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Abstract—We introduce a non-model based approach for locally
stable convergence to Nash equilibria in static, noncooperative
games with players. In classical game theory algorithms, each
player employs the knowledge of the functional form of his payoff
and the knowledge of the other players’ actions, whereas in the
proposed algorithm, the players need to measure only their own
payoff values. This strategy is based on the extremum seeking
approach, which has previously been developed for standard
optimization problems and employs sinusoidal perturbations to
estimate the gradient. We consider static games with quadratic
payoff functions before generalizing our results to games with
non-quadratic payoff functions that are the output of a dynamic
system. Specifically, we consider general nonlinear differential
equations with inputs and outputs, where in the steady
state, the output signals represent the payoff functions of a
noncooperative game played by the steady-state values of the
input signals. We employ the standard local averaging theory
and obtain local convergence results for both quadratic payoffs,
where the actual convergence is semi-global, and non-quadratic
payoffs, where the potential existence of multiple Nash equilibria
precludes semi-global convergence. Our convergence conditions
coincide with conditions that arise in model-based Nash equilib-
rium seeking. However, in our framework the user is not meant to
check these conditions because the payoff functions are presumed
to be unknown. For non-quadratic payoffs, convergence to a
Nash equilibrium is not perfect, but is biased in proportion to the
perturbation amplitudes and the higher derivatives of the payoff
functions. We quantify the size of these residual biases and confirm
their existence numerically in an example noncooperative game.
In this example, we present the first application of extremum
seeking with projection to ensure that the players’ actions remain
in a given closed and bounded action set.

Index Terms—Extremum seeking, learning, Nash equilibria,
noncooperative games.

I. INTRODUCTION

W E study the problem of solving noncooperative
games with players in real time by employing a

non-model-based approach where the players determine their
actions using only their own measured payoff values. By
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utilizing deterministic extremum seeking with sinusoidal per-
turbations, the players attain their Nash strategies without the
need for any model information. We analyze both static games
and games with dynamics, where the players’ actions serve as
inputs to a general, stable nonlinear dynamic system whose
outputs are the players’ payoff values. In the latter scenario, the
dynamic system evolves on a faster time scale compared to the
time scale of the players’ strategies, resulting in a static game
being played at the steady state of the dynamic system. In these
scenarios, the players possess either quadratic or non-quadratic
payoff functions, which may result in multiple, isolated Nash
equilibria. We quantify the convergence bias relative to the
Nash equilibria that results from payoff function terms of
higher order than quadratic.

1) Literature Review: Most algorithms designed to achieve
convergence to Nash equilibria require modeling information
of the game and assume the players can observe the actions
of the other players. Two classical examples are the best re-
sponse and fictitious play strategies, where each player chooses
the action that maximizes its payoff given the actions of the
other players. The Cournot adjustment, a myopic best response
strategy, was first studied by Cournot [1] and refers to the sce-
nario where a firm in a duopoly adjusts its output to maximize
its payoff based on the known output of its competitor. The
strategy known as fictitious play (employed in finite games),
where a player devises a best response based on the history of
the other players’ actions was introduced in [2] in the context of
mixed-strategy Nash equilibria in matrix games. In [3], a gra-
dient-based learning strategy where a player updates its action
according to the gradient of its payoff function was developed.
Stability of general player adjustments was studied in [4] under
the assumption that a player’s response mapping is a contrac-
tion, which is ensured by a diagonal dominance condition for
games with quadratic payoff functions. Distributed iterative al-
gorithms for the computation of equilibria in a general class of
non-quadratic convex Nash games were designed in [5], and
conditions for the contraction of general nonlinear operators
were obtained to achieve convergence.

In more recent work, a dynamic version of fictitious play and
gradient response, which also includes an entropy term, is de-
veloped in [6] and is shown to converge to a mixed-strategy
Nash equilibrium in cases that previously developed algorithms
did not converge. In [7], a synchronous distributed learning al-
gorithm, where players remember their own actions and utility
values from the previous two times steps, is shown to converge
in probability to a set of restricted Nash equilibria. An approach
that is similar to our Nash seeking method (found in [8], [9] and
in this paper) is studied in [10] to solve coordination problems in
mobile sensor networks. Additional results on learning in games
can be found in [11]–[15]. Some diverse engineering applica-
tions of game theory include the design of communication net-
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works in [16]–[20], integrated structures and controls in [21],
and distributed consensus protocols in [22]–[24]. A compre-
hensive treatment of static and dynamic noncooperative game
theory can be found in [25].

The results of this work extend the extremum seeking method
[26]–[33], originally developed for standard optimization prob-
lems. Many works have used extremum seeking, which per-
forms non-model based gradient estimation, for a variety of ap-
plications, such as steering vehicles toward a source in GPS-de-
nied environments [34]–[36], optimizing the control of homo-
geneous charge-compression ignition (HCCI) engines [37] and
nonisothermal continuously stirred tank reactors [38], reducing
the impact velocity of an electromechanical valve actuator [39],
and controlling flow separation [40] and Tokamak plasmas [41].

2) Contributions: We develop a Nash seeking strategy to
stably attain a Nash equilibrium in noncooperative -player
games. The key feature of our approach is that the players do
not need to know the mathematical model of their payoff func-
tions or of the underlying model of the game. They only need to
measure their own payoff values when determining their respec-
tive time-varying actions, which classifies this learning strategy
as radically uncoupled according to the terminology of [12].

As noted earlier, a game may possess multiple, isolated Nash
equilibria if the players have non-quadratic payoff functions.
Hence, we pursue local convergence results because, in non-
quadratic problems, global results come under strong restric-
tions. We do, however, make the connection to semi-global prac-
tical asymptotic stability when the players have quadratic payoff
functions. For non-quadratic payoff functions, we show that the
convergence is biased in proportion to the amplitudes of the per-
turbation signals and the third derivatives of the payoff func-
tions, and confirm this convergence bias in a numerical example.
In this example, we impose an action set for the players
and implement a Nash seeking strategy with projection to ensure
that the players’ actions remain in . This example is the first
such application of extremum seeking with projection.

3) Organization: We motivate our Nash seeking strategy
with a duopoly price game in Section II and prove convergence
to the Nash equilibrium in -player games with quadratic
payoff functions in Section III. Also in Section III, we show
that the players converge to their best response strategies when a
subset of players have a fixed action. In Section IV, we provide
our most general result for -player games with non-quadratic
payoff functions and a dynamic mapping from the players’
actions to their payoff values. A detailed numerical example is
provided in Section V before concluding with Section VI.

II. TWO-PLAYER GAME

To introduce our Nash seeking algorithm, we first consider a
specific two-player noncooperative game, which for example,
may represent two firms competing for profit in a duopoly
market structure. Common duopoly examples include the soft
drink companies, Coca-Cola and Pepsi, and the commercial
aircraft companies, Boeing and Airbus. We present a duopoly
price game in this section for motivational purposes before
proving convergence to the Nash equilibrium when players

Fig. 1. Deterministic Nash seeking schemes applied by players in a duopoly
market structure.

with quadratic payoff functions employ our Nash seeking
strategy in Section III.

Let players P1 and P2 represent two firms that produce the
same good, have dominant control over a market, and compete
for profit by setting their prices and , respectively. The
profit of each firm is the product of the number of units sold
and the profit per unit, which is the difference between the sale
price and the marginal or manufacturing cost of the product. In
mathematical terms, the profits are modeled by

(1)

where is the number of sales, the marginal cost, and
for P1 and P2. Intuitively, the profit of each firm will

be low if it either sets the price very low, since the profit per unit
sold will be low, or if it sets the price too high, since then con-
sumers will buy the other firm’s product. The maximum profit is
to be expected to lie somewhere in the middle of the price range,
and it crucially depends on the price level set by the other firm.

To model the market behavior, we assume a simple, but
quite realistic model, where for whatever reason, the consumer
prefers the product of P1, but is willing to buy the product of
P2 if its price is sufficiently lower than the price . Hence,
we model the sales for each firm as

(2)

(3)

where the total consumer demand is held fixed for simplicity,
the preference of the consumer for P1 is quantified by ,
and the inequalities and are assumed
to hold.

Substituting (2) and (3) into(1) yields expressions for the
profits and that are both quadratic func-
tions of the prices and , namely,

(4)

(5)

and thus, the Nash equilibrium is easily determined to be

(6)

(7)
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Fig. 2. (a) Price and (b) profit time histories for P1 and P2 when implementing the Nash seeking scheme (9)–(10). The dashed lines denote the values at the Nash
equilibrium.

To make sure the constraints , are
satisfied by the Nash equilibrium, we assume that lies
in the interval . If , this condition is
automatically satisfied.

For completeness, we provide here the definition of a Nash
equilibrium in an -player game:

(8)

where is the payoff function of player , its action, its ac-
tion set, and denotes the actions of the other players. Hence,
no player has an incentive to unilaterally deviate its action from

. In the duopoly example, , where denotes
the set of positive real numbers.

To attain the Nash strategies (6)–(7) without any knowledge
of modeling information, such as the consumer’s preference ,
the total demand , or the other firm’s marginal cost or price,
the firms implement a non-model based real-time optimization
strategy, e.g., deterministic extremum seeking with sinusoidal
perturbations, to set their price levels. Specifically, P1 and P2
set their prices, and respectively, according to the time-
varying strategy (Fig. 1):

(9)

(10)

where , , , , and .
Further, the frequencies are of the form

(11)

where is a positive, real number and is a positive, rational
number. This form is convenient for the convergence analysis
performed in Section III. The resulting pricing, sales, and profit
transients when the players implement (9)–(10) are shown in
Fig. 2 for a simulation with , , ,

, , , , rad s,
rad s, and ,

. From Fig. 2(a), we see that convergence to the
Nash equilibrium is not trivially achieved since
and yet increases initially before decreasing to due to

the overall system dynamics of (9)–(10) with(4)–(5). In these
simulations (and those shown in Section III-D), we utilize a
washout (high pass) filter in each player’s extremum seeking
loop [28], but we do not include this filter in the theoretical
derivations since it is not needed to derive our stability results.
Its inclusion would substantially lengthen the presentation due
to the doubling of the state dimension and obfuscate the sta-
bility results. The washout filter removes the DC component
from signal , which, while not necessary, typically im-
proves performance.

In contrast, the firms are also guaranteed to converge to the
Nash equilibrium when employing the standard parallel action
update scheme [25, Proposition 4.1]

(12)

(13)

which requires each firm to know both its own marginal cost and
the other firm’s price at the previous step of the iteration, and
also requires P1 to know the total demand and the consumer
preference parameter . In essence, P1 must know nearly all
the relevant modeling information. When using the extremum
seeking algorithm (9)–(10), the firms only need to measure the
value of their own payoff functions, and . Convergence
of (12)–(13) is global, whereas the convergence of the Nash
seeking strategy for this example can be proved to be semi-
global, following [29], or locally, by applying the theory of av-
eraging [43]. We establish local results in this paper since we
consider non-quadratic payoff functions in Section IV. We do,
however, state a non-local result for static games with quadratic
payoff functions using the theory found in [42]. For detailed
analysis of the non-local convergence of extremum seeking con-
trollers applied to general convex systems, the reader is referred
to [29].

III. -PLAYER GAMES WITH QUADRATIC PAYOFF FUNCTIONS

We now generalize the duopoly example in Section II to static
noncooperative games with players that wish to maximize
their quadratic payoff functions. We prove convergence to a
neighborhood of the Nash equilibrium when the players employ
the Nash seeking strategy (9)–(10).
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A. General Quadratic Games

First, we consider games with general quadratic payoff func-
tions. Specifically, the payoff function of player is of the form

(14)

where the action of player is , , , and
are constants, , and . Quadratic games

of this form are studied in [25, Sec. 4.6] where Proposition 4.6
states that the -player game with payoff functions (14) admits
a Nash equilibrium if and only if

(15)

admits a solution. Rewritten in matrix form, we have
, where

...
. . .

...
(16)

and is unique if is invertible. We make the following
stronger assumption concerning this matrix:

Assumption 3.1: The matrix given by (16) is strictly diag-
onally dominant, i.e.,

(17)

By Assumption 3.1, the Nash equilibrium exists and is
unique since strictly diagonally dominant matrices are nonsin-
gular by the Levy–Desplanques theorem [44], [45]. To attain

stably in real time, without any modeling information, each
player employs the extremum seeking strategy (9)–(10).

Theorem 1: Consider the system (9)–(10) with (14) under
Assumption 3.1 for an -player game, where ,

, and for all distinct , , , and
where is rational for all , . There exist

, , such that for all , if is sufficiently
small, then for all ,

(18)

where and denotes
the Euclidean norm.

Proof: Denote the relative Nash equilibrium error as

(19)

By substituting (14) into (9)–(10), we get the error system

(20)

Let where is the positive, real number in (11).
Rewriting(20) in the time scale and rearranging terms yields

(21)

where and is a rational
number. Hence, the error system (21) is periodic with pe-
riod , where LCM denotes
the least common multiple. With as a small parameter, (21)
admits the application of the averaging theory [43] for stability
analysis. The average error system can be shown to be

(22)

which in matrix form is , where

...
. . .

(23)

and , . (The details of computing (22),
which require that , , and for
all distinct , , , are shown in Appendix A.)

From the Gershgorin Circle Theorem [45, Theorem 6.1.1],
we have , where denotes the spectrum of

and is a Gershgorin disc:

(24)

Since and is strictly diagonally dominant, the union
of the Gershgorin discs lies strictly in the left half of the complex
plane, and we conclude that for all . Thus,
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given any matrix , there exists a matrix
satisfying the Lyapunov equation .
Using as a Lyapunov function,

we obtain

(25)

Noting that satisfies the bounds,
, and applying the Comparison

Lemma [43] gives

(26)

where (27)

From (26) and [43, Th. 10.4], we obtain
, provided is sufficiently

close to . Reverting to the time scale and noting that
completes

the proof.
From the proof, we see that the convergence result holds if

(23) is Hurwitz, which does not require the strict diagonal dom-
inance assumption. However, Assumption 3.1 allows conver-
gence to hold for , , whereas merely assuming (23)
is Hurwitz would create a potentially intricate dependence on
the unknown game model and the selection of the parameters

, . Also, while we have considered only the case where the
action variables of the players are scalars, the results equally
apply to the vector case, namely , by simply consid-
ering each different component of a player’s action variable to
be controlled by a different (virtual) player. In this case, the
payoff functions of all virtual players corresponding to player

will be the same.
Even though is unique for quadratic payoffs, Theorem 1

is local due to our use of standard local averaging theory. From
the theory in [42], we have the following non-local result:

Corollary 1: Consider players with quadratic payoff func-
tions (14) that implement the Nash seeking strategy (9)–(10)
with frequencies satisfying the inequalities stated in Theorem
1. Then, the Nash equilibrium is semi-globally practically
asymptotically stable.

Proof: In the proof of Theorem 1, the average error system
(22) is shown to be globally asymptotically stable. By [42, The-
orem 2], with the error system (21) satisfying the theorem’s con-
ditions, the origin of (21) is semi-globally practically asymptot-
ically stable.

For more details on semi-global convergence with extremum
seeking controllers, the reader is referred to [29].

B. Symmetric Quadratic Games

If the matrix is symmetric, we can develop a more precise
expression for the convergence rate in Theorem 1. Specifically,
we assume the following.

Assumption 3.2: for all , .
Under Assumptions 3.1 and 3.2, is a negative definite

symmetric matrix. Noncooperative games satisfying 3.2 are

a class of games known as potential games [46, Th. 4.5]. In
potential games, the maximization of the players’ payoff func-
tions corresponds to the maximization of a global function

, known as the potential function.
Corollary 2: Consider the system (9)–(10) with (14)

under Assumptions 3.1 and 3.2 for an -player game, where
, , and for all distinct ,

, , and where is rational for all ,
. The convergence properties of Theorem 1

hold with

(28)

(29)

Proof: From the proof of Theorem 1, given any matrix
, there exists a matrix satisfying the

Lyapunov equation since , given by (23), is
Hurwitz. Under Assumption 3.2, we select and obtain

. Then, we directly have

(30)

and using the Gershgorin Circle Theorem [45, Th. 6.1.1], we
obtain the bound

(31)

where we note that . From (27),(30), and(31), we obtain
the result.

Of note, the coefficient in Corollary 2 is determined com-
pletely by the extremum seeking parameters , while the
convergence rate depends on both , , and the unknown
game parameters . Thus, the convergence rate cannot be
fully known since it depends on the unknown structure of the
game.

C. Duopoly Price Game

Revisiting the duopoly example in Section II, we see that the
profit functions (4) and (5) have the form (14). Moreover, this
game satisfies both Assumptions 3.1 and 3.2 since

By Theorem 1 and Corollary 2, the firms converge to a neigh-
borhood of (6)–(7) according to
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Fig. 3. Model of sales � , � , � in a three-firm oligopoly with prices � , � ,
� and total consumer demand � . The desirability of product � is proportional
to ��� .

where is given by (28) and since
.

D. Oligopoly Price Game

Consider a static noncooperative game with firms in an oli-
gopoly market structure that compete to maximize their profits
by setting the price of their product. As in the duopoly ex-
ample in Section II, let be the marginal cost of player ,
its sales volume, and its profit, given by (1). The simplified
sales model for the duopoly (2)–(3), where one firm has a clear
advantage over the other in terms of consumer preference is no
longer appropriate. Instead, we model the sales volume as

(32)

where is the total consumer demand, for all ,
, and .

The sales model (32) is motivated by an analogous electric
circuit, shown in Fig. 3, where is an ideal current gener-
ator, are ideal voltage generators, and most importantly, the
resistors represent the “resistance” that consumers have to-
ward buying product . This resistance may be due to quality or
brand image considerations—the most desirable products have
the lowest . The sales in (32) are inversely proportional to
and grow as decreases and as , , increases. The profit
(1), in electrical analogy, corresponds to the power absorbed by
the portion of the voltage generator .

Proposition 1: There exists such that, for all , the
system (9)–(10) with (1) and (32) for the oligopoly price game,
where , for all distinct , and
where is rational for all , , exponentially
converges to a neighborhood of the Nash equilibrium:

(33)

where . Namely, if
is sufficiently small, then for all

(34)

where is defined in Theorem 1, is given by
(28), and

.

Proof: Substituting (32) into (1) yields payoff functions

that are of the form (14). Therefore, the Nash equilibrium
satisfies , where and are given by (16) and have
elements

if

if

for , . Assumption 3.1 is satisfied by since

Thus, the Nash equilibrium of this game exists, is unique, and
can be shown to be (33). (The various parameters here are as-
sumed to be selected such that is positive for all .) Moreover,

, so is a negative definite symmetric matrix, satis-
fying Assumption 3.2. Then, by Theorem 1 and Corollary 2, we
have the convergence bound (34) and obtain by computing

where , and by noting that
. Finally, the error system (20) for this game

does not contain any terms with the product ,
so the requirement that for all distinct , ,

does not arise when computing the average
error system.

The resulting pricing, sales, and profit transients when four
firms implement (9)–(10) are shown in Fig. 4 for a simulation
with game parameters: , , ,

, , , , , ;
extremum seeking parameters: ,

, , , , , ,
, ; and initial conditions:

, , ,
.

E. -Player Games With Quadratic Payoff Functions and
Stubborn Players

An interesting scenario to consider is when not all the
players utilize the Nash seeking strategy (9)–(10). Without loss
of generality, we assume that players implement
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Fig. 4. (a) Price and (b) profit time histories of firms P1, P2, P3, and P4 when implementing the Nash seeking scheme (9)–(10). The dashed lines denote the values
at the Nash equilibrium.

(9)–(10) while players are stubborn and
use fixed actions

(35)

To discuss the convergence of the Nash seeking players, we
introduce their reaction curves [25, Def. 4.3], which are the
players’ best response strategy given the actions of the other
players. When the players have quadratic payoff functions (14),
their reaction curves are

(36)

where denotes the actions of the other players. In
the presence of stubborn players, the remaining players’ unique
best response is given by

...
...

. . .

...
. . .

...
... (37)

When there are no stubborn players, .
Theorem 2: Consider the -player game with (14) under

Assumption 3.1, where players implement the
strategy (9)–(10), with , , and
for all distinct , , , and stubborn players

implement (35). There exist , , such
that for all , if is sufficiently small, then for all

(38)

where and is given
by (37).

Proof: Following the proof of Theorem 1 for the Nash
seeking players, one can obtain

...
...

. . .
...

...
. . .

... (39)

where , and the stubborn players’ error
relative to the Nash equilibrium is denoted by ,

. The unique, exponentially stable equilibrium
of (39) is

...
...

. . .

...
. . .

... (40)

and so from the proof of Theorem 1 and [43, Th. 10.4], we have

(41)

for players . What remains to be shown is that
is the best response of player .

From (35) and (41), the players’ actions converge on average
to . At , the
best response of player is

(42)
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where we have substituted . Noting (36) and using
(40) to substitute for yields

(43)

Hence, the Nash seeking players converge to their best re-
sponse actions .

To provide more insight into this result, we note that the av-
erage response of player is

(44)

which is the scaled, continuous-time best response for games
with quadratic payoff functions. Continuous-time best response
dynamics are studied for more general scenarios in [47], [48].

IV. -PLAYER GAMES WITH NON-QUADRATIC

PAYOFF FUNCTIONS

Now consider a more general noncooperative game with
players and a dynamic mapping from the players’ actions to
their payoff values . Each player attempts to maximize the
steady-state value of its payoff. Specifically, we consider a gen-
eral nonlinear model

(45)

(46)

where is the state, is a vector of the players’
actions, is the action of player , its payoff value,

and are smooth, and is
a possibly non-quadratic function. Oligopoly games may pos-
sess nonlinear demand and cost functions [50], which motivate
the inclusion of the dynamic system (45) in the game struc-
ture and the consideration of non-quadratic payoff functions.
For this scenario, we pursue local convergence results since the
payoff functions may be non-quadratic and multiple, isolated
Nash equilibria may exist. If the payoff functions are quadratic,
semi-global practical stability can be achieved following the re-
sults of [29].

We make the following assumptions about this -player
game.

Assumption 4.1: There exists a smooth function
such that

(47)

Assumption 4.2: For each , the equilibrium
of (45) is locally exponentially stable.

Hence, we assume that for all actions, the nonlinear dynamic
system is locally exponentially stable. We can relax the require-
ment that this assumption holds for each as we need to
be only concerned with the action sets of the players, namely,

, and we do this in Section V
for our numerical example. For notational convenience, we use
this more restrictive case.

The following assumptions are central to our Nash seeking
scheme as they ensure that at least one stable Nash equilibrium
exists at steady state.

Assumption 4.3: There exists at least one, possibly multiple,
isolated stable Nash equilibria such that, for
all

(48)

Assumption 4.4: The matrix

...
. . .

(49)

is strictly diagonally dominant and hence, nonsingular.
By Assumptions 4.3 and 4.4, is Hurwitz.
As with the games considered in Sections II and III, each

player converges to a neighborhood of by implementing the
extremum seeking strategy (9)–(10) to evolve its action ac-
cording to the measured value of its payoff . Unlike the pre-
vious games, however, we select the parameters

, where , are small, positive constants and is related
to the players’ frequencies by (11). Intuitively, is small since
the players’ actions should evolve more slowly than the dynamic
system, creating an overall system with two time scales. In con-
trast, our earlier analysis assumed to be small, which can be
seen as the limiting case where the dynamic system is infinitely
fast and allows to be large.

Formulating the error system clarifies why these parameter
selections are made. The error relative to the Nash equilibrium
is denoted by (19), which in the time scale , leads to

(50)

(51)

where , , and
. The system (50)–(51) is in the stan-

dard singular perturbation form with as a small parameter.
Since is also small, we analyze (50)–(51) using the averaging
theory for the quasi-steady state of (50), followed by the use of
the singular perturbation theory for the full system.
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A. Averaging Analysis

For the averaging analysis, we first “freeze” in (50) at its
quasi-steady state , which we substitute
into (51) to obtain the “reduced system”

(52)

This system is in the form to apply averaging theory [43] and
leads to the following result.

Theorem 3: Consider the system (52) for an -player game
under Assumptions 4.3 and 4.4, where , ,

, and for all distinct , ,
and is rational for all . There exist

parameters , and , such that, for all and
, if is sufficiently small, then for all

(53)

where

, and

(54)

(55)

(56)

if

if
(57)

Proof: As already noted, the form of (52) allows for the
application of averaging theory, which yields the average error
system

(58)
The equilibrium of (58) satisfies

(59)

for all , and we postulate that has the form

(60)

By approximating about in (59) with a Taylor poly-
nomial and substituting (60), the unknown coefficients and

can be determined.
To capture the effect of higher order derivatives on average

error system’s equilibrium, we use the Taylor polynomial ap-

proximation [49], which requires to be times
differentiable

(61)

where is a point on the line segment that connects
the points and . In (61), we have
used multi-index notation, namely, ,

, , , and
. The second term on

the last line of (61) follows by substituting the postulated form
of (60).

For this analysis, we choose to capture the effect of
the third order derivative on the system as a representative case.
Higher order estimates of the bias can be pursued if the third
order derivative is zero. Substituting (61) into (59) and com-
puting the average of each term gives

(62)

where we have noted (48), utilized (60), and computed the inte-
grals shown in Appendices I and II. Substituting (60) into (62)
and matching first order powers of gives

...
...

...

which implies that for all , since is nonsingular by
Assumption 4.4. Similarly, matching second-order terms of ,
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and substituting to simplify the resulting expressions,
yields

...
...

...

where is defined in (56). Thus, for all , , when
, and is given by (55) for , . The

equilibrium of the average system is then

(63)

By again utilizing a Taylor polynomial approximation, one
can show that the Jacobian of (58) at has
elements given by

(64)

By Assumptions 4.3 and 4.4, is Hurwitz for suffi-
ciently small , which implies that the equilibrium (63)
of the average error system (58) is locally exponentially
stable, i.e., there exist constants , such that

, which with [43,
Th. 10.4] implies

(65)

provided is sufficiently close to . Defining as
in Theorem 3 completes the proof.

From Theorem 3, we see that of reduced system (52) con-
verges to a region that is biased away from the Nash equilibrium

. This bias is in proportion to the perturbation magnitudes
and the third derivatives of the payoff functions, which are

captured by the coefficients . Specifically, of the reduced
system converges to as

.
Theorem 3 can be viewed as a generalization of the Theorem

1, but with a focus on the error system to highlight the effect of
the payoff functions’ non-quadratic terms on the players’ con-
vergence. This emphasis is needed because of the reduced
system converges to an -neighborhood of , as
in the quadratic payoff case, since .

B. Singular Perturbation Analysis

We analyze the full system (50)–(51) in the time scale
using singular perturbation theory [43]. In Section IV-A, we
analyzed the reduced model (52) and now, must study the

boundary layer model to state our convergence result. First,
however, we translate the equilibrium of the reduced model
to the origin by defining , where by [43, Th.
10.4], is a unique, exponentially stable, -periodic solution

such that

(66)

In this new coordinate system, we have for

(67)

(68)

which from Assumption 4.1 has the quasi-steady state
, and consequently, the reduced model in

the new coordinates is

(69)

which has an equilibrium at that is exponentially stable
for sufficiently small .

To formulate the boundary layer model, let
, and then in the time scale , we have

(70)

where should be viewed as a parameter inde-
pendent of the time variable . Since , is an
equilibrium of (70) and is exponentially stable by Assumption
4.2.

With as a singular perturbation parameter, we apply
Tikhonov’s Theorem on the Infinite Interval [43, Th. 11.2] to
(67)–(68), which requires the origin to be an exponentially
stable equilibrium point of both the reduced model (69) and the
boundary layer model (70) and leads to the following:

• the solution of (67) is -close to the solution
of the reduced model (69), so

• the solution of (51) converges exponentially to an
-neighborhood of the -periodic solution , and

• the -periodic solution is -close to the equilib-
rium .

Hence, as , converges to an -neighborhood

of . Since

, converges
to an -neighborhood of .

Also from Tikhonov’s Theorem on the Infinite Interval, the
solution of (68), which is the same as the solution of (50),
satisfies

(71)
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where is the solution of the reduced model (52) and
is the solution of the boundary layer model (70). Rearranging
terms and subtracting from both sides yields

(72)

After noting that
• converges exponentially to , which is

-close to the equilibrium ,
• is , and
• is exponentially decaying,

we conclude that exponentially converges to an
-neighborhood of the origin. Thus,

exponentially converges to an -neigh-
borhood of the payoff value .

We summarize with the following theorem.
Theorem 4: Consider the system (45)–(46) with (9)–(10) for

an -player game under Assumptions 4.1–4.4, where ,
, , and for all distinct

, , and where is rational for all ,
. There exists and for any there

exist , such that for the given and any
and , the solution
converges exponentially to an -neighborhood
of the point , provided the initial conditions
are sufficiently close to this point.

V. NUMERICAL EXAMPLE WITH NON-QUADRATIC

PAYOFF FUNCTIONS

For an example non-quadratic game with players that employ
the extremum seeking strategy (9)–(10), we consider the system

whose equilibrium state is given by
. The Jacobian at the equilib-

rium is Hurwitz if . Thus, the is
locally exponentially stable, but not for all ,
violating Assumption 4.2. However, as noted earlier, this
restrictive requirement of local exponential stability for all

was done merely for notational convenience, and we
actually only require this assumption to hold for the players’
action sets. Hence, in this example, we restrict the players’
actions to the set .

At , the payoff functions are

(73)

Fig. 5. Steady-state payoff function surfaces (73) with both their associated re-
action curves (black) (74)–(75), which lie in the action set � , and the extremals
�� ��� � � (dashed yellow), which lie outside of � , superimposed.

which have the associated reaction curves, defined on the action
set , shown as follows:

if
if

(74)

(75)

Fig. 5 depicts each player’s payoff surface with both the reac-
tion curves and the extremals that lie outside of
superimposed. These reaction curves have two intersections in
the interior of [Fig. 6(a)], which correspond to two Nash equi-
libria: and . At

, Assumptions 4.3 and 4.4 are satisfied, implying the stability
of , whereas at , these assumptions are violated—as they
must be—since further analysis will show that is an unstable
Nash equilibrium. The reaction curves also intersect on the ac-
tion set boundary at , which means this game has a
Nash equilibrium on the boundary that the players may seek de-
pending on the game’s initial conditions. To ensure the players
remain in the action set, we employ a modified Nash seeking
strategy that utilizes projection [51]. For this example, we will
first present simulation results for Nash seeking in the interior
of before considering the Nash equilibrium on the boundary.

A. Nash Seeking in the Interior

For the Nash equilibrium points in the interior of , we want
to determine their stability and to quantify the convergence bias
due to the non-quadratic payoff function. First, we compute the
average error system for the reduced model according to (58),
obtaining

(76)

(77)

where or . The equilibria of (76)–(77)
are given by

. While the system
appears to have four equilibria, two for each value of ,
two equilibria correspond to the difference between the two
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Fig. 6. (a) Reaction curves associated with the steady-state payoff functions (73) with the stable Nash equilibrium (green circle), the unstable Nash equilibrium (red
square), and the Nash equilibrium on the boundary (blue star), and (b) the convergence bias ��� relative to each interior Nash equilibrium, due to the non-quadratic
payoff function of player 2 and lies along the reaction curve of player 1.

Fig. 7. Time history of the two-player game initialized at (a) �� � � � � ����� ����, and (b) �� � � � � ����� ���	�.

Nash equilibrium points, meaning that in actuality, only two
equilibria exist and can be written as

(78)

where
is the smallest value of

for each Nash equilibrium. In the sequel, we omit the
dependency of , , and on for conciseness. As seen
in Fig. 6(b), the equilibrium is biased away from the reaction
curve of player 2 but still lies on the reaction curve of player
1 since only the payoff function for player 2 is non-quadratic.

The Jacobian of the average error system for the reduced
model is

when evaluated at , where
and . Its characteristic equation is

Thus, is Hurwitz if and only if and are positive.
For sufficiently small so that , , when

, and when , which im-
plies is a stable Nash equilibrium and is unstable. Closer
analysis shows that the Jacobian associated with has two real
eigenvalues—one that is negative and one that is positive.

For the simulations, we select , ,
, , and , where the parameters are

chosen to be small, in particular the perturbation frequencies ,
since the perturbation must occur at a time scale that is slower
than the fast time scale of the nonlinear system. Fig. 7(a) and (b)
depicts the evolution of the players’ actions and initial-
ized at and

. The state is initialized at the origin in both
cases. We show instead of to better illustrate the con-
vergence of the players’ actions to a neighborhood near—but
biased away from—the Nash strategies since contains the
additive signal . In both scenarios, the average actions of
both player 1 and player 2 lie below , which is consistent
with the equilibrium of the reduced model’s average error
system (78).

The slow initial convergence in Fig. 7(b) can be explained
by examining the phase portrait of the average of the reduced
model -system. The initial condition lies near the
unstable equilibrium, causing the slow initial convergence seen
in Fig. 7(b). In Fig. 8, the stable and unstable interior Nash
equilibria (green circle and red square), the Nash equilibrium
on (blue star), and the eigenvectors (magenta arrows) as-
sociated with each interior Nash equilibrium are denoted. The
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Fig. 8. Phase portrait of the ��-reduced model average system, with the players’
��-trajectories superimposed for each initial condition. The stable and unstable
Nash equilibrium points (green circle and red square), their eigenvectors (ma-
genta arrows), and Nash equilibrium on �� (blue star) are denoted. The shaded
region is the set difference � � �� . If �� � �� , then � � � . The zoomed-in
area in shows the players’ convergence to an almost-periodic orbit that is biased
away from the stable Nash equilibrium and centered on the reaction curve � .
The average actions of the players are marked by �.

eigenvectors are, in general, neither tangent nor perpendicular
to the reaction curves at the Nash equilibrium points. The phase
portrait and orientation of the eigenvectors do depend on the
values of and , but the stability of each Nash equilibrium
is invariant to their values, provided these parameters are pos-
itive and small as shown in Sections III and IV. Since Fig. 8
is a phase portrait of the -reduced system, we include the
shaded regions to show that must be restricted to the set

to
ensure that lies in . Hence, the shaded region’s outer edge
is , the inner edge is , and the shaded interior is the set
difference .

When the players’ initial conditions lie in the stable region of
the phase portrait, the players’ actions remain in and converge
to a neighborhood of the stable Nash equilibrium in the interior
of . The zoomed-in area highlights the convergence of the tra-
jectories to an almost-periodic orbit that is biased away from the
Nash equilibrium . The depicted orbit consists of the last 300
s of each trajectory with the players’ average actions denoted
by . These average actions lie on the reaction curve as pre-
dicted by (78).

B. Nash Seeking With Projection

To ensure that a player’s action remains in the action set , we
employ a modified extremum seeking strategy that utilizes pro-
jection. Namely, the players implement the following strategy:

(79)

(80)

where is defined as in (9)–(10) and

if and
otherwise.

(81)

Lemma 1: The following properties hold for the projection
operator (81).

1) For all , .
2) With , the update law (79) with the projection

operator (81) guarantees that is maintained in the pro-
jection set, namely, for all .

3) For all and , the following holds:
.

Proof: Points 1 and 2 are immediate. Point 3 follows from
the calculation

if and
otherwise

(82)

since when .
Several challenges remain in the development of convergence

proofs for Nash seeking players with projection, such as com-
puting the average error system and defining the precise notion
of stability for equilibria that exist on the action space bound-
aries. To alleviate concerns of existence and uniqueness of so-
lutions that arise from the projection operator being discontin-
uous, a Lipschitz continuous version of projection [51] can be
used.

Fig. 9 depicts the trajectories and when the players
employ (79)–(80) with the same parameters as in Section V-A
and the initial condition

. For this initial condition, the players reach
where while increases until the trajec-
tory reaches the eigenvector and is pushed away from the
boundary. From this point, the players follow a trajectory that
is similar to the one depicted in Fig. 7(b).

While the modified strategy (79)–(80) ensures that the
players’ actions lie in , it effectively prevents the players
from converging to a neighborhood of any equilibria that lie
in . To address this limitation, we propose the modified
projection strategy

(83)

(84)

where is defined as in (81). The strategy (83)–(84) is
equivalent to (79)–(80) when since
ensures that .

In Fig. 10, the players employ (83)–(84) for the same sce-
nario shown in Fig. 9. With this strategy, the players approach
the boundary , where, unlike at the boundary

, the vector field causes to decrease toward the
Nash equilibrium at . This Nash equilibrium is attainable
only by allowing to enter , but the convergence rate
slows near the boundary since as ap-
proaches and due to the nearby unstable Nash equilibrium
(Fig. 10). If the nonnegative action requirement were relaxed to
allow the perturbation to leave , i.e., we restrict to the set

, then the
point would be attainable using (79)–(80) with .
This strategy would exhibit a faster convergence rate along
than if the players used (83)–(84), but convergence would still
be slow due to the presence of the unstable Nash equilibrium.
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Fig. 9. (a) Time history of the two-player game initialized at ����� ����� when implementing the modified Nash seeking strategy (79)–(80), and (b) planar
��-trajectories superimposed on the ��-reduced model average system phase portrait. The stable and unstable Nash equilibrium points (green circle and red square),
their eigenvectors (magenta arrows), and the Nash equilibrium on �� (blue star) are denoted. The shaded region is the set difference � � �� .

Fig. 10. (a) Time history of the two-player game initialized at ���������� when implementing the modified Nash seeking strategy (83)–(84), and (b) planar
��-trajectories superimposed on the ��-reduced model average system phase portrait. The unstable Nash equilibrium (red square), its eigenvectors (magenta arrows),
and the Nash equilibrium on �� (blue star) are denoted. The shaded region is the set difference � � �� .

VI. CONCLUSION

We have introduced a non-model based approach for conver-
gence to the Nash equilibria of static, noncooperative games
with players, where the players measure only their own
payoff values. Our convergence results include games with
non-quadratic functions and games where the players’ actions
serve as inputs to a general, stable nonlinear differential equa-
tion whose outputs are the players’ payoffs. For non-quadratic
payoff functions, the convergence is biased in proportion to
both payoff functions’ higher derivatives and the perturbation
signals’ amplitudes. When the players’ actions are restricted to
a closed and bounded action set , extremum seeking
with projection ensures that their actions remain in .

A player cannot determine a priori if its initial action is
sufficiently close to to guarantee convergence since is
unknown and because a quantitative estimate of the region
of attraction for is very difficult to determine. However,
for quadratic payoffs, convergence to is semi-global. If we
assume the players possess a good estimate of , based on
either partial information of the game or historical data, this
learning strategy remains attractive since it allows players to
improve their initial actions by measuring only their payoff
values and does not require the estimation of potentially highly
uncertain parameters, e.g., competitors’ prices or consumer
demand. Also, due to the dynamic nature of this algorithm, the
players can track movements in should the game’s model

change smoothly over time in a manner that is unknown to the
players.

APPENDIX A

Several integrals over the period
, where LCM denotes the least

common multiple, must be computed to obtain the average
error system (22) and equilibrium (62) for the average error
system (58). First, we detail the necessary calculations to
compute the average error system for games with quadratic
payoffs, and then compute the additional terms that arise
for games with non-quadratic payoffs in Appendix B. To
evaluate the integrals, we use the following trigonometric
identities to simplify the integrands: ,

, ,
,
,

.
To obtain (22), we compute the average of each term in the

error system (21) and assume that , , and
for all distinct , , . The averages

of the first and last terms of (21) are zero since

(85)
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The average of the second term of (21) depends on whether or
not . If

(86)

since , and if

(87)

which with (86) implies

(88)

Similarly, the average of the fourth term of (21) is

(89)
The average of the third term requires computing the following
three integrals:

APPENDIX B

For games with non-quadratic payoffs, we assume the
players’ frequencies satisfy the requirements for games with
quadratic payoff functions and also , ,

, where , , are distinct.
Then, in addition to the integrals computed in Appendix A, the
following integrals are computed to obtain (62):

and
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[32] M. S. Stanković and D. M. Stipanović, “Extremum seeking under sto-
chastic noise and applications to mobile sensors,” Automatica, vol. 46,
pp. 1243–1251, 2010.
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