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a b s t r a c t

Extremum seeking, a non-model based optimization scheme, is employed to design laser pulse shapes

that maximize the amount of stored energy extracted from the amplifier gain medium for a fixed input

energy and inversion density. For this pulse shaping problem, a double-pass laser amplifier whose

dynamics are fully coupled and composed of two nonlinear, first-order hyperbolic partial differential

equations, with time delays in the boundary conditions, and a nonlinear ordinary differential equation,

is considered. These complex dynamics make the optimization problem difficult, if not impossible, to

solve analytically and make the application of non-model based optimization techniques necessary.

Hence, the laser pulse shaping problem is formulated as a finite-time optimal control problem, which is

solved by first, parameterizing the input pulse and pumping rate over the system’s finite time interval

and then, utilizing extremum seeking to maximize the associated cost function. The advantage of the

approach is that the model information is not required for optimization. The extremum seeking

methodology reveals that a rather non-obvious laser pumping rate waveform increases the laser gain

by inducing a resonant response in the laser’s nonlinear dynamics. Numerical simulations illustrate the

effectiveness of the approach proposed in the paper.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Background and motivation: Maximizing the energy extracted
by a laser pulse is critical in many laser applications. In the
polysilicon process for manufacturing flat panel displays, one of
the outstanding problems is obtaining enough instantaneous laser
power to melt as large an area as desired (e.g., one continuous
melt of several meters along the substrate for a flat panel TV
display). One engineering solution is to use several laser ampli-
fiers and combine their outputs, but using a single amplifier more
efficiently is preferable. The energy efficiency is also a growing
concern in photolithography, where a drive to increase scanner
wafer-per-hour throughout means that the optical exposures
(which have a fixed energy dose required to print an image, set
by the chemistry of the photoresist) must be accomplished with
fewer pulses of higher energy. The goal in this paper is to
optimize laser pulse shapes to maximize the amount of stored
energy extracted from the amplifier gain medium for a fixed input
energy and inversion density.

In Frantz and Nodvik (1963), the growth of a radiation pulse in
a laser amplifier was described by nonlinear, time-dependent
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photon transport equations, which account for the effect of the
radiation on the medium as well as vice versa. In Akashi, Sakai,
and Tagashira (1995), a one-dimensional model including Pois-
son’s equation to consider the space-charge for a discharge-
excited ArF excimer laser has been developed. In the recent work
(Ren, Frihauf, Krstić, & Rafac, 2011), a single-pass laser model is
described by a coupled nonlinear first-order hyperbolic partial
differential equation (PDE) and a nonlinear ordinary differential
equation (ODE). This model is extended from the classical model
(Frantz & Nodvik, 1963). In this paper, a double-pass laser model
is considered with partial overlap and optical feedback in the
amplifier, which adds another PDE and time delays in the boundary
conditions. This setup allows for more efficient energy extraction
and a longer output pulse length.

Design tool—extremum seeking: For two coupled first-order
PDEs, with nonlinear coupling of Lotka–Volterra type, boundary
control was developed in Pavel and Chang (2009) to drive the
state at the end of the spatial domain to the desired constant
reference values. Instead of stabilization, the laser pulse shape
optimization problem is addressed in this paper. However, the
complex dynamics in the laser amplifier model makes the
optimization problem difficult, if not impossible, to solve analy-
tically and make the application of non-model based optimization
techniques necessary. The extremum seeking method (Ariyur &
Krstić, 2003) is employed to design the finite-time optimal input
signal and pumping rate to maximize the amount of stored
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Table 1
Parameters of the laser system.

Parameter Description Value (units)

L Length of gain medium 0.5 (m)

T Evolution duration time of laser dynamics 300 (ns)

c Speed of light 3�108 (m/s)

s Stimulated emission cross section 2.8�10�16 (cm2)

a Distributed loss 0.006 (cm�1)
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energy extracted from the amplifier gain medium for a fixed input
energy and inversion density.

Extremum seeking is a real-time, non-model based optimiza-
tion approach for dynamic problems where the system is
assumed to have a potentially nonlinear equilibrium map with
local minima or maxima, but is otherwise unknown. This method
performs optimization by estimating the gradient of a cost
function and driving this gradient to zero. The gradient estimation
is performed using perturbation signals that are typically deter-
ministic periodic signals, e.g., sinusoids (Ariyur & Krstić, 2003),
but can be replaced by stochastic excitation signals (Liu & Krstić,
2010; Manzie & Krstić, 2009), or existing disturbances affecting
the system (Carnevale et al., 2009). A popular tool in control
applications in the 1940–1950s, extremum seeking has seen a
resurgence after its stability analysis was established in Krstić and
Wang (2000) for continuous-time systems and in Choi, Krstić,
Ariyur, and Lee (2002) for discrete-time systems. Many successful
applications of extremum seeking have been reported in the
literature, including particle beam matching (Schuster et al., 2007),
flow control (Becker, King, Petz, & Nitsche, 2007), tokamak fusion
devices (Ou et al., 2008), source seeking with nonholonomic
unicycles (Cochran, Kanso, Kelly, Xiong, & Krstić, 2009; Zhang,
Arnold, Ghods, Siranosian, & Krstić, 2007), control of combustion
instability (Banaszuk, Ariyur, Krstić, & Jacobson, 2004), maximizing
the pressure rise in an axial flow compressor (Wang, Yeung, & Krstić,
2000), limit cycle minimization (Wang & Krstić, 2000), optimal
positioning of mobile sensors under stochastic noise (Stanković &
Stipanović, 2010), control of thermoacoustic instability (Moase,
Manzie, & Brear, 2010), and optical fibre amplifiers (Dower, Farrell,
& Nesić, 2008). However, extremum seeking has never before been
used in high-performance photolithography light source systems.

Results: Motivated by Frihauf, Krstić, and Bas-ar (2011), where
extremum seeking was introduced to solve noncooperative games
with infinitely-many players, the laser pulse shaping problem is
formulated as a finite-time optimal control problem, by parameter-
izing the evolution of the input pulse and pumping rate in the time
interval ½0,T�, and employing extremum seeking to maximize the
associated cost function. Both a Gaussian input pulse shape para-
meterization and a general input pulse shape parameterization that
consists of a summation of weighted finite characteristic functions
are considered. The advantage of the approach is that modeling
information of the laser amplifier is not required in the pulse
shaping optimization via extremum seeking, and the effectiveness
of this approach is shown through numerous simulations. Though
the optimal pulse shape may not converge to the same shape for
different initial conditions, the amplifier gain does improve for each
case. In general, it is difficult to achieve global optimization using
extremum seeking when multiple extrema exist (Tan, Nesic,
Mareels, & Astolfi, 2009), which is expected for the high-dimen-
sional extremum seeking problem considered in this paper. A rather
non-obvious laser pumping rate waveform, which increases the
laser gain by inducing a resonant response in the laser’s nonlinear
dynamics, is obtained using the extremum seeking approach.

Organization: The optimization problem is formulated in Section 2
and solved using extremum seeking for a Gaussian input peak timing
Fig. 1. Double-pass laser amplifier with partial overlap and optical feedback.
optimization in Section 3 and a general input pulse shape optimiza-
tion in Section 4. In Section 5, both the input pulse and the pumping
rate are optimized simultaneously. Throughout this work, the
effectiveness of the proposed method is demonstrated by extensive
numerical studies. Finally, some concluding remarks are given in
Section 6.
2. Double-pass laser dynamics with partial overlap and
optical feedback

The intensity dynamics of the laser beam in Fig. 1 are described as
follows for zAð0,L�,tZ0:
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8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:
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with boundary conditions

Ilrð0,tÞ ¼ k2Irlð0,t�2d2Þþð1�k2ÞIinðt�d2Þ,

boundary condition=input,

IrlðL,tÞ ¼ k1IlrðL,t�2d1Þ,

boundary condition,

IoutðtÞ ¼ ð1�k2ÞIrlð0,t�d2Þþk2IinðtÞ,

boundary value=output,

8>>>>>>>>><
>>>>>>>>>:

ð2Þ

where Ilr and Irl are the rightward and leftward irradiance, respec-
tively, n is the population difference between the upper and lower
laser levels, and r is the pumping rate, k1 and k2 are partial overlap
and optical feedback gains, lext,1 and lext,2 are the right and left
extended lengths, and d1 ¼ lext,1=c and d2 ¼ lext,2=c are time delays
caused by the extended lengths. The physical meanings and values of
the parameters are listed in Table 1.

The objective is to seek the optimal input pulse shape IinðtÞ

over the time interval tA ½0,T� such that the amplifier gain

G¼ Eout

Ein
, ð3Þ
t Lifetime of laser state 1.75 (ns)

Fsat Saturation fluence 3.67 (mJ/cm2)

k1 Partial overlap gain 0.85

k2 Optical feedback gain 0.95

lext,1 Extended length (right) 0.7 (m)

lext,2 Extended length (left) 0.8 (m)

d1 Time delay (right) 2.3 (ns)

d2 Time delay (left) 2.7 (ns)

Ein Input energy Fixed

Eout Output energy To be optimized

Vr Inversion density Fixed

G¼ Eout

Ein

Amplifier gain To be optimized
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i.e., the ratio of the output energy Eout ¼
R T

0 IoutðtÞ dt to the input
energy Ein ¼

R T
0 IinðtÞ dt, is maximized while holding the input

energy and the inversion density Vr ¼
R T

0 rðtÞ dt fixed. Hence,
IinðtÞ needs to be found to solve

max
IinðtÞZ0

G subject to Ein and Vr fixed: ð4Þ

To ensure that the input energy and the inversion density are
fixed, the input signal and the pumping rate are modulated over
the period ½0,T� as

Imod
in ðtÞ ¼

IinðtÞR T
0 IinðtÞ dt

E0
in, ð5Þ

rmodðtÞ ¼
rðtÞR T

0 rðtÞ dt
V0
r, ð6Þ

where E0
in and V0

r are the user-defined input energy level and
inversion density, respectively.

In the following subsections, the response of the double-pass
laser models (1)–(2) is investigated with different input pulse
shapes and pumping rates, highlighting their effect on the output
pulse Iout(t). Since the analytical solution of the models (1)–(2) is
difficult, if not impossible, to find, the implicit finite difference
approximation method (Tveito & Winther, 1998) is adopted to
obtain its approximate solution. The space ½0,L� is discretized into
Nz intervals and the time interval ½0,T� into Nt intervals with
the spatial discretization dz¼ L=Nz and temporal discretization
dt¼ T=Nt . For the simulations, the parameters are chosen as
Nz¼100, Nt¼1000, and thus dz¼0.5 cm, dt¼0.3 ns.
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Fig. 2. Output pulse with different Gaussian pumping rate magnitudes Ar , while

1021 m�3 s�1, and (c) Ar ¼ 10� 1021 m�3 s�1.
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Fig. 3. Output pulse with different Gaussian pumping rate pulse widths sr , and while A

and (c) sr ¼ 20 ns.
2.1. Response with Gaussian input pulse and pumping rate

Consider the case when both the input pulse and pumping rate
are approximated by the Gaussian functions of time t

IinðtÞ ¼
1ffiffiffiffiffiffi

2p
p

sin

e�ððt�minÞ
2=2s2

in
Þ, ð7Þ

rðtÞ ¼ Ar
1ffiffiffiffiffiffi

2p
p

sr
e�ððt�mrÞ

2=2s2
rÞ, ð8Þ

where min and mr are the mean values (peak times), sin and sr are
the standard deviations (pulse ‘‘width’’), and Ar is the magnitude
of pumping rate.

Fig. 2 shows the output pulse IoutðtÞ with different Gaussian
pumping rate magnitudes Ar, when min and mr, sin and sr are fixed.
It can be seen that IoutðtÞ increases in magnitude and becomes more
oscillatory when Ar increases. Fig. 3 shows the output pulse IoutðtÞ

with different pulse widths sr of the Gaussian pumping rate. With
the increase of sr, the oscillations of IoutðtÞ are reduced, but the
magnitude of IoutðtÞ decreases too. The amplifier gain G for Fig. 3(a),
(b), and (c) is 139.32, 68.95 and 46.10, respectively, for the fixed
inversion density V0

r ¼ 5� 1021 m�3.

2.2. Response with constant input pulse and sinusoidal

pumping rate

The modulation of the pumping rate are introduced in the
following form:

rðtÞ ¼ Ar½1þar sinð2pvrtÞ�, ð9Þ
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where vr is the modulation frequency, ar is the modulation
depth, and Ar is modulation mean. The effect of vr, ar and Ar on
the response of laser dynamics is investigated and illustrated
in Figs. 4–6. In Fig. 4, the fixed inversion density is V0

r ¼ 5�
1022 m�3 over the period ½0,T�, while the amplifier gain is 51.76,
51.41, and 51.26 for (a), (b), and (c), respectively. In Fig. 5, the
increase of Ar results in the increase of the inversion density, and
thus, the increase of the amplifier gain. In particular, for Fig. 5 (a),
(b), and (c), the inversion density is 7�1020 m�3, 7�1021 m�3,
7�1022 m�3, and the corresponding amplifier gain is 1.18, 2.28
and 54.16, respectively. In Fig. 6, the fixed inversion density is
300 350 400 450 500
4

6

8

10
x 10

9

Time (ns)

I o
ut

(m
−

3
)

3 3.5 4 4.5 5

x 10

0

1

2
x 10

29

Time (ns)

�
(m

−
3
·

s−
1
)

300 350 40
4

6

8
x 10

9

Time

I o
ut

(m
−

3
)

3 3.5 4
0

1

2
x 10

29

Time

�
(m

−
3
·

s−
1
)

Fig. 4. Response with different sinusoidal pumping rate modulation frequencies vr
(b) vr ¼ 2� 107, and (c) vr ¼ 5� 107.
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(b) Ar ¼ 1� 1028 m�3 s�1, and (c) Ar ¼ 1� 1029 m�3 s�1.
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51.45, 51.48, and 51.04 for (a), (b), and (c), respectively.
From Figs. 2–6, it is noted that the performance of the double-

pass laser model (1)–(2) is affected by the shapes of input
pulse IinðtÞ and pumping rate rðtÞ. In the following sections,
the pulse shaping optimization problem (4) is investigated for
Gaussian peak timing optimization, where the input signal is
Gaussian, and for a general input pulse shape, parameterized by
the summation of weighted finite characteristic functions. Finally,
both the input pulse shape and the pumping rate are optimized
simultaneously.
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3. Gaussian input peak timing optimization using extremum
seeking scheme

Let both the input pulse and the pumping rate be modeled as
Gaussian functions shown in (7) and (8). The objective is to find
an optimal peak timing min for the input pulse, so that the
amplifier gain is maximized for a fixed input energy, with the
pulse width sin and pumping rate rðtÞ given. The optimization
problem (4) is reformulated as

max
min 40

G

subject to sin,rðtÞ given and

Z T

0
IinðtÞ dt¼ E0

in: ð10Þ

To solve the optimization problem (10), discrete-time extre-
mum seeking is used to tune the parameter minðkÞ, where k is the
discrete-time index, to determine the Gaussian-shaped input
pulse Iin(t) that optimizes the amplifier gain. Specifically, given
a peak time minðkÞ, which determines the input pulse Ik

inðtÞ, the
output pulse Ik

inðtÞ is found and amplifier gain Gk is computed. The
extremum seeking loop, driven by Gk, updates the peak time
parameter estimate to obtain minðkþ1Þ and the new input pulse
Ikþ1
in ðtÞ. The process is then repeated.

A block diagram of the system is shown in Fig. 7, where m̂in is
the estimate of min, gm is the adaptation gain, ol and oh are low
and high pass filter cutoff frequencies, a sin ok is the perturbation
signal, and oAð0,pÞ is the perturbation frequency. In equation
form, the extremum seeking algorithm is given by

Zðkþ1Þ ¼ ð1�ohÞZðkÞþohGk, ð11Þ

xðkþ1Þ ¼ ð1�olÞxðkÞþolðGk
�ZðkÞÞa sin ok, ð12Þ
Las

ω l

z − (1 −
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z − 1
+
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Fig. 7. Discrete-time extremum seeking scheme f
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m̂inðkþ1Þ ¼ m̂inðkÞþgmxðkÞ, ð13Þ

minðkÞ ¼ m̂inðkÞþa sin ok: ð14Þ

The high pass filter removes the DC component of the cost
function, and the low pass filter attenuates the oscillations caused
by the sinusoidal perturbation and smooths the parameter
estimate m̂in. The stability of the extremum seeking feedback
scheme can be established by employing the tools of averaging
and singular perturbation analysis (Ariyur & Krstić, 2003; Choi
et al., 2002; Krstić & Wang, 2000).

Simulation results: In this study, the initial IinðtÞ and rðtÞ are
taken as the form of (7) and (8) with Ain ¼ 1:0 m�3, min ¼ 60 ns,
sin ¼ 12:8 ns, while Ar ¼ 4� 1021 m�3 s�1, mr ¼ 60 ns, sr ¼ 3 ns.
The initial amplifier gain G0

¼ 86:76. Other extremum seeking
parameters in Fig. 7 are chosen as: gm ¼ 1, a¼ 0:6, o¼ 1,
ol ¼ 0:024, oh ¼ 0:020. Fig. 8 shows the evolution of the amplifier
gain G and Gaussian input peak timing min when min is tuned using
extremum seeking. It can be seen that the optimal amplifier gain
Gn ¼ 93:76 and optimal peak time mn

in ¼ 44:97 ns are achieved
after 1000 extremum seeking steps. Thus, when the amplifier gain
G is maximized, the Gaussian peak time of the input signal is
15.03 ns ahead of the pumping rate peak.
4. General input pulse shaping optimization

In Section 3, using extremum seeking, the peak time for the scaled
Gaussian single-hump function has been optimized to maximize
the amplifier gain. However, the amplifier gain may potentially be
increased further by more complex input pulse shapes that cannot be
modeled by Gaussian single-humps. Therefore, in this section the
general input pulse shaping optimization problem is considered.
er System Cost Function
G
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×
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Motivated by Frihauf et al. (2011), where extremum seeking
was introduced to solve noncooperative games with infinitely-
many players, the problem in this paper is formulated as an
infinite-dimensional optimal control problem by the parametri-
zation of the evolution of the input pulse IinðtÞ in the time interval
½0,T�. The input pulse IinðtÞ, tA ½0,T� is approximated in the space
L2
½0,T� as follows:

IinðtÞ ¼
XN

j ¼ 1

yj1½tj ,tjþ 1 �
ðtÞ, tA ½tj,tjþ1�, ð15Þ

where ½0,T� is divided into a finite number (N) of intervals ½tj,tjþ1�,

j¼ 1;2, . . . ,N, with t1 ¼ 0, tNþ1 ¼ T , yj is the weight for the jth

characteristic function, and 1½tj ,tjþ 1ÞðtÞ denotes the characteristic

function in the interval ½tj,tjþ1�, i.e.

1½tj ,tjþ 1 �ðtÞ ¼
1, tA ½tj,tjþ1Þ,

0 otherwise:

�
ð16Þ

Extremum seeking is applied to determine optimal values for the

weights yj.

In practice, some constraints on the input function IinðtÞ have
to be considered due to the dynamics and magnitude constraints
in the electronics that generate the input signal. For example,
IinðtÞ cannot be too short or too long in duration, and IinðtÞ cannot
change too rapidly. The constraints on the input pulse shape can
be adjusted by sin when a Gaussian-like shape is assumed as is
done in Section 3. For a general input pulse, however, there is no
direct control over the optimized shape; therefore, a penalty on
the input gradient is included in the cost function to penalize
overly narrow input signals, resulting in the following optimiza-
tion problem:

max
y40

JðyÞ with JðyÞ ¼ G�b
Z T

0
ð_I inÞ

2
ðtÞ dt

subject to rðtÞ given and

Z T

0
IinðtÞ dt¼ E0

in, ð17Þ

where b40 is the penalty weight, y¼ ½y1,y2, . . . ,yN�
T is defined in

(15), and E0
in is a user-defined input energy level. In simulation (or

in practice, when sampling the continuous-time laser amplifier
dynamics (1)–(2)), the idealized, integral penalty term in (17)
must be approximated. In this work, a forward finite-difference
approximation is adopted for the time derivative of the input
pulse, namely

_I inðtjÞ �
Iinðtjþ1Þ�IinðtjÞ

dt
, j¼ 1;2, . . . ,Nt ,

¼
yjþ1�yj

dt
, ð18Þ
Las

�l

z − (1 −
� �

j

z − 1
+

aj sin �j k

θ̂j

Modulation

�j �j

I in (t)

Fig. 9. Discrete-time extremum seeking scheme for gen
where dt¼T/N. The integral term is then approximated by a
Riemann sum, i.e.Z T

0
ð_I inÞ

2
ðtÞ dt�

XN

j ¼ 1

yjþ1�yj

dt

� �2

dt,

¼
1

dt

XN

j ¼ 1

ðyjþ1�yjÞ
2: ð19Þ

The multi-parameter extremum seeking scheme used to max-
imize (17) is

Zðkþ1Þ ¼ ð1�ohÞZðkÞþohJðyðkÞÞ, ð20Þ

xjðkþ1Þ ¼ ð1�olÞxjðkÞþolðJðyðkÞÞ�ZðkÞÞaj sin ojk, ð21Þ

ŷjðkþ1Þ ¼ ŷjðkÞþgyj xðkÞ, ð22Þ

yjðkÞ ¼ ŷjðkÞþaj sin ojk, ð23Þ

where, for j¼ 1;2, . . . ,N, ŷj is the estimate of the optimal weight

vector yn, gyj is the adaptation gain, ol and oh are low and high

pass filter cutoff frequencies, aj sin ojk is the perturbation signal,

and ojAð0,pÞ is the perturbation frequency. For multi-parameter

extremum seeking designs, the perturbation frequencies must

also satisfy oiaoj, ia j (Durr, Stanković, & Johansson, 2011). The

extremum seeking scheme used to update yj is depicted in Fig. 9.

Simulation results: The simulation results are shown in Figs. 10–12,
where the time interval ½0,T� for the laser amplifier dynamics has
been discretized into N¼500 intervals. In Fig. 10, the initial and final
signal pulse shapes for the input IinðtÞ and the output IoutðtÞ are
shown in (a) and (b), and the evolution of the cost JðyÞ and amplifier
gain G are depicted in (c). The initial input pulse is chosen as a
single-hump shape with energy E0

in ¼ 1:0 m�3 s, and penalty weight
b¼ 2:25� 10�25 m6 s (where the penalty weight b units are
given so that the cost JðyÞ is a nondimensional value). The pumping
rate rðtÞ is described by a Gaussian function as (8) with Ar ¼

4� 1021 m�3 s�1, mr ¼ 60 ns, sr ¼ 3 ns.
The extremum seeking parameters are selected as a¼

½a1,a2, . . . ,aN�
T , o¼ ½o1,o2, . . . ,oN�

T and gy by a random draw from
a uniform distribution. Specifically, a is sampled from the distribution
Ua
ð2� 106,4� 106

Þ, o from Uo
ð0:3,0:6Þ, and gy ¼ ½gy1,gy2, . . . ,gyN�

T

from Ug
ð0:3,0:4Þ, where Uða,bÞ denotes the uniform distribution with

probability density 1=ðb�aÞ. Note, the probability that oi ¼oj is zero.
One could also choose o as the value of a monotonically increasing or
decreasing function so that oiaoj. o is selected from a uniform
distribution so that comparatively fast and slow frequencies are
spread throughout the parameter space. The low pass and high pass
filter parameters are ol ¼ 0:024 and oh ¼ 0:020.

It is observed that:
(i)
er Sy

�l )

eral
The optimal cost Jn ¼ 130:82 and optimal amplifier gain
Gn ¼ 134:54 are achieved after 1.0�105 extremum seeking
stem Cost Function

z − 1
z − (1 − �h)

×

aj sin �j k

J (�) − �

input pulse shaping with the yj loop depicted.
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steps, while the initial cost J0
¼ 93:70 and initial amplifier

gain G0
¼ 93:71.
(ii)
 The input pulse shape converges to an optimal multi-
hump pulse.
While Fig. 10 shows a result with a single-hump initial pulse,
Fig. 11 shows a result with a double-hump initial input signal
pulse. Similar results are obtained though the initial input pulse
is different. In Fig. 12 the effect of the penalty weight b on the
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performance is investigated, where b¼ 6:75� 10�24 m6 s and the
initial input pulse is double-hump. Based on Figs. 11 and 12, it is
observed that:
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The peak value of the optimal input pulse decreases and the
duration of the pulse increases, i.e., its rate of change
decreases as b is increased.
(ii)
 The achieved amplifier gain and extremum seeking conver-
gence rate both decrease as b is increased.
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(iii)
Fig. 1
initia

and t
It is not surprising that the extremum seeking scheme could
converge to one of the local extrema if they exist, in particular,
for the high-dimensional extremum seeking problem considered
in this paper. For different initial conditions and cost function
parameters, the optimal pulse shape may not converge to the
same shape, however, the amplifier gain does improve indeed
for each case.
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5. Optimization of both input pulse and pumping rate

In Sections 3 and 4, the input pulse IinðtÞ has been opti-
mized with the pumping rate rðtÞ given. Now extremum
seeking is used to optimize both IinðtÞ and rðtÞ to maximize
the extraction of the stored energy from the amplifier gain
medium.
ser System Cost Function
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d pumping rate pulse shaping optimization with loops for yI
j and yrj shown.
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It is assumed that the input pulse IinðtÞ and pumping rate rðtÞ,
tA ½0,T�, are approximated in the space L2

½0,T� as follows:

IinðtÞ ¼
XN

j ¼ 1

yI
j1½tj ,tjþ 1 �ðtÞ, tA ½tj,tjþ1� ð24Þ

rðtÞ ¼
XN

j ¼ 1

yrj 1½tj ,tjþ 1 �
ðtÞ, tA ½tj,tjþ1� ð25Þ

where ½0,T� is separated into N intervals ½tj,tjþ1�, j¼ 1;2, . . . ,N,
t1 ¼ 0 and tNþ1 ¼ T , and where 1½tj ,tjþ 1 �

ðtÞ denotes the character-
istic function given by (16). The weights for the jth characteristic
function of IinðtÞ and rðtÞ are denoted by yI

j and yrj , respectively.
Due to practical constraints on the input function IinðtÞ and the

pumping rate rðtÞ, both a penalty on the input gradient and a
penalty on the pumping rate gradient are included in the cost
function to prevent IinðtÞ and rðtÞ from having a rapid rate of
change. Hence, the optimization problem becomes

max
yI 40,yr40

JðyI ,yrÞ,

with JðyI ,yrÞ ¼ G�b
Z T

0
ð_I inÞ

2
ðtÞ dt�g

Z T

0
ð _rÞ2ðtÞ dt

subject to

Z T

0
IinðtÞ dt ¼ E0

in,

Z T

0
rðtÞ dt¼ V0

r, ð26Þ

where b40 and g40 are the penalty weights for the input

gradient and the pumping rate gradient, yI
¼ ½yI

1,yI
2, . . . ,yI

N�
T and

yr ¼ ½yr1 ,yr2 , . . . ,yrN�
T , which are defined in (24) and (25), and

V0
r ¼

R T
0 r0ðtÞ dt. In implementation, the integral penalty terms

are numerically approximated as is done in Section 4 (cf.
(17)–(19)).
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and the penalty weights b¼ 6:75� 10�24 m6 s, g¼ 9� 10�67 m6 s3.
The multi-parameter extremum seeking scheme used to max-
imize (26) are

Zðkþ1Þ ¼ ð1�ohÞZðkÞþohJðyI
ðkÞ,yrðkÞÞ, ð27Þ

xI
jðkþ1Þ ¼ ð1�olÞx

I
jðkÞþolðJðy

I
ðkÞ,yrðkÞÞ�ZðkÞÞaI

j sin oI
jk, ð28Þ

ŷ
I

jðkþ1Þ ¼ ŷ
I

jðkÞþg
I
jx

I
ðkÞ, ð29Þ

yI
jðkÞ ¼ ŷ

I

jðkÞþaI
j sin oI

jk, ð30Þ

xrj ðkþ1Þ ¼ ð1�olÞx
r
j ðkÞþolðJðy

I
ðkÞ,yrðkÞÞ�ZðkÞÞarj sin or

j k, ð31Þ

ŷ
r
j ðkþ1Þ ¼ ŷ

r
j ðkÞþg

r
j x

r
ðkÞ, ð32Þ

yrj ðkÞ ¼ ŷ
r
j ðkÞþarj sin or

j k, ð33Þ

where j¼ 1;2, . . . ,N, yI
ðkÞ and yrðkÞ are the weight vectors of IinðtÞ

and rðtÞ to be optimized; ŷ
I
ðkÞ and ŷ

r
ðkÞ are the estimates of yI

ðkÞ

and yrðkÞ, respectively; and aI sin oIk, and ar sin ork are perturba-
tion signals. The extremum seeking scheme is depicted in Fig. 13.

Simulation results: Fig. 14(a)–(c) show the initial and final signal
pulse shapes for the input IinðtÞ, output IoutðtÞ, and pumping rate rðtÞ
signals, respectively, when the time interval ½0,T� is discretized into
N¼500 intervals. The evolution of the cost JðyI ,yrÞ and amplifier gain
G is also shown in Fig. 14(d). The extremum seeking parameters ol,
oh, and those used to tune yI are the same as those selected
in simulations presented in Section 4. And ar ¼ ½ar1 ,ar2 , . . . ,arN� is
sampled from the distribution Ua

rð2� 1027,4� 1028
Þ, or from Uo

r
ð0:3,0:6Þ, and gr ¼ ½gr1 ,gr2 , . . . ,grN�

T from Ug
rð0:1,0:2Þ, where Uða,bÞ

denotes the uniform distribution with probability density 1=ðb�aÞ.
0 50 100 150 200 250 300
0

1

2

3

4

5
x 10

9

Laser time (ns)

I o
ut

(m
−

3
)

initial
final

0 2 4 6 8

x 10
5

−50

0

50

100

150

200

ES steps

J,
G

J

G

als when using the extremum seeking algorithm with N¼500 for a double-hump

nvergence is achieved in 5.0�104 steps, when E0
in ¼ 1:0 m�3 s, V0

r ¼ 4:0� 1021 m�3



B. Ren et al. / Control Engineering Practice 20 (2012) 674–683 683
For the fixed input energy Ein ¼ 1:0 m�3 s, inversion density
Vr ¼ 4:0� 1021 m�3 and penalty weights b¼ 2:25� 10�25 m6 s,
g¼ 9:0� 10�67 m6 s3:
(i)
 the optimal cost Jn ¼ 114:59 and optimal amplifier gain
Gn ¼ 179:83 are achieved after 5�105 extremum seeking steps,
while the initial cost J0

¼ 15:22 and initial amplifier gain
G0
¼ 90:50,
(ii)
 the input pulse converges from a double-hump pulse to an
optimal three-hump pulse,
(iii)
 the pumping rate pulse also converges to an optimal multi-
hump pulse, which seems to oscillate at a frequency that
promotes a resonance in the laser dynamics, and
(iv)
 compared with the extremum seeking results in Fig. 11 when
the pumping rate rðtÞ is a given value, the energy amplifier
gain is increased from 126.09 to 179.83.
Fig. 15 shows the effect of the penalty weight b on the
performance where b¼ 6:75� 10�24 m6 s. Compared with the
results in Fig. 14, it can be seen that:
(i)
 The peak value of the optimal input pulse decreases and the
duration of the pulse increases, i.e., its rate of change
decreases when b is increased.
(ii)
 Both the achieved amplifier gain and extremum seeking
convergence rate decrease when b is increased.
(iii)
 For different cost function parameters, the optimal pulse
shape may not converge to the same shape. However, the
amplifier gain does improve for each case.
A comparison of Figs. 12 and 15 (or Figs. 11 and 14) provides
an interesting physical insight. Extremum seeking finds a non-
obvious pumping rate rðtÞ that improves the gain G by about 40%
by inducing a resonant response in the laser dynamics.
6. Conclusion

In this paper the input pulse and pumping rate shape optimi-
zation have been investigated for a laser amplifier through the
high-dimensional extremum seeking method. It has been shown
that the optimized input/pumping rate signal can extract max-
imum stored energy from the amplifier gain medium for different
initial conditions and different cost function parameters. No
model information is required in the pulse shaping optimization.
A non-obvious pumping rate rðtÞ has been found to improve the
gain G by about 40% by inducing a resonant response in the laser
dynamics.
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