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Multiagent Deployment Over a Source
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Abstract—We consider the problem of deploying a group of au-
tonomous vehicles (agents) in a formation that has higher density
near the source of a measurable signal and lower density away
from the source. The spatial distribution of the signal and the lo-
cation of the source are unknown, but the signal is known to decay
with the distance from the source. The vehicles do not have the
capability of sensing their own positions, but they are capable of
sensing the distance between them and their neighbors. We design
a control algorithm based on a combination of two components.
One component of the control law is inspired by the heat partial
differential equation (PDE) and results in the agents deploying be-
tween two anchor agents. The other component of the control law
is based on extremum seeking and achieves higher vehicle den-
sity around the source. By using averaging theory for PDEs, we
prove that the vehicle density will be highest around the source. We
also quantify the density function of the agents’ deployment posi-
tion. By discretizing the model with respect to the continuous agent
index, we obtain decentralized control laws for discrete agents and
illustrate the theoretical results with simulations.

I. INTRODUCTION

A. Motivation:

E XTREMUM seeking (ES) has proved to be a powerful
tool in real-time nonmodel-based control and optimiza-

tion for single unmanned autonomous vehicles [1]–[5]. In re-
cent years, ES has also been used for groups of unmanned au-
tonomous vehicles in a network with each vehicle having lim-
ited local information [6], [7].

B. Results of the Paper: We consider the task of seeking the
maximum of a signal field while simultaneously achieving a
formation distribution that has higher density around the areas
with higher signal strength. We combine the method of ES with
diffusion feedback to have a group of vehicles complete the task
of formation deployment and source seeking.

With the new method, we explore two different types of con-
trol for the agents on the boundary, which we refer to as anchors:
1) the case of free anchors and 2) the case of fixed anchors. The
free anchor case allows the agents on the edge of the formation
to freely move, whereas the fixed anchors case has stationary
anchor agents that start at a desired location. Different deploy-
ment distributions are achieved in the two cases.

The diffusion-based feedback enables the overall multiagent
formation to act as a net of source seekers, rather than as a
group of independent, uncoordinated seekers, who intrude upon
each others’ space. With the free anchors, the user casts the net
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in a manner to prompt attraction toward the source and spread
around the source. In the fixed anchor case, the ends of the net
are fixed and the agents in between distribute such that they have
the highest density near the source.

In this paper, we consider only the 1-D problem. The 2-D-co-
ordinated source seeking problem allows a much broader array
of problem formulations, depending on various possible forma-
tion topologies. For this reason, we focus on the 1-D situation
to introduce the design ideas and analysis techniques.

The motivation for using the diffusion/heat partial differential
equation (PDE) is that the diffusion action induces each agent
to take a position half way between his two neighbors. By com-
bining diffusion with ES, one obtains a swarm of agents where
each agent is driven by two competing strategies, ES that aims
to place all the agents at the extremum, and diffusion that aims
to spread the agents evenly, provided that the anchors are apart.
The overall result of these two effects is that the agents are de-
ployed more densely near the extremum than away from the ex-
tremum. We quantify this density in the paper.

This paper is a journal version of [8]. Unlike in [8] where
all the agents use the same gains, in this paper, the agents are
allowed to use different gains.

C. Literature: The problem of understanding when the in-
dividual actions of interacting agents give rise to a coordinated
behavior has received a considerable attention in many fields. In
the control community, the interest in coordination phenomena
has been recently promoted by the need of controlling groups
of unmanned autonomous vehicles. A basic setup considers a
group of mobile agents, each one described by a dynamic
system capturing the evolution of its heading angle [9] or its
position and velocity [10]. When agents interact with a lim-
ited number of neighbors, one faces the problem of designing
a decentralized control scheme (where each agent uses only the
neighbors’ information) in order to orchestrate the collective be-
havior.

A method often used to design and analyze decentralized con-
troller for a group of agents is to treat the agents as a continuum.
Relations between distributed consensus algorithms and the heat
equation are made in [11]. Agents use model reference adap-
tive control laws to track desired trajectories in [12], using ei-
ther the heat equation or the wave equation as reference models.
Boundary control of PDEs was used to deploy vehicles into
planar curves in [13]. A continuum model for a swarm of ve-
hicles is formulated by using a vehicle density function in [14].
Deployment on a line segment is achieved by using feedback
laws consistent with the spatially discretized heat equation in
[15].

Multiagent and GPS-enabled source seeking problems have
been solved in [16] and [17]. A hybrid strategy for solving the
source seeking problem was developed in [18]. The proposed
problem in this paper is considered in [19]–[21] as a GPS-en-
abled game problem where each agent is trying to maximize its
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own cost function, but in these algorithms, the agents also re-
quire the cost information of their neighbors. The key tool in
this paper is ES [22], which has been advanced or employed in
applications by several other authors [23]–[27].

D. Organization of the Paper: Section II presents a descrip-
tion of the vehicle model and the control scheme for both free
and fixed anchor cases. We prove local exponential conver-
gence results of an equilibrium with the density function that
has maximum density set around the source in Sections III and
IV. Section III deals with the case of free anchors, whereas
Section IV deals with fixed anchors. Simulation results in
Section V illustrate the distinct behavior exhibited using free
and fixed control for the anchor agents with and without inde-
pendent parameters for each agent.

II. CONTROL DESIGN

We consider vehicles modeled as a velocity-actuated point
mass , where is a vector of position of the point masses
and are the vehicles velocity inputs. It is common to consider
the heat equation as a model that governs
the position at time of an agent indexed by in a
large (continuum) group of agents, where each agent is able to
sense its nearest neighbor and applies diffusion feedback actu-
ated through the velocity input, namely, ,
with the boundary conditions (BCs) at and .
The subscripts are used to denote a partial derivative in the re-
spective variable. For simplicity, we choose the spatial domain

.
ES on a single vehicle modeled as a velocity-actuated point

mass has been studied in [2]. The control law used in [2] is

(1)

(2)

where is the measurement of the signal field and , , and
are the parameters chosen by the designer. The washout filter

(2) is not required for stability [28], but used to achieve better
performance.

In this paper, given only the measurements of the values of
the function , we employ a mix of ES and nearest-
neighbor-based diffusion feedback given by

(3)

(4)

where the performance can be influenced by the positive param-
eters , and . The parameters can vary
with respect to , which allow each vehicle to have different pa-
rameters.

For the agents on the boundary (anchor agents), we consider
two different types of control laws. We explore first the case
of having the anchors free to move according to the shape and
location of the signal field, and then, consider the case where
the user deploys the anchors to desired locations.

The free anchor BCs have the form

(5)

(6)

where is a constant velocity that makes the anchors expand
out until the ES term is big enough to counteract and stop the
expansion of the anchors.

The fixed anchor BCs have the form

(7)

where and are the desired fixed locations of the boundary
agents. The fixed BCs are used to force the agents in between
the anchors (follower agents) to distribute between the desired
locations. The fixed anchors can be virtual points whose posi-
tions are fed to the nearest followers, or the fixed anchors can
represent a physical boundary like a wall that the followers can
sense.

With the free anchors, there are no restrictions on where the
formation will end up. The deployment range depends primarily
on the initial anchor velocities . On the other hand, the fixed
anchor case allows the user to pick an area of interest and have
the agents explore all of this area.

We assume that the nonlinear map defining the distribution of
the signal field is quadratic and takes the form

(8)

where is the position of the vehicle, is the maximizer,
is the maximum, and is an unknown positive constant.

The assumption of the quadratic form for the signal field is used
to simplify the stability proof.

III. FREE ANCHORS

In this section, we analyze the convergence properties of
the feedback law (3)–(6). We define an output error vari-
able , where

is a low-pass filter applied to the sensor
reading , which allows us to express , the signal from
the washout filter, as

, noting also that .
To study the vehicle formation in a continuum case, we use

the formation density function

(9)

where the is the inverse function of vehicle position
and denotes the derivative with respect to the function’s

only argument.
Theorem 1:: Consider the closed-loop system

(10)

(11)

(12)
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with the free BCs

(13)

(14)

where and are
chosen such that

, and . There exists
such that, for all , there exists a periodic solution

of period in and with the
property that

(15)

where

(16)

(17)

(18)

(19)

(20)

such that whenever the quantities

(21)

(22)

are sufficiently small, the solution ex-
ponentially converges to in

norm.
Proof : We start the proof by defining the error variable

(23)

where is the location of the source, and the new time variable

(24)

The resulting dynamics become

(25)

(26)

(27)

with BC

(28)

The average error system is

(29)

(30)

with BC

(31)

(32)

The equilibrium profile of the average error system (29) –(32) is

(33)

where is given in (16).
We shift the system state by its equilibrium profile with

the transformations and
, which results in the following

dynamics:

(34)

(35)

with BC

(36)
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(37)

Linearizing the averaged error system produces

(38)

(39)

with BC

(40)

(41)

By using Lemma A.1 in Appendix A, where
and , we get that the

averaged error system has an exponentially stable equilibrium.
By applying [29, Th. 3.6, Ex. 6.4] (details in Appendix B), we
can state that there exists such that for all , there
exists a periodic solution of period

in and with the property that

(42)

so that the solution locally exponentially con-
verges to in norm.
Agmon’s inequality combined with Young’s inequality yields

(43)

By applying (43) to (42) , we get the bound (15).
Now, we take a look at how the parameters affect the density

function.
Proposition 2:: The averaged equilibrium (16)–(20) has the

following formation density function

(44)

where and are given in (17) and (18).
Proof : We start by taking the vehicle position function that

has the form

(45)

Fig. 1. Vehicle density function for � � � and ���� � ���� ��.

and solving (45) for to obtain

(46)

We use (19) to rewrite in terms of and differentiate both
sides with respect to to obtain

(47)

and then, simply solve for density function
.

Note that since is monotonic, there always exists an
inverse function .

Fig. 1 shows two density plots with the parameters chosen in a
way to make for the solid black line and
for the dashed blue line with and for both.
Fig. 1 shows that the vehicles with higher value of squeeze
toward the maximum and the vehicles with lower values of

spread out more.
We consider the simple case of constant to show the

effect of and on the density function at . The for-
mula for density function at with constant is given by

, where it can be
noted that as increases so does the density function at ,
while the opposite is true for .

IV. FIXED ANCHORS

In this section, we highlight the differences in the analysis
of the fixed anchor case from the free anchor case. The main
differences between the two cases are that the fixed anchor case
forces the formation deployment profile to be between and

, which, in turn, causes the density function to be in the same
range. Unlike in the free anchor case, in the fixed anchor case,
the anchors are stationary.
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Theorem 3:: Consider the system (10)–(12) with the fixed
BCs

(48)

where and . There exists such that for all
, there exists a periodic solution

of period in and with the property that

(49)

where

(50)

(51)

(52)

and given by (19) such that whenever the quantities

(53)

are sufficiently small, the solution ex-
ponentially converges to in

norm.
Proof : Similar to the proof for Theorem 1, we start by

applying (23) and (24) to system (10) and (12) with the BC (48),
and then, by averaging, we obtain

(54)

(55)

with BC

(56)

The average error system (54) –(56) has an equilibrium
, where

is given in (50). We omit the details of the averaging, but
would like to point out that the main difference in averaging
the fixed case from the free case is in the BC that makes the
equilibrium (50) have different coefficients.

By shifting the averaged system by the equilibrium and lin-
earizing, we get

(57)

(58)

with BC, .

Fig. 2. Block diagram of a single follower agent.

By using Lemma A.3 in Appendix A, where
and , we get that

the averaged error system has an exponentially stable equilib-
rium. By using [29, Theorem 3.6 and Example 6.4] (details in
Appendix B), we can state that there exists such that for
all , there exists a periodic solution
of period in and with the property that

(59)
so that the solution locally exponentially con-
verges to in norm.
By applying (43) to (59) , we get the bound (49).

The same result holds as in Proposition 2 for the averaged
equilibrium of the fixed anchor case (50)–(52) with the for-
mation density function given as (44) where and

are given in (51) and (52), respectively. As de-
rived earlier, the formation density function at position with
a constant , given by , where

increases with bigger and decreases as the difference between
and grows.

V. SIMULATION RESULTS

To implement the algorithm in Section II, we must first un-
derstand how to choose and tune the parameters , , , ,
, and . Higher values of and cause the attraction of the
vehicle toward the source to increase and the opposite is true
for . The parameters and are chosen such that the quantity

is sufficiently small. The cutoff frequency
for the washout filter has to be high enough to significantly get
rid of the dc term but smaller than the perturbation frequency .
In the free anchor case, the higher the ratio , the farther
the anchor vehicle will settle from the source, thereby causing
the formation to spread out.

We discretize the continuous model (3) to implement the al-
gorithm. The two anchor agents do not require any modification
of their control laws (5)-- (7) since they do not include any par-
tial differentiation with respect to the agent index in their control
law. The state variables and become and

, where and is the number
of agents. We denote the two anchor agents’ states as
and , and the interior seeking agents’ states as .

We discretize the seeking agents’ control laws (3) by using
three-point central differencing to approximate the spatial
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Fig. 3. Double y-axis plots of the vehicle trajectories, showing time scale on the left y-axis, the signal field strength on the right y-axis, and the location of the
vehicles on the x-axis. (a) Agent deployment with fixed anchors. (b) Agent deployment with free anchors.

Fig. 4. (a) Agent deployment with free anchors starting far from the equilibrium with linearly increasing parameters � and �. (b) Group of 11 agents using free
anchor case to achieve seeking of a moving source.

derivatives, obtaining
, which can be rearranged as

(60)
where . The washout filter becomes

, where is the sensor reading of agent .
Fig. 2 shows the block diagram for one follower agent.

The signal field parameters for plots in Fig. 3 are
, and . We apply (60), where

, and , for all follower agents
and for the anchor agents to simulate the
fixed agent case on 11 agents. Fig. 3(a) shows the evolution of a
group of autonomous vehicles, with fixed boundary agents, all
released equidistantly between and . The agents deploy
more densely around the signal source (peak) than away from
the source that is consistent with the form of the density func-
tion (44), where and are given in (51)
and (52), respectively.

We simulate the free BC case by using

(61)

(62)

and (60), where , and h have the same value as the first
simulation and . Fig. 3(b) shows the evolution of a group
of 11 autonomous vehicles, with free boundary control, released
starting with the anchor agents at position 0 and 0.1 and the
follower agents spread equally between them. The deployment
density is consistent with the theoretically predicted solid curve
in Fig. 1.

The simulation in Fig. 4 is produced with the same parameters
as the simulation shown in Fig. 3(b), except that in Fig. 4(a), the
ES parameters and, and
in Fig. 4(b), the source is moving according to

, where , and .
Fig. 4(a) shows how the increasing of the parameters and
with respect to the agents index pulls the agents with a higher

closer to the source. Fig. 4(b) shows how the algorithm handles
a moving source.

VI. CONCLUSION

We have introduced algorithms that expand the capability
of previous single-agent source seeking algorithms. The new
multiagent source seeking algorithms cover the area around the
source in such a manner that the highest density of agents is
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achieved at the source and the density decreases away from the
source. This form of deployment is achieved by combining stan-
dard ES with consensus-type ideas, namely, by using algorithms
that are simultaneously driven by the local signal strength and
diffusion feedback, which employs the distance to the nearest
agents. While diffusion aims to place an agent exactly halfway
between its neighbors, ES aims to pull the agent closer to the
source. In the presence of anchor agents that deploy some dis-
tance apart, the result is that agents deploy more densely near
the source than away from the source.

Of interest for future research is to extend the present algo-
rithms to the stochastic case, namely, to replace the sinusoidally
forced ES algorithms by ES algorithms forced by white noise
[5 ]. In addition, it is of interest to extend the current results for
1-D formations in 1-D space to higher dimensional formations
in higher dimensional space. Finally, it is of interest to extend
the present results to nonholonomic vehicles.

APPENDIX A
TECHNICAL LEMMAS

Lemma A.1:: Consider the following system

(63)

(64)

with BCs

(65)
where and are strictly positive
bounded functions, and satisfies

. The system (63) –(65) is exponentially stable at the
equilibrium , i.e., there exists and
such that for all

(66)

where

(67)

Proof : Let be the Lyapunov functional

(68)

where is a positive scalar to be determined. Computing the
derivative of gives

(69)

By integrating the first term by parts, we obtain

(70)

Substituting (63)–(65) yields

(71)

The second term is negative and can be removed. Integrating by
parts on the third term of (71) gives

(72)

We now bound by applying the Cauchy–Schwarz and
Young’s inequality to the third and last terms with the param-
eters

(73)

By applying Poincare inequality in the last term that states
letting

, and choosing and , we
get

(74)
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By selecting the analysis parameters , we
find

(75)

where . From the comparison lemma [30] and
Lemma A.2, we have

(76)

where and
. The result (66) is obtained from (76) with

.
Lemma A.2:: There exists and such that

(77)

where and are shown (67) and (68), respectively.
Proof : With , the RHS of the (77)

is immediate. Rewriting by using Poincare inequality

(78)

we obtain the LHS of (77), with
.

Lemma A.3: Consider the following system:

(79)

(80)

with BCs, and where
, and are strictly positive bounded

functions . The system (79)–(80) is exponentially
stable at the equilibrium , i.e., there exists
such that for all

(81)

where
and is given in the proof.

Proof : Computing the derivative of gives us

(82)
and by substituting (79) and (80), we obtain

(83)

By integrating by parts on the first term and using the
Cauchy–Schwarz and Young’s inequality with the param-
eter on the last term, we get

(84)

Given the BCs, the first term is zero. The second term is negative
and can be removed. By combining the common terms, we get

(85)

Letting
and choosing

and , we get

(86)

where . By solving (86) for , we get
(81).

APPENDIX B
AVERAGING IN INFINITE DIMENSIONS

We rewrite the system as with
. For PDE system (10)–(14) with dynamic

BC, , and the operators are given as
with the domain of

and
, where

are abs. cont.,

(87)

(88)
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(89)

is abs. cont.

(90)

(91)

(92)

(93)

(94)

(95)

Similarly, for the PDE system (10)– (12) and (48) with
Dirichlet BC, and the operators are given as

with the domain of
and ,

where , and are given in (87)–(92).
For both cases, the linear operator generates an analytic

semigroup and is periodic in and continuously differen-
tiable; therefore, the conditions needed to apply [29, Theorems
3.6] are satisfied.
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