we now 

show that the adaptive tracking problem for (1) 
is solvable. Since (ii)+(i), there exists a triple 
(ti, V,, r) and a function W such that (13) is 
satisfied. Consider the Lyapunov function 
candidate 

V(t, e, 8) = V,(t, e, 4) + $(e - iQTrl(e - 8). 

(19) 

With the help of (13), the derivative of V along 
the solutions of (5), (7) and (8), is 

P=?+z f+Ee+@ 
[ 

- J rk(t, e, 6) + g& (t, e, 4) 
1 

+ av, 
3 rr(t, e, 8) - 6’z(t, e, 19) 

av, av, - 
=y+----Lf+PB+gE(t,e,B)] 

s-W(t,e,d)-%I’ 
T 

T av,ap ----rr 

+eT (20) 

Choosing 

z(t, e, 6) = (2 F(t, e, d))q (21) 

we get 

3 I - W(t, e, 8). (22) 

Thus the equilibrium e = 0, 8 = 0 of (5), (7) and 
(8) is globally stable and, by LaSalle’s theorem, 
e(t)+0 as t+ 03. By Definition 1, the adaptive 
tracking problem for (1) is solvable. Cl 

The adaptive controller constructed in the 
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proof of Theorem 1 consists of a control law 
fi = E((t, e, 6) given by (14), and an update law 
6 = I’r(t, e, 8) with (21). The control law 
E((r, e, 0) is stabilizing for the modified system 
(9), but may not be stabilizing for the original 
system (5). However, as the proof of Theorem 1 
shows, its certainty equivalence form ii!(t, e, 8) is 
an adaptive globally stabilizing control law for 
the original system (5). The modified system 
‘anticipates’ parameter estimation transients, 
which results in incorporating the tuning function 
z in the control law cji. Indeed, the formula (14) 
for & depends on r via 

( av, av,ap T 
+r~r %--- 

ae ae 1 
, (23) 

which is obtained by combining (15) and (21). 
Using (21) to rewrite the inequality (13) as 

$+2[f+Ee+ga(t,e, e)] 

+ 3 - :$)Ir(l, e, 0) 5 - W(r, e, e), (24) 

it is not difficult to see that the control law (14) 
containing (23) prevents r from destroying the 
non-positivity of the Lyapunov derivative. 

Example 1. Consider the problem of designing 
an adaptive tracking controller for the system: 

i,=u, (25) 

y =x1. 

In light of (l), f(x) = [x2, OIT, F(x) = [cp(x,), OIT 
and g(x) = [0, 11’. For any given C2 function 
y,(t), the function p(r, 0) = [p,(t), p2(r, t9)]’ is 
given by ~4) = ~4) and ~~(6 0) = J$) - 

rp(y,)TB, and the reference input is (~~(t, 0) = 
jr(t) - [acp(y,)Tlay,] @$(t). Hence Assumption 1 
is satisfied. 

With the signal x,(r) = p(t, 8) and the tracking 
error e =x - x,, we get the error system 

t,=e2+ $e+$& 

ap2 A i2=ii--;_e, 
ae 

(26) 

where 9 = cp(xd - &,d, cp, = P(G) = 4~~) and 
ii = u - (Y,. The modified non-adaptive error 

svstem is , 
T 

t,=e2+@Te+tpTr 3 , ( > 
ap2 av, 

tz=lI--r ----VT . ( 1 T 
(27) 

80 1 

The control law 

a = 6 (t, e, e) 

(28) 
where z, = e,, z2 = clel + e2 + qTe, and cl, 
c2 > 0, globally uniformly asymptotically stabil- 
izes (27) at e = 0 with respect to V, = l(z: + 2;) 
with W(t, e, 0) = c,zf + c,z’,. By Theorem 1, the 
adaptive tracking problem for (25) is solved with 
the control law fi = E(r, e, 6) and the update law 

6 = I’z(t, e, 6) = rcp(t, e, 6) 1 Z. (29) 

cl 

As is always the case in adaptive control, in 
the proof of Theorem 1 we used a Lyapunov 
function V(t, e, 6) given by (19), which is 
quadratic in the parameter error 8 - 6. The 
quadratic form is suggested by the linear 
dependence of (5) on 8, and the fact that 8 
cannot be used for feedback. We will now show 
that the quadratic form of (19) is both necessary 
and sufficient for the existence of an ATCLF. 

Definition 3. The adaptive quadratic tracking 
problem for (1) is solvable if the adaptive 
tracking problem for (1) is solvable and, in 
addition, there exist a smooth function V,(t, e, 0) 
positive definite, decrescent, and proper in e 
(uniformly in t) for each 8, and a continuous 
function W(t, e, 0) positive definite in e 
(uniformly in t) for each 8, such that the 
derivative of (19) along the solutions of (5), (7) 
and (8) is given by (22). 

Corollary 1. The adaptive quadratic tracking 
problem for the system (1) is solvable if and only 
if there exists an ATCLF V,(t, e, 0). 

Proof The ‘if part is contained in the proof of 
Theorem 1 where the Lyapunov function 
V(f, e, 6) is in the form (19). To prove the ‘only 
if part, we start by assuming global adaptive 
quadratic stabilizability of (5), and first show that 
r(t, e, 8) must be given by (21). The derivative of 
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V along the solutions of (5), (7) and (g), given by control law G(t, e, 0). Define 5 = 5 - a,(r, 6) and 
(20), is rewritten as consider the system 

P =f(f, e, 6) + F(t, e, 8)0 + F,(t, 6)8 

V,(t, e, 8, e) = V,(t, e, e) + 4[$ - E(t, e, e)]2 (35) 

(30) is an ATCLF for the augmented system (33) by 

This expression has to be non-positive to satisfy 
showing that it is a CLF for the modified 

(22). Since it is affine in 0, it can be non-positive 
non-adaptive system: 

for all 6 E R?’ only if the last term is zero, that is, 
only if z is defined as in (21). Then, it is 

t=J;+Fe+Fr --$ (dVy-$r($F)T+g$, 

straightforward to verify that 

2+2 
T 

$!=a _!%r(!$F)T. (36) 

We present a constructive proof which shows 

-Sr(zF)T+g&] 

that the control law 

ii = G,(f, e, 5, 8) 

= Fi+ (fiT-%$)[,- (-$F)‘] 
aa av, 

=-c(c$-n)+-y--g+ $(f +Ee+g& 

5 - W(t, e, 8), (31) 

for all (1, e, 6) E R, x R?‘. By (132) in 

+(i!$+z-!!!?I!?)(!!.!$~) 

Theorem 1, V,(t, e, 0) is an ATCLF for (1). 0 av, av,ap ait T z---r SF , c>o, 
ae ae >( > (37) 

satisfies 
4. ADAPTIVE BACKSTEPPING 

With Theorem 1, the problem of adaptive av,+- av, 
stabilization is reduced to the problem of finding at a@, 8) 
an ATCLF. This problem is solved recursively 
via backstepping. 

f+Fe+~rf-f$-$r(~F)~+g~ 
X 

Lemma 1. If the adaptive quadratic tracking [ 
El(r, e, 8, e) - $I( 5 F)T 1 

problem for the system r-W-c(&Ti)*. (38) 

i =f(x) + F(x) 8 + g(x) u, 
(32) 

Let us start by introducing, for brevity, a new 

Y = h(x) error state z = 5 - E(t, e, 0). With (35) we 

is solvable with a C’ control law, then the 
compute 

adaptive quadratic tracking problem for the av,+- av, f+Fe+gk 

augmented system at [ a@, 8 W, e, F, 0) I 
1= f(x) + F(x) 8 + g(x) c$ 

av, a6 

t= u, (33) 

=-$-zx+ ( ~-z~)(f+Pe+g~) 

Y = h(x) 
av, 

is also solvable. 
+P’ 
aV, av, - 

=dt+de(f+Ee+g6) 

(34) 

where ii = u - a,,(& 6) and a,l(f, 6) = 
&z,(r, 6)/&. We will now show that 

Proof. Since the adaptive quadratic tracking 
problem for the system (32) is solvable, by 
Corollary 1 there exists an ATCLF V,(t, e, 0) for 
(32), and by Theorem 1 it satisfies (13) with a 

a6 av, 
+z G1-dt+ [ 

aeg - z (f + Pe + &I. 
(39) \ 1 
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On the other hand, in view of (35), we have 

(40) 

Adding (39) and (40), with (13) and (37) we get 
(38). This proves by Theorem 1 that V,(t, e, z, 0) 
is an ATCLF for system (33), or, an ACLF for 
(34) and, by Corollary 1, the adaptive quadratic 
tracking problem for this system is solvable. 

The new tuning function is determined by the 
new ATCLF V, and given by 

= 

= r(t, e, 0) - (2 F)T($ - 6). (41) 

The control law &,(t, e, I, 0) in (37) is only 
one out of many possible control laws. Once we 
have shown that 6 given by (35) is an ATCLF 
for (33), or, an ACLF for (34), we can use, for 
example, the Co control law G, given by Sontag’s 
formula (14). 

Example 2 (Example 1 continued). Let us 
consider the system: 

i, =x2+ p(xl)Te, 

&=x3, 

f, = u, 
(42) 

y=x,. 

We treat the state xg as an integrator added to 
the (x1, x2) subsystem for Example 1, so Lemma 
1 is applicable. Defining z3 = f3 - & (r, e, e), 
where f3 =x3 - (Y,, by Lemma 1 the function 

V,(t, e, ff3, 0) = $(zf + z: + z$ is an ATCLF for 
the system (42). With (37) and (41) we obtain 

d = G,(t, e, 5, e) 

(43) 

z,:= rl(t,e,f3, e) = z - $ (pz3. (W 
1 

The actual control is u = c + cr,r, where 

0 

A repeated application of Lemma 1 (general- 
ized as in KrstiC et al. (1995, page 138) to the 
case where t = u + 4(x, l)‘e) recovers our 
earlier result (KrstiC et al., 1992). 

Corollary 2 (KrstiC et al., 1992). The adaptive 
quadratic tracking problem for the following 
system is solvable: 

f,= Xi+1 + (Pi(XI,...,X;)Te, i = 1,. . . ) n - 1 

in=~+~n(~,,...,Xn)Te (45) 

y=x,. 
0 

5. INVERSE OPTIMAL ADAPTIVE TRACKING 

While in the previous sections our objective 
was only to achieve adaptive tracking, in this 
section our objective is to achieve its optimality 
in a certain sense. 

Definition 4. The inverse optimal adaptive 
tracking problem for system (1) is solvable if 
there exist a positive constant /3, a positive 
real-valued function r(t, e, 8), a real-valued 
function I(r, e, 0) positive definite in e for each 8, 
and a dynamic feedback law ((7) and (8)) which 
solves the adaptive quadratic tracking problem 
and also minimizes the cost functional 

+ 
I 
x [l(t, e, 8) + r(t, e, e)ii:‘] dt, (46) 
0 

for any 8 E ITip. El 
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This definition of optimality puts penalty on e 
and 6 as well as on the terminal value of (6 I. 
Even though e(t) is not guaranteed to have a 
limit in the general tracking case (it is 
guaranteed to have a limit in the case of 
set-point regulation (KrstiC, 1996; Li and KrstiC, 
1996)), the existence of lim,,, 181$-1 is ensured 
by the assumption that the adaptive quadratic 
tracking problem is solvable. This can be seen by 
noting that, since V(t) 20, and from (22) V(t) is 
non-increasing, V(t) has a limit. Since (22) 
guarantees that V,(t)+O, it follows from (19) 
that 181”,-1 has a limit. The absence of an integral 
penalty on 8 in (46) should not be surprising, 
because adaptive feedback systems, in general, 
do not guarantee parameter convergence to a 
true value. 

Theorem 2. Suppose there exists an ATCLF 
V,(t, e, 0) for (1) and a control law u’ = &((t, e, 0) 
that stabilizes the system 

F 
+ gii (47) 

has the form 

E(t, e, 0) = -r-‘(t, e, 8) zg, (48) 

where r(t, e, 6) > 0 for all t, e and 0. Then: 

(i) The non-adaptive control law 

12 = z *(f, e, 0) = p& (t, e, e), p zf 2, (49) 

minimizes the cost functional 

J, = 
I 

r [r(t, e, 6) + r(t, e, e)S’] dr, 
0 

vedw (50) 

along. the solutions of the non-adaptive 
system (47), where 

2(&e, e)= -2p[f$+$(T+gq] 

+ /I@ - 2)r-’ ($g)*. (51) 

(ii) The inverse optimal adaptive tracking 
problem is solvable. cl 

Proof. (Part 1). In light of (13), we have 

l(t, e, e) = -2p[ 2 + z (7 + ~a?)] 

+ p(p - 2)r-‘( :g)* 

2 2pW(r, e, e) 

+ P(P - 2)r-*( 2 g)*. (52) 

Since p 12, r(t, e, 0) ~0, and W(t, e, 0) is 
positive definite, l(t, e, 0) is also positive definite. 
Therefore J, defined in (50) is a meaningful cost 
functional, which puts a penalty on both e and G. 
Substituting 1(t, e, 0) and 

(53) 

into J,, we get 

J, = 

-2pv:g+P’r-’ dt 

I I 

r 
= -2p dt+ rv* dt 

0 

=-2/3$dV,+$ru*dr 

= 2/X(0, e(O), d(O)) 

-2j3 !5i1 V,(t, e(t), 6(t)) + 6 ru* dt. (54) 

Since the control input u’(t) solves the adaptive 
quadratic tracking problem, lim,_, e(t) = 0, and 
we have that lim,,, V,(t, e(t), 8(t)) = 0. There- 
fore, the minimum of (54) is reached only if 
u = 0, and hence the control fi = a*(~, e, 0) is an 
optimal control. 

(Part 2). Since there exists an ATCLF V, for 
(1) the adaptive quadratic tracking problem is 
solvable. Next, we show that the dynamic control 
law 

G = &*(t, e, 8), (55) 

(56) 

minimizes the cost functional (46). The choice of 
the update law (56) is due to the requirement 
that (55) and (56) solve the adaptive quadratic 
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tracking problem (see the proof of Corollary 1). 
Substituting r(t, e, 8) and 

u = ii + pr-’ --g (57) 

into J, along the solutions of (5) and (56) we get 

-Z/3(%- i?‘r-+(:F) 

2+rv2-2pv~g 

+ p’r-’ 

= p lim l8(‘,-! - 2p r d(Va + @Tr-‘e) 
I-+% 0 

I 
r 

+ ru2 dt 

= 2@b0(0, e(O), e(O)) + p lt?(O)l’,-~ 

- 2p hrir V,(t, e(t), 6(t)) + [ ru2 dr. (58) 

Again, since ii(t) solves the adaptive quadratic 
tracking problem, lim,,, e(f) = 0, and we have 
that lim,,, V,(t, e(f), e(t)) = 0. Therefore, the 
minimum of (58) is reached only if u = 0 and 
thus the control ii = 5 *(t, e, 8) minimizes the 
cost functional (46). 0 

Remark 1. Even though not explicit in the proof 
of the above theorem, the ATCLF V,(t, e, 19) 
solves the following family of HJB equations 
parametrized in p 2 2: 

P x 
- 2r(t, e, 19) Zg ( > ’ + ltt, e, 0) 

p=o. (59) 
2P 

The underbraced terms represent the ‘non- 
certainty-equivalence’ part of this HJB equation. 

Their role is to take into account the 
time-varying effect of parameter adaptation and 
make the control law optimal in the presence of 
an update law. 0 

Remark 2. The freedom in selecting the 
parameter p 2 2 in the control law (49) means 
that the inverse optimal adaptive controller has 
an infinite gain margin. 0 

Example 3. Consider the scalar linear system 

i = u + ex, 

y = x. 

For simplicity, we focus on the regulation case, 
y,(t) = 0. Since the system is scalar, V, = $xX2, 
LgVo = x and L+‘, =x20. We choose the control 
law based on Sontag’s formula 

U, = -x(e + m) = -2r-‘(8)x, (61) 

where 

r(f3) = 
2 

e+ViGi > 0, ve. (62) 

The control u,/2 is stabilizing for the system (60) 
because 

ri, l*t,/Z = - g-e + G%i)x2. (63) 

By Theorem 2, the control U, is optimal with 
respect to the cost functional 

J,, = 
I 

X [1(x, 0) + ru’] dt = 2 ,^ e $& dt, 
0 I 

with a value function J,*(x) = 2x2. Meanwhile, 
the dynamic control 

U, = -x(8 + GGi), (65) 
6 =x2, (66) 

is optimal with respect to the cost functional 

.I=2[B-8(r)]2+2[8;2;&df, (67) 

with a value function J*(x, 8) = 2[x2 + (0 - a)“]. 
We point out that 8(m) exists both due to the 

scalar (in parameter 0) nature of the problem 
and because it is a problem of regulation (Krstic, 
1996). Note that, even though the penalty 
coefficient on x and u in (67) varies with 8(t), the 
penalty coefficient is always positive and finite. 

q 

Remark 3. The control law (61) is, in fact, a 
linear quadratic regulator (LQR) for the system 
(60) when the parameter 8 is known. The control 
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law can be also written as u, = -p( 6) X, where 
p(8) is the solution of the Riccati equation 

p2-2ep-l=o. (68) 

It is of interest to compare the approach in our 
paper with the ‘adaptive LQR scheme’ for linear 
systems given in Ioannou and Sun (1995, Section 
7.4.4): 

Even though both methodologies result in the 
same control law (61) for the scalar linear 
system in Example 3, they employ different 
update laws. The gradient update law in 
Ioannou and Sun (1995, Section 7.4.4) is 
optimal with respect to an (instantaneous) cost 
on an estimation error; however, when its 
estimates a(t) are substituted into the control 
law (65), this control law is not (guaranteed to 
be) optimal for the overall system. (Even its 
proof of stability is a non-trivial matter!) In 
contrast, the update law (66) guarantees 
optimality of the control law (65) for the 
overall system with respect to the meaningful 
cost (67). 

The true difference between the approach in 
our paper and the adaptive LQR scheme in 
Ioannou and Sun (1995, Section 7.4.4) arises 
for systems of higher order. Then the 
underbraced non-certainty-equivalence terms 
in (59) start to play a significant role. The 
certainty-equivalence approach in Ioannou 
and Sun (1995) would be to set I = 0 in the 
HJB (Riccati - for linear systems) equation 
(59) and combine the resulting control law 
with a gradient or least-squares update law. 
The optimality of the non-adaptive controller 
would be lost in the presence of adaptation 
due to the time-varying 8(t). In contrast, a 
solution to (59) with I > 0 would lead to 
optimality with respect to (46). 0 

Corollary 3. If there exists an ATCLF V,(t, e, 0) 
for (l), then the inverse optimal adaptive 
tracking problem is solvable. 

Proof Consider the Sontag-type control law 
u, = &(t, e, e), where G((t, e, 6) is defined by 
(14). The control law ii,/2 = $(f, e, 0) is an 
asymptotic stabilizing controller for system (9) 
because inequality (13) is satisfied with 

+ dm; (69) 

which is positive definite in e (uniformly in t) for 
each 0, since (aV,/&) + (aV,/ae)f < 0 whenever 

(aV/ae)g = 0, e # 0 and c 20. Since @((t, e, 0) is 
of the form @(t, e, 0) = -r-‘(dV,/ae)g with 
r(t, e, 0) > 0 given by 

r(f, e, e) = 

any positive real number, 
w 
;g=O, 

(70) 

by Theorem 2 the inverse optimal adaptive 
tracking problem is solvable. The optimal 
control is the formula (14) itself. El 

Corollary 4. The inverse optimal adaptive 
tracking problem for the following system is 
solvable: 

fi =Xj+l + Cpi(Xr, . . . , Xi)T& i = 1, . . . , tl - 1, 

1, = u + CP,(X,, . . . , x,)Te, (71) 
y=x,. 

Proof. By Corollary 2 and Corollary 1, there 
exists an ATCLF V,(r, e, t9) for (71). It then 
follows from Corollary 3 that the inverse optimal 
adaptive tracking problem for system (71) is 
solvable. 0 

6. INVERSE OPTIMALITY VIA BACKSTEPPING 

With Theorem 2, the problem of inverse 
optimal adaptive tracking is reduced to the 
problem of finding an ATCLF. However, the 
control law (14) based on Sontag’s formula is not 
guaranteed to be smooth at the origin. In this 
section we develop controllers based on 
backstepping which are smooth everywhere, and 
hence can be employed in a recursive design. 

Lemma 2. If the adaptive quadratic tracking 
problem for the system 

i= f (x) + F(X) 8 + g(x) u (72) 

Y = h(x) 
is solvable with a smooth control law G(?, e, e), 
and (13) is satisfied with W(f, e, 0) = 
eTfi(f, e, e)e, where a(?, e, 0) is positive definite 
and symmetric for all t, e and 8; then the inverse 
optimal adaptive tracking problem for the 
augmented system 

1 =f (4 + F(X) 8 + g(x) 6, 

(=u 

Y = h(x) 

(73) 
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is also solvable with a smooth control law. Cl 

Proof Since the adaptive quadratic tracking 
problem for the system (72) is solvable, by 
Lemma 1 and Corollary 1, V, (t, e, 4, 8) = 
V,(r, e, 0) + $[z - C(t, e, t3)]’ is an ATCLF 
for the augmented system (73), i.e. a CLF for the 
modified non-adaptive error system (36). Adding 
(39) and (40), with (13), we get 

. av, av, 
’ = TL + a(e, z) 

[ 

f+FB+Fr(!-$)T-$r(~F)7+g~ 
X 

+- av,F ( > 
T 

ae 1 
[ 

a6 av, s-w+z “-~+---g 

-~[f+Pe+g@ +z)] 

(74) 

where z = 8 - G((t, e, 0). To render ri, negative 
definite, one choice is (37), which cancels all the 
non-linear terms inside the bracket in (74). 
However, the cancellation controller (37) is not 
(guaranteed to be) optimal. Therefore, we have 
to use other techniques in the design of our 
control law. One such technique we will use here 
is ‘non-linear damping’ (KrstiC et al., 1995). 

Since &, a&/at, f, F, aV,lae and aV,lM are 
smooth and vanish for e = 0, then we can write 

aii av, a6 _ 
-;+----g---(f+Pe+gB) 

= Yl(t, e, *)’ iZ(t, e, 19)“~ e, (75) 

where Y,(t, e, 0) is a vector-valued smooth 
function and Q(t, e, O)ln is invertible for all t, e 
and 8. In addition, let us denote 

ab 
-Tg+ ( !?$+ f$ fEE)r(~F) 

= YQt, e, 0). (76) 

Then (74) is re-written as 

ri, 5 -IQ”‘eI” + zfi + zY,R”*e + Y2z2. (77) 

The choice 

ii=cTil(t,e,z,O)= - ( P&l2 y: 
c+-j--+z z, 

> 

renders 

c>O, (78) 

(79) 

Since the control law ii = 5, defined in (78) is of 
the form 

av, 0 
fS,(t, e, 4, *) = -R-‘(t, e, $, *) - 

[I a@, $1 1 ’ (80) 

where 

R-‘(t,e,z, f3)= 
( 

: 
c+v+f)>O, 

by Theorem 2, the dynamic feedback control 
(adaptive control) zZ* = PG1(t, e, 2, b), /3 2 2, 
with 

6 = Ir,(t, e, 5, 4) = I( 2 F(t, e, $, a))‘r, (82) 

is optimal for the closed-loop tracking error 
system (34) and (82). 0 

Example 4 (Example 2 revisited). For the system 
(42), we designed a controller (43) which is not 
optimal due to its cancellation property. With 
Lemma 2, we can design an optimal control as 
follows. First we note that 6 given by (28) in 
Example 1 is of the form 

=- 
[ 
l+dr~-(C,+~e)c,+f$e]z, 

-[c2+(c,+~e)(l+(pTrP)]z2 

:= a(& e, e)z, + b(t, e, e)z,, (83) 

because+ = cp(xd - CP(G) = de1 +-G) - CP(G) = 
e,4(e,) and a$lat = z,(a+/at). Instead of (43) 
we choose the ‘non-linear damping’ control 
suggested by Lemma 2: 

fi = E,(t, e, z, 0) 
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The tuning function r1 is the same as in - _ 

(84) 

(44). 
The control law ti* = pii; 1(t, e, 5, G), j? 2 2, with 
6 = Tz, is optimal. q 

7. DESIGN FOR STRICT-FEEDBACK SYSTEMS 

We now consider the parametric strict-feed- 
back systems (KrstiE et al., 1995): 

ir =Xi+r + (pi(zi)T8, i = 1, . . . , It - 1, 

in = u + (p,(X)Te (85) 

Y =x1, 

where we use the compact notation Xi = 

(%9 * * . , Xi), and develop a procedure for optimal 
adaptive tracking of a given signal y,(t). An 
inverse optimal design following from Corollary 
4 (based on Sontag’s formula) would be 
non-smooth at e = 0. In this section we develop a 
design which is smooth everywhere. This design 
is also different from the non-optimal design in 
KrstiC et al. (1992, 1995). 

For the class of systems (85), assumption 1 
is satisfied for any function yr(t), and there 
exist functions p,(t), p2(t, O), . . . , pn(t, e), and 
a,(& e) such that 

pi = pi+, + 4pi(jii)Te, i = 1, . . . , n - 1, 

tin = a,(f, 0) + (Pn(P)Te, (86) 

y,(t) = P10). 

Consider the signal n,(t) = p(t, a), which is 
governed by 

xri = xr,i+ 1 i = 1,. . . , n - 1, 

f, = a,(t, 6) + Qrn(XJT8 + % 9, (87) 

yr=xr1* 

The tracking error e =x - x, is governed by the 
system 

ti = ei+r + +i(tp l?ip b)‘e + cP,i(t, 6)‘8 - 3 Q, 

i = 1,. . . , n - 1, 

i, = a + @Jt, e, 6)‘e + cp,(r, i3)TG - $6, (88) 

where ii = u - a,(t, 6) and & = pi(zi) - yD,i(X;i), 
i=l,..., n. For an ATCLF V,, the modified 
non-adaptive error system is 

where F = [VT,. . . , cpaT. 
First, we search for an ATCLF for the system 

(85). Repeated application of Lemma 1 gives an 
ATCLF 

v, = $ i zf, 
i=l 

Zi = ei - ~2~_~(f, I?_,, e), 
(99 

where the tii terms are to be determined. For 
notational convenience we define zo:=O and 
60:=0. We then have 

(91) 

=j$ wjZj, (92) 

where 

i-1 a&__, 

“‘j(& 6, e) = 'pi - kz, J& Qk- (93) 
k 

Therefore, the modified non-adaptive error 
system (89) becomes 

R a&._, 
ii = ei+l + @:e - I?, ae TQiZj - 

i = 1,. . . , II - 1, 

n a6._, 
~n=6++~e-~--LrQnzj_ 

j=1 ae s 3 rwizj. 
(94) 

The functions E,, . . . , &_, are yet to be 
determined to make V, defined in (90) a CLF 
for system (94). To design these functions, we 
apply the backstepping technique as in KrstiE et 
al. (1995). We perform cancellations at all the 
steps before step n. At the final step n, we 
depart from KrstiC et al. (1995) and choose the 
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actual control ti in a form which, according to 
Lemma 2, is inverse optimal. 

Step i = 1, . . . , n - 1. 

&j(t, i$, 0) = -Zi_l - Cjti + ek+l 

i-l 

Ci >O, (95) 

(96) 

(97) 

Step n. With the help of Lemma Al in the 
Appendix, the derivative of V, is 

n-l 

ri, = - c Ckt: 
k=l 

n-l 

i&l + c (ok,, + g,,k)Zk + g~nnZn + a 

k=l 

We are now at the position to choose the actual 
control LX We may choose u’ such that all the 
terms inside the bracket are cancelled and the 
bracketed term multiplying z,, is equal to -c,zi, 
as in KrstiC et al. (1995), but the controller 
designed in that way is not guaranteed to be 
inverse optimal. To design a controller which is 
inverse optimal, according to Theorem 2, we 
should choose a control law of the form 

E = &;,(t, e, 0) = -r-Q e, 0) $g, (99) 

where r(t, e, 0) > 0, tit, e, 8. In light of (94) and 
(90), (99) simplifies to 

G = si,(t, e, e) = --r-‘(t, e, e)z,, (1W 
i.e. we must choose 15~ with z, as a factor. 

Since ek+l = zk+r + 6k (k = I, . . . , n - I), and 
the expression in the second line in (98) vanishes 
at e = 0, it is easy to see that it also vanishes for 
z = 0. Therefore, there exist smooth functions & 
(k=l,..., n) such that 

Thus (98) becomes 
(101) 

n-1 

ti = - c ckz: + z,,ti + i z,,@‘kzk, (102) 
k=l k=l 

where 

Qk = uk, + u,,k + 4k, k = 1, . . . , n - 2, 

R-1 = 1+ U”n-l.n + un.n-1 + d&l, (103) 

%=u,,+h. 

A control law of the form (100) with 

results in 
Vt, e, 0, W) 

By Theorem 2, the inverse optimal adaptive 
tracking problem is solved through the dynamic 
feedback control (adaptive control) law: 

il = Gi,*(t, e, b) = 2&,(t, e, 4), 

9=r 
( 1 
~~ T=ri: W,Zj. 

(106) 

j=l 

In this 

8. TRANSIENT PERFORMANCE 

brief section, we give an _Y2 bound on 
the error state z and control G for the inverse 
optimal adaptive controller designed in Section 
7. According to Theorem 2, the control law (106) 
is optimal with respect to the cost functional 

n +z 
k=l 

L 

-2 u 
dt 

(107) 

with a value function 

J* = 2 le - 19l& + 2 1~1~. WV 

In particular, we have the following Z2 
performance result. 

Theorem 3. In the adaptive system 
(106), the following inequality holds; 

5 le(o)l;-l + lz(0)12. 

(88) and 

1 

J dt 

(109) 
Cl 

This theorem presents the first performance 
bound in the adaptive control literature that 
includes an estimate of control efort. 

The bound (109) depends on z(O), which is 
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dependent on the design parameters cl, . . . , c,, 
and I. To eliminate this dependency and allow a 
systematic improvement of the bound on llzl12, 
we employ trajectory initialization as in Krstic et 
al. (1995, section 4.3.2) to set z(0) = 0 and obtain 

9. CONCLUSIONS 

In this paper we have shown that the 
solvability of the inverse optimal adaptive 
control problem for a given system is implied by 
the solvability of the HJB (non-adaptive) 
equation for a modified system. Our results can 
be readily extended to the multi-input case and 
the case where the input vector field depends on 
the unknown parameter. 

In constructing an inverse optimal adaptive 
controller for strict-feedback systems, we 
followed the simplest path of using an ATCLF 
designed by the tuning functions method in 
KrstiC et al. (1995). Numerous other (possibly 
better) choice are possible, including an inverse 
optimal adaptive design at each step of 
backstepping. The relative merit of different 
approaches is yet to be established. 
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APPENDIX: A TECHNICAL LEMMA 

Lemma Al. The time derivative of VU in (90) along the 
solutions of system (94) with (95)-(97) is given by 

n-1 
2,-l + c (Ukm + U&)Zk + U”“Z” + ii 

k=l 

Proof: First we prove that the closed-loop system after i 

. R-1 Eli 
zz.i-I “Zi 

1 + 7r_z,i_, G2.i 

steps is 

I [ 
(~4.2) 

and the resulting c is 

where 

V= - i ckz:+z;z,+I + 2 Z, i XkjZkt 

%FWi 
%k = - a0 (A-5) 

(A.3) 
k=, ,=i+l k=l 

tik = - ($_;p%.$3)~_. (A.6) 

=,k = %k + tik (A.4) The proof is by induction. 
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Step 1: Substituting d, = -c,z, - @TO into (94) with i = 1, 
using (90) and noting do = 0 and apI/ = 0, we get 

n 
ad. 

i,=-clz,+zz-~z.~rw, 
j=, I ae 

= -C,Z, +  Z2 - K12Z3 -. . . - Xl,Z,, (A-7) 

and 

P, = -c,z: + z,z* - i z 
,=, ’ 

=rw,t, 
a@ 

= -c,ZT + ZlZ* -2 Z,nljZI, (A4 

which shows that (A.2) and (A.3) are true for i = 1. 
Assume that (A.2) and (A.3) are true for i - 1, that is, 

il 

[- ii-1 

and 

r 
I = 

--Cl 1 +x12 x13 . KI,t-2 Kl.r-I 

-1 - x,2 -c2 1 + x23 . . . x2.1 -2 q-l 

-x13 -1 - K23 

1 + IE,12.;_* 7b2.;-1 

-&J-2 -7t2,j_2 . -1 - nj_3.;_2 -ci-2 1 + 7ri-2,j_, 

-Q-l ,-RrJ_, . -GT,i-I -1 -I&2.,__, -c;-, 

t 

r R.i Ic,.i+, ... ~1, 

nZ.i %.r+l ... K2n 
. 

xi-2.i xi-2.,+, . c-2.” 

L1+ 4-1.: xi-,.i+, . . . Cl,, 

z, I[:] . ) 

G 

J 

i-l 

~-l=-~ ck.?~+z;-1zj+~zj’~ IF*,&. (A.lO) 
k==, j=i k=, 

The zi subsystem is given by 

* ad. 
ii = Zi+, + iii + ge - c I--1 TcpiZj - i * rwjzj 

j=, af3 j=l ae 

ad-_ 
-~-~,~(ek+l+I:e-~~r~kZj 

-s $frwjZj) 

= zi+, + bi - 
ac._ *-~,~~k+,+fi~e+$~ijzj 

(A.11) 

The derivative of v = V,_, + $zf is calculated as 

i-l n i-l 
i; = - c c,& + zizi+, + 2 Zj x %kjZk + 2 ZjzijZi 

k=, j=i+, k=, j=i+, 

+ Zi Zi-, + 2 ]TkiZl, + ‘%j - - 
[ 

i-l 
aci_, 

k=l at 

-g%ek+, + @p + c ~&. i ] 
k=l 

i-l 

=-z, 
ck.d + zizi+, + jz, zi ,k, It*iz* 

I 7.1 

II Z, 

(A.9) 

fz, g,+zi_,-y-~l~ek+, [ k 

i-l 

+ @:e + 2 (& + n&k + %z, 1 k=, 

(A.12) 

From the definitions of x,~, nrk, 6,, and oik, it is easy to show 
that rrk, + zik = trki + aik and that or,, = o,,. Then the choice 
of di as in (95) results in (A.3) and 

t-2 

i, = - x ~,+?tk - (1 + n,_,,,)&, - cj.?; 

k=, 

+ (1 + &.r+dZr+, + i %kZk. (A.13) 
k=i+2 

Combining (A.13) with (A.9), we get (A.2). 
We now rewrite the last equation of (94) as 

where En follows the same definition as in (96). Noting that 
V = V,_,+$z’, and ~F~“+IC,~=(T~” +unk, and K 
(i.1) follows readily from (A.3) and (A.14). “” 

= a,,, 
0 


