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Nonlinear Stabilization Under Sampled and Delayed
Measurements, and With Inputs Subject

to Delay and Zero-Order Hold
Iasson Karafyllis and Miroslav Krstic, Fellow, IEEE

Abstract—Sampling arises simultaneously with input and output
delays in networked control systems. When the delay is left un-
compensated, the sampling period is generally required to be suf-
ficiently small, the delay sufficiently short, and, for nonlinear sys-
tems, only semiglobal practical stability is generally achieved. For
example, global stabilization of strict-feedforward systems under
sampled measurements, sampled-data stabilization of the nonholo-
nomic unicycle with arbitrarily sparse sampling, and sampled-data
stabilization of LTI systems over networks with long delays, are
open problems. In this paper, we present two general results that
address these example problems as special cases. First, we present
global asymptotic stabilizers for forward complete systems under
arbitrarily long input and output delays, with arbitrarily long sam-
pling periods, and with continuous application of the control input.
Second, we consider systems with sampled measurements and with
control applied through a zero-order hold, under the assumption
that the system is stabilizable under sampled-data feedback for
some sampling period, and then construct sampled-data feedback
laws that achieve global asymptotic stabilization under arbitrarily
long input and measurement delays. All the results employ “nom-
inal” feedback laws designed for the continuous-time systems in
the absence of delays, combined with “predictor-based” compen-
sation of delays and the effect of sampling.

Index Terms—Feedback stabilization, nonlinear control, sam-
pled-data systems, time-delay systems.

I. INTRODUCTION

S AMPLING arises simultaneously with input and output de-
lays in many control problems, most notably in control

over networks. In the absence of delays, in sampled-data control
of nonlinear systems semiglobal practical stability is generally
guaranteed [9], [33]–[35], with the desired region of attraction
achieved by sufficiently fast sampling. Alternatively, global re-
sults are achieved under restrictive conditions on the structure
of the system [8], [11], [15], [16], [18], [37]. On the other hand,
in purely continuous-time nonlinear control, input delays of ar-
bitrary length can be compensated [19], [23], [24] but no sam-
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pled-data extensions of such results are available. Simultaneous
consideration to sampling and delays (either physical or sam-
pling-induced) is given in the literature on control of linear and
nonlinear systems over networks [6], [7], [10], [32], [36], [37],
[40], [41], [43], but almost all available results rely on delay-de-
pendent conditions for the existence of stabilizing feedback. Ex-
ceptions are the papers [2], [27], where prediction-based control
methodologies are employed.

Despite the remarkable accomplishments in the fields of
sampled-data, networked, and nonlinear delay systems, the
following example problems remain open: global stabilization
of strict-feedforward systems under sampled measurements
and continuous control, sampled-data stabilization of the non-
holonomic unicycle under arbitrarily sparse sampling, and
sampled-data stabilization of LTI systems over networks with
long delays.

In this paper, we introduce two frameworks for solving such
problems in two distinctly different categories:

1) We present global asymptotic stabilizers for forward com-
plete systems (systems whose solutions exist for all time,
irrespective of initial condition and input) under arbitrarily
long input and output delays, with arbitrarily long sam-
pling periods, and with continuous application of the con-
trol input.

2) We consider systems with sampled measurements and with
control applied through a zero-order hold, under the as-
sumption that the system is stabilizable under sampled-
data feedback for some sampling period, and then construct
sampled-data feedback laws that achieve global asymptotic
stabilization under arbitrarily long input and measurement
delays.

In both frameworks we employ “nominal” feedback laws
designed in the absence of delays, combined with “pre-
dictor-based” compensation of delays.

1) Problem Statement: As in [19], [23]–[25], [28]–[30], [42],
[44], we consider systems with input delay

(1)

where , ,
is a locally Lipschitz mapping with

and is a constant. In [9], [23]–[25], and [44], the feed-
back design problem for system (1) is addressed by assuming a
feedback stabilizer for system (1) with no delay, i.e.,
(1) with , or

(2)
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and applying a delay compensator (predictor) methodology
based on the knowledge of the delay. In this paper, we incor-
porate also a consideration of measurement delay, namely, we
address the problem of stabilization of (1) with output

(3)

where is a constant, i.e., we consider delayed measure-
ments. The motivation for a simultaneous consideration of input
and measurement delays is that in many chemical process con-
trol problems the measurement delay of concentrations of chem-
ical species can be large.

We also assume that the output is available at discrete time
instants (the sampling times) with , where

is the sampling period. Very few papers have studied
this problem (an exception is [12] where input and measurement
delays are considered for linear systems but the measurement is
not sampled).

The problem of stabilization of (1) with output given by (3) is
intimately related to the stabilization of system (1) alone. To see
this, notice that the output of (1), (3) satisfies the following
system of differential equations for all :

Consider the comparison between two problems described by
the same differential equations: the problem of stabilization of
(1) with input delay and no measurement delay (i.e.,

for all ) and the problem of
stabilization of (1), (3) with no input delay and measurement
delay (i.e., for all ). The
two problems are not identical: in the first stabilization problem
the applied input values for are given (as initial con-
ditions), while in the second stabilization problem the applied
input values for must be computed based on an arbi-
trary initial condition , (irrespective
of the current value of the state). Therefore, serious technical is-
sues concerning the existence of the solution for arise
for the second stabilization problem (see Remark 2.2(b) below).

2) Results of the Paper: We establish two general results:
1) A solution for the stabilization of (1) with output given by

(3) under the assumption that system (2) is globally sta-
bilizable and forward complete and the input can be con-
tinuously adjusted (Theorem 2.1). The proposed dynamic
sampled-data controller uses values of the output (3) at the
discrete time instants , , where
is the sampling period and is the initial time. This
justifies the term “sampled-data.” No restrictions for the
values of the delays , or the sampling period
are imposed. In general, we show that there is no need for
continuous measurements for global asymptotic stabiliza-
tion of any stabilizable forward complete system with ar-
bitrary input and output delays.

2) A solution for the stabilization of (1) with output given by
(3) under the assumption that system (2) is globally stabi-
lizable and forward complete and the control action is im-
plemented with zero order hold (Theorem 3.2). Again, the
proposed sampled-data controller uses values of the output
(3) at the discrete time instants , , where

is the sampling period and is the initial time.
In this case, we can solve the stabilization problem for sys-
tems with both delayed inputs and measurements.

Our delay compensation methodology guarantees that any
controller (continuous or sampled-data) designed for the delay-
free case can be used for the regulation of the delayed system
with input/measurement delays and sampled measurements. For
example, all sampled-data feedback designs proposed in [8],
[9], [15], [18], [33], [34], [35], and [37] which guarantee global
stabilization can be exploited for the stabilization of a delayed
system with input/measurement delays, sampled measurements
and input applied with zero order hold.

The results are applied to the following:
• The linear time invariant (LTI) case, where

, , . This case has
been recently studied extensively in the context of linear
networked control systems, where various delays arise.
Delay-dependent and/or sampling period-dependent suffi-
cient conditions for the stabilization of networked control
systems have been proposed in the literature [6], [7], [10],
[32], [36], [37], [40], [41], [43]. Here, we propose a linear
delay compensator that guarantees exponential stability of
the closed-loop system with no restrictions for the delays
(Corollary 3.4). The compensator is designed based on the
knowledge of linear feedback stabilizer for the delay-free
case.

• Strict-feedforward systems [22], [24], [39], which are
studied in Examples in 2.4 and 3.8.

• The stabilization of the nonholonomic integrator

(4)

with both delayed inputs and measurements. The problem
was recently studied in [21] in the presence of delays and
in [8], [35] in the presence of sampling. Here, our proposed
dynamic sampled-data controller is applied with no restric-
tions for the value of the delays or the size of the sampling
period. Two solutions are presented: one that guarantees
asymptotic stability (Corollary 4.1) and one that guaran-
tees finite-time stability (Proposition 4.2).

Since the proposed delay compensation feedback design
methodology is based on the prediction of the state, explicit
formulae for the predictor mapping will give explicit formulae
for the feedback stabilizer. Explicit formulae for the predictor
mapping can be provided for a limited class of nonlinear sys-
tems (see Remark 2.2(d) below). However, recent results have
shown that the implementation of the predictor mapping can
be done without the knowledge of an explicit formula (e.g., by
solving a system of first order partial differential equations as
in [24]). Moreover, recent results have shown that the predictor
mapping can be approximated by numerical schemes so that
the implementation of the controller can be made without the
knowledge of an explicit formula (see [19]).

3) Organization of the Paper: In Section II, the main re-
sults concerning the case of the continuously adjusted input are
stated and many comments and explanations are provided. In
Section III, the main results concerning the case of input ap-
plied with zero order hold are provided. Special results are pro-
vided for the case of linear autonomous systems and for the case
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of nonlinear systems which are diffeomorphically equivalent to
a chain of integrators. Section IV is devoted to the application
of the obtained results to the stabilization of a three-wheeled
vehicle with two independent rear motorized wheels (the non-
holonomic integrator). Finally, in Section V we present the con-
cluding remarks of the present work. The Appendix contains the
proofs of certain results.

Notation: Throughout the paper we adopt the following
notation:

• For a vector we denote by its usual Eu-
clidean norm, by its transpose. For a real matrix

, denotes its transpose and
is its induced norm.

denotes the identity matrix.
• denotes the set of non-negative real numbers. de-

notes the set of non-negative integers. For every ,
denotes the integer part of , i.e., the largest integer
being less or equal to .

• For the definition of the class of functions , see [20].
• By , where ,

is a non-negative integer, we denote the class of functions
(taking values in ) that have continuous deriva-
tives of order on .

• Let with and . By
we denote the “history” of from to , i.e.,

, for . By

we denote the “open history” of from to ,

i.e., , for .
• Let be an interval. By

we denote the space of measurable and
(locally) bounded functions defined on and taking
values in . Notice that we do not identify func-
tions in which differ on a measure zero set. For

or we define
or .

Notice that is not the essential
supremum but the actual supremum and that is why
the quantities and do
not coincide in general. We will also use the notation
for the space of measurable and locally bounded functions

.
• We say that a system of the form (2) is forward complete if

for every , the solution of (2) with
initial condition corresponding to input

exists for all .
Throughout the paper we adopt the convention

and for .
Finally, for reader’s convenience, we mention the following
fact, which is a direct consequence of Lemma 2.2 in [1] and
Lemma 3.2 in [14]. The fact is used extensively throughout
the paper.

4) Fact: Suppose that system (2) is forward complete. Then
for every , the solution
of (1) with initial condition corresponding
to input exists for all . More-
over, for every there exists a function such
that for every , the solu-

tion of (1) with initial condition corre-
sponding to input satisfies

, for all .

II. DYNAMIC SAMPLED-DATA FEEDBACK FOR

CONTINUOUSLY ADJUSTED INPUT

We start by presenting the assumptions for system (2). Our
first assumption concerning system (2) is forward completeness.

Hypothesis (H1): System (2) is forward complete.
Assumption (H1) guarantees that system (1) is forward com-

plete as well: for every ,
the solution of (1) with initial condition
corresponding to input exists for all

. Therefore, we are in a position to define the “predictor”
mapping for all ,
with in the following way:

“For every , the solution
of (1) with initial condition corresponding to

input satisfies ”
By virtue of the fact, we can guarantee the existence of

such that

for all (5)

Using (5) and the fact that is a locally
Lipschitz mapping, we can guarantee the existence of a non-
decreasing function such that

for all (6)

We assume next that (2) is globally stabilizable.
Hypothesis (H2) (Continuously Adjusted Input): There exists

, with

for all (7)

such that is uniformly globally asymptotically stable for
system (2) with , i.e., there exists a function
such that for every the solution of (2)
with and initial condition satisfies
the following inequality:

(8)

Consider system (1) under hypotheses (H1), (H2) for
system (2). Our proposed dynamic sampled-data feedback
has states
and inputs and for each ,

the states are computed by the
interconnection of two subsystems:

1) A sampled-data subsystem (see [14]) with inputs

(9)
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where

are the sampling times and is the sampling period.
We stress that the proposed sampled-data dynamic con-
troller uses only values of the output
at the discrete time instants , where .

2) A subsystem described by functional difference equations
(see [17]) with inputs

(10)

It is clear that during the intersampling interval, the controller
employs a copy of the system to be controlled. The purpose is to
predict the evolution of the states and reminds similar method-
ologies employed in control systems under communication con-
straints (see [3], [26]). Our first main result is now stated.

Theorem 2.1: Let , , with and suppose
that hypotheses (H1), (H2) hold for system (2). Then the closed-
loop system (1), (3), (9), (10) is uniformly globally asymptot-
ically stable, in the sense that there exists a function
such that for every ,

, the solution
of the closed-loop system (9), (10), (3), (1)

with initial condition ,
, satis-

fies the following inequality for all :

(11)

Some remarks for the dynamic sampled-data feedback given
by (9), (10) are in order before we proceed to the proof of
Theorem 2.1.

Remark 2.2:
a) The dynamic sampled-data controller (9), (10) is time-

varying if is time-varying. If is -periodic then the
dynamic sampled-data controller (9), (10) is -periodic
too.

b) Since the output given by (3) of system
(1) satisfies the system of differential equations

, for all ,
where is the initial time, we can in principle
apply the predictor-based delay compensation ap-
proach described in [24] (extended for time-varying
feedback laws), which gives the static feedback law

. This is the inspi-
ration for the construction of the sampled-data dynamic
feedback (9), (10): for all , where ,
the value of computed by (9), (10) is exactly

. However, there
are technical problems with the application of the static

feedback law : given
,

(initial conditions), we cannot

guarantee existence of a measurable and essentially
bounded satisfying the

integral equation
for all . For the case , one sufficient
condition for the existence of a solution of the integral
equation is that the initial condition

, sat-
isfies the equation for all

: in this case the solution is
for , where is the solution of the ini-
tial value problem with

. Other restrictive sufficient conditions
for the existence of a solution of the integral equation
can be obtained by using fixed point theory. The proof
of Theorem 2.1 shows that this issue can be completely
avoided for the dynamic sampled-data feedback (9), (10).

c) For every initial condition the value of computed by

(9), (10) is exactly
for all with satisfying , so our
dynamic sampled-data feedback is based on the predictor
principle.

d) For the implementation of the controller (9), (10),
we must know the “predictor” mapping

. This mapping can be
explicitly computed for

i) Linear systems , with
. In this case (Corol-

lary 3.4 below) the predictor mapping
is given

by the equation

.

ii) Bilinear systems ,
with , and .
In this case the predictor mapping

is given
by the explicit equation

iii) Nonlinear systems of the following form:

...

where all mappings , are lo-
cally Lipschitz. In this case the predictor map-
ping
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can be constructed inductively. For example, for
the predictor mapping is given by

Example 2.4 below applies Theorem 2.1 to a
three-dimensional nonlinear system of the above
class. Moreover, the nonholonomic integrator (4)
belongs to the above class and Theorem 2.1 can
be applied (see Corollary 4.1).

iv) Nonlinear systems , for which there
exists a global diffeomorphism
such that the change of coordinates
transforms the system to one of the above cases
(Corollary 3.7 below).

For globally Lipschitz systems, one can utilize approximate
“predictor” mappings as
shown in [19] under additional and more restrictive hypotheses.

Proof of Theorem 2.1: We start with the following claim,
which we prove in the Appendix.

Claim 1: There exists a function such that
for every ,

the solution
of the closed-loop system (9), (10), (3),

(1) with initial condition ,
, exists

for all and satisfies

for all (12)

By virtue of induction and Claim 1, the following claim holds.
Claim 2: There exists a function such that for every

, , , and
the solution

of the closed-loop system (9), (10), (3), (1)
with initial condition ,

, exists
for all and satisfies

for all

(13)

where .

We notice that for all with satisfying
the solution of the

closed-loop system (9), (10), (3), (1) satisfies

(14)

Consequently, for all with satisfying
it holds that

(15)

Hypothesis (H2) in conjunction with inequality (8) and (15) im-
plies that the following inequality holds:

(16)

Define . Using (13), (14) and (16), it
follows that the following inequality holds for all :

(17)

Define
for all and

for all
. Using (7), (14), (15) and (17) we can conclude

that (11) holds. The proof is complete .
Remark 2.3: The proof of Theorem 2.1 shows that if

with for all , is a nonuni-
form in time stabilizer for system (see [13]) then we can prove
that the closed-loop system (9), (10), (3), (1) is non-uniformly in
time Globally Asymptotically Stable, i.e., there exist functions

and a positive continuous function
such that for every ,

, the solution
of the closed-loop system (9), (10), (3), and (1)

with initial condition ,
, satis-

fies the following inequality for all :

(18)

In this case, there is no need to assume that inequality (7) holds.
We next present an example which shows how the obtained

results can be applied to feedforward nonlinear systems.
Example 2.4 (Control of Strict-Feedforward Systems With Ar-

bitrarily Sparse Sampling): Consider the following example
taken from [24]:

(19)

Here, we consider the stabilization problem for (19) with output
given by (3) available only at the discrete time instants (the
sampling times) with , where is the
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sampling period. Hypothesis (H1) holds for system (19) and the
predictor mapping can be explicitly expressed by the equations

(20)

where and

(21)

Moreover, hypothesis (H2) holds as well with the smooth, time-
independent feedback law

(22)

It follows from Theorem 2.1 that the dynamic sampled-data con-
troller with

for

(23)

and

(24)

where is defined by
(20), (21) and is defined by (22), guarantees
global asymptotic stability for system (19). The reader should
notice that the dynamic sampled-data controller (23), (24) can
still be used even if no delays are present but the state is avail-
able only at the discrete time instants (the sampling times)
with , where is the sampling pe-
riod. Hence, in this section we have provided, as a special case,

the first solution to the problem of global asymptotic stabiliza-
tion of strict feedforward systems with arbitrarily sparse in time
sampling of the state and with continuous control .

III. SAMPLED-DATA FEEDBACK FOR INPUT APPLIED

WITH ZERO-ORDER HOLD

A. General Design

This section is devoted to the case where the input is ap-
plied with zero-order hold. In this section, we assume that (2)
is globally stabilizable with feedback applied with zero order
hold. This is very different from hypothesis (H2) in the previous
section.

Hypothesis (H3) (Input Applied With Zero-Order Hold):
There exists , , such that

for all (25)

and such that is uniformly globally asymptotically
stable for the sampled-data system

(26)

in the sense that there exists a function such that for
every the solution of (26) with initial condition

satisfies inequality (8) with for all
.

Remark 3.1: Hypothesis (H3) seems like a restrictive hypoth-
esis, because it demands global stabilizability by means of sam-
pled-data feedback with positive sampling rate. However, hy-
pothesis (H3) can be satisfied for the following:

i) Linear stabilizable systems, , where
, (see Corollary 3.4 and Remark 3.5

below).
ii) Nonlinear systems of the form ,

, , where the vector field is
globally Lipschitz and the vector field is
locally Lipschitz and bounded, which can be stabilized by
a globally Lipschitz feedback law (see [11]).

iii) Nonlinear systems of the form
for and

, where the drift terms
satisfy the linear growth conditions

for certain
constant and there exist constants such
that for all , ,

(see [16]).
iv) Asymptotically controllable homogeneous systems with

positive minimal power and zero degree (see [8]).
v) Systems satisfying the reachability hypotheses of The-

orem 3.1 in [18], or hypotheses (69), (70), (71) in
Section IV of [15].

vi) Nonlinear systems , for which there exists
a global diffeomorphism such that the
change of coordinates transforms the system to
one of the above cases.
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Consider system (1) under hypotheses (H1), (H3) for system (2).
In this case we propose a feedback law that is simply a compo-
sition of the feedback stabilizer and the delay compensator:

(27)

where , are the sampling times and
is the predictor mapping involved

in (5), (6). The control action is applied with zero order hold, i.e.,
it is constant on ; however, the control action affecting
system (1) remains constant on the interval .
Our main result is stated next.

Theorem 3.2: Let , , with be
given. Moreover, suppose that hypotheses (H1), (H3) hold for
system (2). Then the closed-loop system (1) with (27), i.e., the
following sampled-data system:

(28)

is uniformly globally asymptotically stable, in the sense
that there exists a function such that for every

, the
solution of system (28) with ini-

tial condition ,
satisfies the following in-

equality for all :

(29)
Finally, if system (26) satisfies the dead-beat property of order

, where is positive, i.e., for all the solution
of (26) with initial condition satisfies

for all then system (28) satisfies the dead-beat
property of order , where , i.e.,
for every ,
the solution of system (28) with initial

condition ,
satisfies for all .

Remark 3.3: If we denote to be the delay in receiving
the measured data, the computation time for the quantity

, where ,
and the time for the data to reach the actuator, then one
should notice that and .

Proof of Theorem 3.2: Using the Fact, we can guarantee
the existence of such that for every ,

the solution of (1) with initial con-
dition corresponding to input

satisfies

for all (30)

We next continue with the following claim. Its proof is provided
in the Appendix.

Claim 3: For every , , there exists
a function such that for every

, the solution
of system (28) with initial

condition ,
exists for all

and satisfies

for all (31)

We next notice that for all with the solution
of system (28) satisfies

(32)

Hypothesis (H3) in conjunction with inequality (8) with
and (32) implies that the following inequality holds for all

with

(33)

Define . Using (31) and (33), we conclude
that the following inequality holds:

(34)

Define

for and

for all . Using (25), (31), (32), (33) and
(34) we conclude that (29) holds. Notice that if for
all and (i.e., the dead-beat property of order )
then (34) implies that for all (i.e., the
dead-beat property of order ). The proof is complete.

Theorem 3.2 can be applied to all forward complete systems
satisfying Remark 2.2(d) and Remark 3.1. Here we focus on two
special cases: the case of stabilizable linear time invariant (LTI)
systems and the case of systems which are diffeomorphically
equivalent to a chain of integrators (DECI). The latter case in-
cludes the linearizable strict feedforward systems (see [22]).

B. Design for Stabilizable LTI Systems

For the LTI case, there are matrices ,
such that . In this case the predictor mapping
is given by the explicit expression

. The linear feedback law ,

where , satisfies hypothesis (H3) if and only if
there exists such that all the eigenvalues of the ma-

trix are strictly inside

the unit circle on the complex plane.
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The use of the sampled-data feedback law , where
and , does not in general guarantee

global asymptotic stability for the delayed case, where
. However, Theorem 3.2 can be used for the design of a delay

compensator, which guarantees global asymptotic stability for
the corresponding closed-loop system. The following corollary
is a direct consequence of Theorem 3.2 and its proof is omitted.

Corollary 3.4 (Stabilization of Linear Networked Control
Systems With Delays): Let , , with
be given and let such that with

. Moreover, suppose that all the eigenvalues of the

matrix are strictly in-

side the unit circle on the complex plane. Then the closed-loop
LTI system

(35)

with input applied with zero order hold given by

(36)

where and

(37)

is globally exponentially stable, in the sense that there
exist constants , such that for every

, the solution
of system (35), (36) with ini-

tial condition ,
satisfies the following in-

equality for all :

(38)

Remark 3.5: If the pair of matrices is stabilizable then
there exists such that the matrix is Hur-
witz, a symmetric positive definite matrix and a con-
stant such that .
Using Corollary 4.3 in [16] with , ,
arbitrary , one can show that all the eigenvalues of the

matrix are strictly in-

side the unit circle on the complex plane for all satisfying

and

where and . Of
course, the estimate for the maximum allowable sampling pe-
riod provided by the above inequalities is conservative in most
cases. Other estimates for the maximum allowable sampling pe-
riod can be found in [37].

1) Example 3.6: We consider the scalar control system

(39)

where , . The system can be exponentially
stabilized by the linear feedback with applied
with zero order hold, i.e.,

(40)

where the sampling period must satisfy

(41)

The use of the same feedback law for the case where measure-
ment delays are present is described by the equations

(42)

where is the measurement delay. Numerical experiments
for the closed-loop system (42) show that for each pair of
and satisfying (41), there exists such that:

• if then system (42) is globally exponentially stable;
• if then system (42) admits exponentially growing

solutions.
For the case , the value of the critical measurement
delay satisfies . Fig. 1 shows the evolution of
the state for system (42) with , , and
initial condition for . The state converges
exponentially to zero. Fig. 2 shows the evolution of the state
for system (42) with , , and same initial
condition for . In this case, the state grows
exponentially, indicating instability.

It is clear that for the case one needs a delay com-
pensator. Notice that for the case , the critical
measurement delay is only a small fraction
of the sampling period. The usual practice would be to ignore
the delay and this would give rise to completely unacceptable
results. Corollary 3.4 shows that the feedback law

(43)

will guarantee global exponential stability for the closed-loop
system (39) with (43) when . Indeed, Fig. 3 shows the
evolution of the state for the closed-loop system (39) with (43),

, , and initial condition for
, for . The state converges

exponentially to zero.
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Fig. 1. Evolution of the state for system (42) with � � �, � � �, � � ��� and
initial condition ���� � � for � � ���� ��.

Fig. 2. Evolution of the state for system (42) with � � �, � � �, � � ��	 and
initial condition ���� � � for � � ������.

Fig. 3. Evolution of the state for the closed-loop system (39) with (43), � � �,
� � �, � � ��	 and initial condition ���� � � for � � ������, ���� � 
 for
� � ������.

This example demonstrates that the delay-compensating pre-
dictor-based feedback (43) extends the range of measurement
delays for which stabilization is achieved for given and

satisfying (41).

C. Design for Controllable Systems Linearizable by
Coordinate Change

The class of systems that are Diffeomorphically Equivalent
to a Chain of Integrators (DECI) is the class of all nonlinear
systems , , , where
is locally Lipschitz with , for which there exists a
global diffeomorphism such that the change
of coordinates transforms the system to the linear
system , where ,

with for
and if .

In this case, for every there exists
, such that all the eigenvalues of the matrix

are zero. For

example, for the vector is defined by
. If all eigenvalues of the matrix

are zero then the

sampled-data controller with zero order hold

applied to the linear system will guarantee
the dead-beat property of order for the resulting closed-loop
system, i.e., , for all and for all initial condi-
tions . Thus, we can conclude that the sampled-data
controller with zero order hold

applied to the nonlinear system will guarantee the
dead-beat property of order for the resulting closed-loop
system. Therefore, Theorem 3.2 and Corollary 3.4 lead us to
the following corollary.

Corollary 3.7 (Predictor for Linearizable Controllable Sys-
tems): Let , , with be given and let

such that with . Consider
system (1) with and suppose that there exists a global
diffeomorphism such that

for all (44)

where is the Jacobian of , ,
with for

and if . Let
be such that all eigenvalues of the matrix

are strictly in-

side the unit circle on the complex plane. Then the closed-loop
system (2) with input applied with zero order hold given by

(45)

(46)
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where and the matrices
are defined by (37) with in place of ,

is Globally Asymptotically Stable. Moreover, if all eigenvalues

of the matrix

are zero then for every
, the solution

of system (1), (45), (46) with initial condition
,

satisfies

for all (47)

Example 3.8: Dead-beat control with a predictor can be ap-
plied to any delayed 2-D strict feedforward system, i.e., any
system of the form

(48)

where is a smooth function and the measurements
are sampled and given by (3). The diffeomorphism given by (see
[22])

(49)

transforms system (48) with to a chain of two integrators.
Therefore, the feedback law

(50)

applied with zero order hold and sampling period
achieves global stabilization of system (48) with when
no measurement delays are present. Moreover, the dead-beat
property of order is guaranteed for the corresponding
closed-loop system. Interestingly, the feedback law (50) is
also globally asymptotically stabilizing as a continuous-time
controller, placing the closed-loop poles in the -coordinates
at for any . We next consider the case
where we have measurement delay satisfying . In
this case we apply Corollary 3.7 and we can
conclude that the feedback law (45) with

(51)

guarantees the dead-beat property of order for the corre-
sponding closed-loop system. Similar formulas to (51) are ob-
tained for other cases, where or .

IV. STABILIZATION OF A NONHOLONOMIC MOBILE ROBOT

OVER A LONG-DISTANCE COMMUNICATION NETWORK

WITH ARBITRARILY SPARSE SAMPLING

The reduced-order model of a three-wheeled vehicle with two
independent rear motorized wheels can be described by the fol-
lowing system of differential equations:

(52)
where are the coordinates of the center of mass of the
vehicle and is the angle between the axis of the vehicle and
the horizontal axis. The inputs and are linear combinations
of the angular velocities of the two rear wheels.

The coordinate transformation

(53)

(54)

(55)

and the input transformation

(56)

brings system (52) to the form (4). Many researchers have ob-
tained results for the stabilization of the equilibrium point

of system (4). Here, we assume that the measurements
, , , where , are available at

discrete time instants which differ by a constant . More-
over, we assume that there is a time delay between the
computed control action and the applied input (communication
delay). In this case the equations of the vehicle are

(57)

with measurements , and .
The reader should notice that hypotheses (H1), (H2) hold

for system (52). Particularly, there exist smooth time-periodic
feedback stabilizers for system (4) (see [31], [38]) and con-
sequently we can guarantee that hypothesis (H2) holds. The
predictor mapping for system (57) is given by the following
equation:

(58)

Using any stabilizing feedback from [31], [38] for the nonholo-
nomic integrator (4), the coordinate transformation (53)–(55)
and the input transformation (56) and Theorem 2.1, we arrive at
the following corollary.
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Corollary 4.1: Assume that with
for all , is a time periodic uniform stabilizer

for (4), i.e., the feedback law ,
uniformly, globally stabilizes

for system (4). Then for every , , the
sampled-data dynamic feedback

(59)

(60)

where , and

(61)

achieves uniform global stabilization of for system (57).
At this point it should be emphasized that if the smooth,

time-varying feedback proposed in [13] for the stabiliza-
tion of the nonholonomic integrator were used in (61) then
the closed-loop system (57) with (59), (60), (61) would be
non-uniformly in time globally asymptotically stable (see
Remark 2.3 above). Moreover, the reader should compare the
result of Corollary 4.1 with the results in [21]: no restrictions
for the magnitudes of the delays are imposed in the present
work. Fig. 4 shows the evolution of the state variables ,

, for the closed-loop system (57), (59), (60), (61)
with , initial conditions , ,

, for ,
for and ,

. The
state variables converge to zero as expected. The nom-
inal feedback law ,

was proposed
in [38] for the global uniform stabilization of (4).

If the aim is to design dead-beat controllers, then a different
procedure will be applied. The reader should notice that for
every sampling period the discontinuous feedback
stabilizer

for (62)

Fig. 4. Evolution of the state variables ����, ����, ���� for the closed-loop
system (57), (59), and (60), (61) with � � � � ���, initial conditions � � �,
���� � ���, ���� � �, ���� � �� for � � �����	 �	, 
��� � ���� � � for
� � ���	��.

for (63)

for (64)

satisfies hypothesis (H3) for system (4). To see this notice that
inequality (25) holds with . Further-
more, by explicit computation of the solution one can show that:

• if then the solution of (4) with
satisfies , i.e., ;

• if then the solution of (4) with
satisfies , i.e., ;

• if then the solution of (4) with
satisfies .

It follows that the sampled-data implementation of the feed-
back (62)–(64) with sampling period guarantees the
dead-beat property of order for the corresponding closed-
loop system. The inequality

which holds for the solution of (4) for every initial condition
and for every applied input , in conjunc-
tion with inequality (25) guarantees for every the exis-
tence of a function such that for every initial condi-
tion the solution of (4) with the sampled-data implementation
of the feedback (62)–(65) with sampling period satis-
fies . The dead-beat property of
order in conjunction with the previous estimate guarantees
that the discontinuous feedback stabilizer defined by (62)–(64)
satisfies hypothesis (H3) for system (4). The reader should no-
tice that the feedback design procedure described in [8] can be
applied as well for the nonholonomic integrator (4) (since (4) is
an asymptotically controllable homogeneous system with posi-
tive minimal power and zero degree).
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Therefore, we are in a position to solve the finite-time stabi-
lization problem for (57) with measurements ,
and available at discrete time instants. We can apply
Theorem 3.2 with sampling period for the discontinuous
feedback defined by (62)–(64) and obtain the following result.

Proposition 4.2: Let , , with be given
and let such that with . Then
is uniformly globally asymptotically stable for the closed-loop
system (57) with

for (65)

for (66)

for (67)

where , , is defined by (62)–(64)
and

(68)

Moreover, for every initial condition the solution of the closed-
loop system (57) with (65)–(67), (68) where , ,

is defined by (62)–(64) satisfies
for all .

Although Theorem 3.2 allows the computation of a control
action which is applied to (4) with zero order hold, it should be
noticed that the control action computed by (65)–(67), (68) is
not applied with zero-order hold, because is not constant
on each interval , . This happens because the
input transformation (56) is state-dependent.

V. CONCLUDING REMARKS

Stabilization is studied for nonlinear systems with input and
measurement delays, and with measurements available only at
discrete time instants (sampling times). Two different cases are
considered: the case where the input can be continuously ad-
justed and the case where the input is applied with zero-order
hold. Under the assumption of forward completeness and cer-
tain additional stabilizability assumptions, it is shown that sam-
pled-data feedback laws with a predictor-based delay compen-
sation can guarantee global asymptotic stability for the closed-

loop system with no restrictions for the magnitude of the delays
and arbitrarily long sampling period. Applications to the stabi-
lization of linear networked control systems, strict feedforward
systems and a nonholonomic mobile robot over a long-distance
communication network are presented.

Solving the ODE (9) as well as finding the value of the
predictor map in real time requires care and it may involve
a tradeoff between accuracy and calculation time. For the
unicycle, a simple Euler scheme is adequate for solving (59).

Future work will address the issue of robustness of the pro-
posed feedback laws with respect to actuator and measurement
errors, as well as the extension of the obtained results to the case
where the delayed and sampled measured output does not neces-
sarily coincide with the state vector. A different possible future
line of research could be the extension of the results in [3]–[5],
[26] and the study of the quantization effect.

APPENDIX

PROOFS OF CLAIMS

Proof of Claim 1 in the Proof of Theorem 2.1: Let

be arbitrary and consider the solution
of the closed-loop system (9), (10), (3), (1)

with initial condition ,
, . It

is crucial to notice that the solution of
with satisfies ,

where is the solution of with
. Inequality (8) implies that the solution

exists for all and that the following
inequality holds:

(69)

It follows that the solution of (10) exists for all
. Continuity of and

inequalities (7), (69) imply that the mapping is
continuous on and bounded with

and ,
where . Notice that the limit

exists by virtue of uniform conti-
nuity of the mapping on . By virtue of
inequalities (7) and (69) we obtain the inequality

(70)
Using hypothesis (H1) we may conclude that the solution

of (1) exists for all . Indeed, by virtue
of the fact, we can guarantee the existence of such that

for all

The above inequality in conjunction with (70) and the trivial
inequality gives

(71)
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Finally, we define ,

where . Again,
using (5), (7), (70) and (71) we obtain

and

where .
Using (69), (70), (71), and the above inequalities we are in a
position to construct a function such that inequality
(12) holds. The proof is complete.

Proof of Claim 3 in the Proof of Theorem 3.2: The
claim is proved by induction on , . First
we show that the claim holds for . Let arbitrary

, and con-
sider the solution of system (28) with

initial condition ,
. Using the equation

, in conjunc-
tion with inequalities (5) and (25), we obtain

(72)

Inequality (72) implies the following inequality:

(73)

Exploiting (30) and (73) in conjunction with the trivial in-
equalities and

, we obtain

(74)

where . Inequalities (73) and (74) di-
rectly imply that (31) holds with

. Thus, the claim holds for .
Next, we suppose that the claim holds for certain ,

. We will show that the claim holds for . Let arbitrary
, and con-

sider the solution of system (28) with

initial condition ,
. There exists a func-

tion such that (31) holds. Using the equation

,
in conjunction with inequalities (5), (25) and (31), we obtain

(75)

Inequality (75) implies the following inequality:

(76)

On the other hand, by exploiting (30) (which gives
for all

) and (76) in conjunction with the trivial inequal-
ities ,

, we obtain

(77)

where . In-
equalities (76), (77) in conjunction with (31) directly imply that
inequality (31) holds with replaced by and

replaced by .
The proof is complete .
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[34] D. Nešic and A. R. Teel, “Sampled-data control of nonlinear systems:
An overview of recent results,” in Perspectives on Robust Control, R. S.
O. Moheimani, Ed. New York: Springer-Verlag, 2001, pp. 221–239.
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