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We consider an electrohydraulic valve system (EHVS) model with
uncertain parameters that may possibly vary with time. This is a
nonlinear third order system consisting of two clearly separated
subsystems, one for the piston position and the other for the cham-
ber pressure. The nonlinearities involved are flow-pressure char-
acteristics of the solenoid valves, the pressure dynamics of the
chamber due to varying volume, and a variable damping nonli-
nearity. We develop a parametric model that is linear in the
unknown parameters of the system using filtering. We deal with a
nonlinear parameterization in the variable damping term using
the Taylor approximation. We design a parameter identifier,
which employs a continuous-time unnormalized least-squares
update law with a forgetting factor. This update law exponentially
converges to the true parameters under a persistence of excitation
condition, which is satisfied due to the periodic regime of opera-
tion of EHVS. We present simulation results that show good fol-
lowing of unknown parameters even with the presence of sensor
noise. [DOI: 10.1115/1.4004780]

Keywords: automotive control, electrohydraulic valves, system
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1 Introduction

Hydraulic actuators are used throughout industry in a wide
number of applications. With a small size and a high force-to-
mass ratio, the actuators have found applications in electrohy-
draulic positioning [1], flight control surfaces [2], and active sus-
pension control [3]. This paper analyzes a hydraulic system,
which replaces the conventional mechanical camshaft on engines.
The electrohydraulic valvetrain system (EHVS) is one of the most
flexible options for variable valve timing in automotive engines.

Normally, valve timings are constrained to the motion of the
camshaft; however, EHVS valve timings are fully independent of
the crankshaft position. This flexibility allows cycle-to-cycle con-
trol of fuel intake and waste exhaust, which leads to benefits such
as improved fuel economy and lower exhaust emissions. Addi-
tionally, at low-to-moderate engine speeds, the timing can be opti-

mized to improve full load torque as discussed by Denger and
Mischker [4].

An alternate solution to the camless engine is an electro-
mechanical valve (EMV), which is discussed in the paper by Wang
et al. [5]. Like EHVS, with appropriate control schemes, EMV offers
improvements to standard internal combustion engine performance
as discussed by Pischinger et al. [6]. However, there are difficulties
in achieving soft landings with the EMV actuator (Wang et al., [5]).
Peterson and Stefanopoulou [7] address the high impact velocities
via an extremum seeking method based on microphone measure-
ments. EHVS addresses those problems with a variable damping
mechanism that increases the damping as the valve comes to a close.

Because of the wide range of industrial applications, the past
work in hydraulic system control has utilized various control tech-
niques. For instance, FitzSimons and Palazzolo [8] used linear con-
trol theory and Vossoughi and Donath [9] utilized feedback
linearization in their respective hydraulic control problems.
Recently, quantitative feedback theory, in Pachter et al. [2] and
Niksefat and Sepehri [10], and backstepping design technique (Yu
et al., [11]) have been used to create robust controllers. However,
it is in Alleyne and Hedrick [3] where nonlinear adaptive control is
applied in the presence of parametric uncertainties. They show,
experimentally, how an active nonlinear adaptive control scheme
improves performance over a nonadaptive scheme. In addition,
Alleyne and Liu [12] developed simplifications to their control
scheme without too much performance loss. Also Yao et al. [13]
utilized an adaptive robust control to overcome both parametric
uncertainties and uncertain nonlinearities. With their adaptive
robust motion control algorithm, they achieved more than a order
of magnitude reduction in tracking errors over a proportional-
integral-derivative motion controller.

Parameters vary during operation of an EHVS. For example,
the bulk modulus is dependent on pressure and temperature (Yu
et al. [14]). Likewise, fluid density, damping coefficients, and
other parameters of the valve model are uncertain and dependent
on operating conditions. For this reason, we develop a model-
based on-line parameter identification scheme for EHVS. Given
the number of parameters involved, achieving uniformity in their
rates of convergence is nontrivial. Uniformity is critical because
the slowest component of the parameter vector limits the useful-
ness of the entire parameter estimator. To achieve uniformity in
the convergence of our parameter estimator, we employ the least-
squares approach. A forgetting factor is used to keep the adaptation
gains from converging to zero with time. We achieve exponential
convergence of the parameter estimates thanks to the inherent per-
sistency of excitation in automotive valve applications.

Our contribution is in developing the estimation algorithm. This
development involves modeling of variable damping in the valve, a
suitable parametrization of the model so that the total number of esti-
mated parameters is minimal, suitable filtering of measured signals
such that some nonlinearities arising in the model appear only as
known quantities in the regressor, and simulation tests of the algo-
rithm under a realistic valve cycle and under measurement noise.

We start with the introduction of the model in Sec. 2. In Sec. 3,
we develop the variable damping model. In Sec. 4, we create para-
metric models of the two subsystems, which is necessary for us to
approach the synthesis of parameter identifiers. In Sec. 5, we
introduce the identifiers and the least-squares update law. Here,
we present the algorithms that allow on-line estimation of the var-
ious parameters, and briefly discuss the role of forgetting factor in
stable tracking of slowly varying parameters. In Sec. 6 and in the
Appendix, we present the analysis of stability of the identifier. In
Sec. 7, we present simulation results for the identifier, in the pres-
ence of slowly varying parameters and sensor noise.

2 Model of EHV System

Consider the model of the EHVS system based on the Fig. 1
given by two differential equations

Mt€xp ¼ Ap1
P1 � Ap2

Ps � Fo � B _xp � RB (1)
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Q1 � Q2 ¼ _V1 þ
V1

be

_P1 (2)

and three algebraic equations

V1 ¼ Vo1
þ Ap1

xp (3)

Q1 ¼ Cd1w1xv1sgn Ps � P1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 Ps � P1j j

q

s
(4)

Q2 ¼ Cd2w2xv2sgn P1 � Prð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 P1 � Prj j

q

s
(5)

where the model variables are defined in Table 1. The system has
three states, P1, xp, _xp, two inputs that are available to the de-
signer, xv1

, xv2
, and three inputs that are not available to the de-

signer, Ps, Pr, F0. The variables V1, Q1, and Q2 algebraically
depend on the states variables and inputs. The remaining quanti-
ties are system parameters, among which only the parameters V01

,
Mt, Ap1

, and Ap2
are assumed to be known precisely.

This model is physics based. The solenoid valves xv1
and xv2

are
considered to be the discrete inputs of the system. Solenoid valve
xv1

is normally closed, and the other solenoid valve is normally
open. Pohl et al. [15] have done work in modeling the switching
valve dynamics; however, in this model, those input dynamics are
neglected. In order to create movement in the system, valve xv2

closes while xv1
opens letting high pressure into the top chamber.

The difference in surface area (Ap1<Ap2) creates downward
movement in the system. When both valves are closed, the lift is
held in a steady state. To close the valve xv2

is opened exposing
the top chamber to the reservoir pressure and forcing upward
movement. There is an inclusion of variable damping term RB,
which is responsible for the soft seating of the valve. This term
will be introduced in Sec. 3.

It may appear that there are seven uncertain physical parame-
ters, be, B, Cd1

, Cd2
, w1, w2, and q. However, only four can be

identified independently from the measured signals. The identifia-
ble terms are the damping of the valve piston B found in Eq. (1),
the compressibility coefficient be found in Eq. (2), and the

“combination” of coefficients Cd1
w1

ffiffi
2
q

q
and Cd2

w2

ffiffi
2
q

q
found in

Eqs. (4) and (5), respectively. The solenoid valve discharge coeffi-
cients, area gradients of the solenoid valve ports, and the density
of the hydraulic fluid cannot be separately identified and therefore
must be lumped together.

3 Model of Variable Damping Nonlinearity

Equation (1) contains the variable damping term RB. The pur-
pose of variable damping is to soften the closing of the valve. The
physical design of the valves (proprietary) ensures that damping is
present in the “closing direction” of travel of a valve, immediately
before the valve closes, namely, only for positive velocities and
small displacements of the valve piston.

To model the effect of variable damping as a swift increase of
damping as the valve comes to close, we introduce a phenomeno-
logical model of the variable damping in the following form:

RBðxp; _xpÞ ¼
_xp � _xp

�� ��
2

D

Db þ x2k
p

(6)

This nonlinear force acts as damping, as it is velocity dependent,
but the damping value is a function of position.

The velocity term
_xp� _xpj j

2
ensures that the variable damping force

is only active during the closing of the valve. The displacement-

dependent damping coefficient D
Dbþx2k

p
has small values when the

valve is open by an appreciable amount.
The terms (D, Db, and k) offer flexibility in the approximation

of variable damping. Figure 2 shows the effects of varying D, Db,
and k. Increasing Db increases the distance from zero that variable
damping goes into effect. The maximum gain approaches the ratio

of D
Db

. Finally, a larger k creates a more step-like response.

Equation (6) gives flexibility in the phenomenological model-
ing of RB. However, since the unknown parameter Db appears
nonlinearly, creating a linear parametric model for estimation of
Db poses a problem. To achieve this, we take a Taylor expansion
of RB about Db at the estimate D̂b, which yields

Fig. 1 Schematic of the EHVS system

Table 1 Nomenclature for the EHVS model

Nomenclature

Mt mass of the valve piston
€xp acceleration of the valve piston
_xp velocity of the valve piston
xp position of the valve piston
Ap1 area of the top of the valve piston
Ap2 area of the bottom of the valve piston
xv1 opening of solenoid valve 1
xv2 opening of solenoid valve 2
V1 chamber volume
V01 chamber volume of closed valve
Ps supply pressure
P1 chamber pressure
Pr reservoir pressure
Cd1 discharge coefficient of solenoid valve 1
Cd2 discharge coefficient of solenoid valve 2
w1 area gradient of port 1
w2 area gradient of port 2
q density of hydraulic fluid
B damping of valve piston
be compressibility coefficient
F0 dead force on valve
RB variable damping

Fig. 2 Dependence of D
Dbþx2k

pð Þ on D, Db, k, and xp
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RB �
_xp � _xp

�� ��
2

D
1

D̂b þ x2k
p

þ �Db þ D̂b

D̂b þ x2k
p

� �2

0
B@

1
CA

�
_xp � _xp

�� ��
2

D
2D̂b þ x2k

p � Db

D̂b þ x2k
p

� �2

0
B@

1
CA

�
_xp � _xp

�� ��
2

D
2D̂b þ x2k

p

D̂b þ x2k
p

� �2
� Db

D̂b þ x2k
p

� �2

0
B@

1
CA (7)

The system is now linear in the unknown term Db, noting that D̂b

is an estimate of that parameter. Substituting Eq. (7) into Eq. (1)
yields

Mt€xp ¼ Ap1
P1 � Ap2

Ps � Fo � B _xp

�
_xp � _xp

�� ��
2

D
2D̂b þ x2k

p

D̂b þ x2k
p

� �2
� Db

D̂b þ x2k
p

� �2

0
B@

1
CA

2
64

3
75 (8)

We use Eq. (8) as the parametric model for our identifier design
and in the convergence analysis in Proposition 1. However, in our
simulation tests, we use the nonlinearly parameterized model Eqs.
(1) and (6).

4 Parametric Model

The system’s two differential Eqs. (2) and (8) are now linear in

the parameters be, B, D, Db, Cd1
w1

ffiffiffiffiffiffiffiffi
2=q

p
, and Cd2

w2

ffiffiffiffiffiffiffiffi
2=q

p
. How-

ever Eqs. (2) and (8) involve the derivative signals €xp, _xp, _P1, and
_V1, which are noisy. Unfortunately, _xp appears nonlinearly (and

nonsmoothly) in Eq. (8) and therefore must be treated as measura-
ble in the parametric model. Filtering Eqs. (2) and (8) with a sta-
ble first order low-pass filter of the form 1

sþk creates a suitable
parametric model for identification.

After filtering Eq. (8) we get the parametric model

Mt
k

sþ k
_xp � _xp

� �
þ 1

sþ k
Ap1

P1 � Ap2
Ps

� 	
¼ B

s

sþ k
xp

� �

þ 1

sþ k
Fo þ D

1

sþ k

_xp � _xp

�� ��� 	
D̂b þ x2k

p

� �
2 D̂b þ x2k

p

� �2

2
64

3
75

0
B@

1
CA

� DDb
1

sþ k

_xp � _xp

�� ��
2 D̂b þ x2k

p

� �2

2
64

3
75

0
B@

1
CA

(9)

In the absence of any information on F0, we treat 1
sþkFo as stochas-

tic noise; otherwise, it can be moved to the left as a known signal.
Aside from B, D, and Db all the signals in the model (9) are avail-
able and linear in the unknown parameters.

Conversion of Eq. (2) into a parametric model requires us to
first rewrite it as follows:

d

dt
P1 þ be

d

dt
ln V1

¼ beCd1w1

ffiffiffi
2

q

s
xv1sgn Ps � P1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps � P1j j

p
V1

� beCd2w2

ffiffiffi
2

q

s
xv2sgn P1 � Prð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 � Prj j

p
V1

(10)

Note that the signals P1, V1, Ps, Pr, xv1
, and xv2

are available (ei-
ther measured or available as control inputs). Therefore the model

Eq. (10) is linear in the unknown parameters be, beCd1
w1

ffiffi
2
q

q
, and

beCd2
w2

ffiffi
2
q

q
but again requires some filtering due to the unavail-

ability of the time derivatives of P1 and ln V1. Applying the filter
1

sþk to Eq. (10), we create the parametric model

P1 �
k

sþ k
P1 ¼ be

k
sþ k

ln V1½ � � ln V1

� �

þ beCd1w1

ffiffiffi
2

q

s
1

sþ k
xv1sgn Ps � P1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps � P1j j

p
V1

" # !

� beCd2w2

ffiffiffi
2

q

s
1

sþ k
xv2sgn P1 � Prð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 � Prj j

p
V1

" # !
(11)

5 Identifier Design

The parameter identification problem is now separated into two
three-dimensional identification problems, Eq. (9) from which we
estimate B, D, and DDb, and Eq. (11) from which we estimate be,

beCd1
w1

ffiffiffiffiffiffiffiffi
2=q

p
, and beCd2

w2

ffiffiffiffiffiffiffiffi
2=q

p
.

Both problems involve vector parameterizations. First, we
introduce the parameter vectors

h1 ¼
h11

h12

h13

2
4

3
5 ¼ B

D
DDb

2
4

3
5 (12)

and

h2 ¼
h21

h22

h23

2
4

3
5 ¼

be

beCd1
w1

ffiffiffi
2

q

r

beCd2
w2

ffiffiffi
2

q

r
2
66664

3
77775 (13)

The regressor vectors U1 and U2 are defined as

U1 ¼

s

sþ k
xp

1

sþ k

_xp � _xp

�� ��� 	
2D̂b þ x2k

p

� �
2 D̂b þ x2k

p

� �2

2
64

3
75

� 1

sþ k

_xp � _xp

�� ��
2 D̂b þ x2k

p

� �2

2
64

3
75

2
666666666664

3
777777777775

(14)

and

U2 ¼

k
sþ k

ln V1½ � � ln V1

1

sþ k
xv1sgn Ps � P1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps � P1j j

p
V1

" #

� 1

sþ k
xv2sgn P1 � Prð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1 � Prj j

p
V1

" #

2
666666664

3
777777775

(15)

Combining the regressor and the parameter vectors, we get the
quantity

Y ¼ UTh (16)

which for the two respective problems is defined as

Y1 ¼ Mt
k

sþ k
_xp � _xp

� �
þ 1

sþ k
Ap1

P1 � Ap2
Ps

� 	
(17)

and
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Y2 ¼ P1 �
k

sþ k
P1 (18)

To estimate the parameter vectors, we employ the unnormalized least-
squares with forgetting factor update law (Ioannou and Sun, [16])

_̂h ¼ CU Y � UT ĥ
� �

(19)

� _C ¼ bC� CUUTC (20)

where the second equation is a Riccati equation for the gain ma-
trix C(t) with an initial condition C(0) chosen as positive definite
and symmetric and b< 0 is the forgetting factor. Clearly, for our
two parametric models, we employ two identifiers

_̂h1 ¼ C1U1 Y1 � UT
1 ĥ1

� �
; _C1 ¼ b1C1 � C1U1U

T
1 C1 (21)

and

_̂h2 ¼ C2U2 Y2 � UT
2 ĥ2

� �
; _C2 ¼ b2C2 � C2U2U

T
2 C2 (22)

Looking at Fig. 3, the identifier has four main parts: the filter
which provides the values for U and Y, the estimation error, the
Riccati equation which determines the values for C, and the
update law which provides the estimate ĥ.

We show in Sec. 6 that the update law guarantees that ĥðtÞ con-
verges to the true value h (in the absence of noise) if the regressor
vector U(t) is “persistently exciting.” The square-wave character
of the input signals in the EHVS application helps ensure persist-
ence of excitation.

6 Identifier Stability

With b¼ 0, Eq. (20) is referred to as the “pure” least-squares
algorithm. In a pure least-squares algorithm, the Riccati Eq. (20)
will typically tend to become singular as time advances. In an
environment in which the unknown parameters are static this
would be acceptable, however, with EHVS there is a possibility of
slow changes in the true parameters. To keep C(t) from becoming
illconditioned the forgetting factor is employed, with b< 0.

Fig. 3 Estimator block diagram

Table 2 Parameter values used in the simulation

Parameter Values

Mt 1 Mass
Ap1 20 Area
Ap2 10 Area
xv1, xv2 1 Length
V01 5 Volume
Ps 250 Pressure
Pr 10 Pressure
Cd1 10 Dimensionless
Cd2 10 Dimensionless
w1, w2 5 Length
q 10 Density
B 50 Damping
be 250 Pressure
D 60 Dimensionless
Db 0.01 Dimensionless
k 5 Dimensionless

Fig. 4 Measured system states in transient
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Having b< 0, the problem of C(t) becoming arbitrarily small in
a direction no longer exists. However, C(t) now can grow without
bound since _C may satisfy _C > 0 since bC< 0 and CUUTC is
only positive semidefinite. One solution to this issue is to modify
the algorithm by placing an upper bound on C. However, such
modifications are not necessary when U 2 L1 and U is persis-
tently exciting (Ioannou and Sun, [16], p. 213). The persistence of
excitation property of U guarantees that over an interval of time
the integral of�CUUTC is a negative definite matrix that counter-
acts the positive definite effect of bC.

Proposition 1. If U(t) is uniformly bounded and persistently
exciting, i.e., the exist constants a0< 0 and T0 such that

1

T0

ðtþT0

t

UðsÞUTðsÞds � a0I; 8t � 0 (23)

then for all ĥð0Þ 2 Rm, the following holds:

~hðtÞ
�� ��2 � M ~hð0Þ

�� ��2e�bt (24)

where

~h ¼ h� ĥ (25)

and

M ¼

1

kmin C0ð Þ
þ

supt�0kmax UðtÞUðtÞT
n o
b

min a0T0;
1

kmax C0ð Þ


 �
e�bT0

(26)

Please refer to Sec. 9 for a proof of Proposition 1
Remark 1. According to Proposition 1, exponential convergence

occurs when b< 0. In the case of a pure least-squares algorithm,
where b¼ 0, convergence of ĥðtÞ to h is not guaranteed to be ex-
ponential even when U is PE. It has been shown (Ioannou and
Sun, [16], p. 169) that

CðtÞ � 1

t� T0ð Þa0

I (27)

~hðtÞ
�� �� � C�1ð0Þ

t� T0ð Þa0

~hð0Þ
�� �� (28)

for all t<T0. Hence, only a polynomial decay rate is guaranteed
for the pure least-squares algorithm, even in the presence of per-
sistency of excitation. This is in contrast to the gradient algorithm,
with its fixed and positive definite adaptation gain matrix C, where
PE yields exponential convergence.

7 Simulations

We now present the simulations done of the plant Eqs. (1)–(5).
In this simulation, initial conditions were set to be xp(0)¼ 0,
_xpð0Þ ¼ 0, and P1ð0Þ ¼ ps=2. The parameter values used in the
simulation are given in Table 2. These values were chosen such
that the simulations produce the same qualitative behavior as
expected of the actual system. The true system values are
proprietary.

Looking at the system behavior (Fig. 4), the effect of variable
damping is evident. At the end of a closing event, the velocity
slows considerably. This creates a soft landing for the valve.

After verifying the stable operation of the system, we now
move to verify the condition (23) for exponential convergence of
the identifier. We numerically check if the regressor U of each
identifier is PE. Taking Eq. (23) and shifting the bounds of inte-
gration results in

1

T0

ðt

t�T0

UðsÞUTðsÞds � a0I (29)

which is satisfied if the following sufficient condition is satisfied

kmin

ðt

t�T

UðsÞUTðsÞds


 �
> 0 (30)

Looking at Fig. 5, both regressors satisfy the condition of Eq.
(30). Given that PE holds, the identifiers exponentially converge
to the true parameters in the absence of noise.

After verifying the convergence of the identifier, we employ
the update law Eqs. (19) and (20) where the regressor vectors U
are defined by Eqs. (14) and (15) and the quantities Y are defined
by Eqs. (17) and (18).

Fig. 5 Results of the test to determine the persistence of excitation of the regressors
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The initial value for the estimate D̂ð0Þ must be chosen with
care. In the parameter vector (12), there is no explicit estimate of
D̂b, only of D̂Db. Since the regressor vector U1 relies on the esti-
mate D̂b, we take

D̂b ¼
D̂Db

D̂

This implies that as D̂ approaches 0 the value D̂b will approach in-
finity. Therefore, if D̂ð0Þ is chosen too small there can be a failure
in the identifiers due to division by zero. The same care is not nec-
essary for the other estimates.

In the simulation, all true parameters except D and Db are
allowed to vary with time. After forty cycles there is a gradual
variation of 20% in the true parameters. In addition to the parame-
ter variation, sensor noise is injected into the state measurements,

Fig. 6 Parameters estimates ĥ1 and the associated C1 diagonal
terms

Fig. 7 Parameters estimates ĥ2 and the associated C2 diagonal
terms

064502-6 / Vol. 133, NOVEMBER 2011 Transactions of the ASME



which is on the order of 1% of the maximum of the state measure-
ment. Despite these violations of the idealized conditions of the
theory (noise and nonconstant parameters), most estimates converge
to within 5% of the true value within twenty cycles. However, it is no-
table that both h12 (i.e., D̂) and h13 (i.e., D̂Db) converge within five
cycles. As the true parameters change, the estimates follow the varia-
tion and stay within the 5%. These results are shown in Figs. 6 and 7.

Looking at Figs. 6 and 7, we see the trade-off in the choice of
the forgetting factor b. A larger b increases the speed of conver-
gence at the cost of an increased sensitivity to noise. Therefore, if
it is known beforehand how quickly the parameters vary, b could
be tuned appropriately.

In addition to the trade-off in the parameter estimates, C is also
affected by the choice of b. A larger b will reduce the time it takes
C to settle into stable oscillations, but also a larger b will also
increase the mean value of the stable oscillations. One phenom-
enon that we do not show here is the evolution of the off-diagonal
terms of the gain matrices, which grow symmetrically and self-
adjust to the excitation levels in the different channels of the
regressor vectors similarly to the diagonals of the matrices.

8 Conclusions

In this paper, we developed a successful adaptive on-line param-
eter estimator that operates in the presence of noise for the EHVS.
We first developed a model of the system and included an approxi-
mation of the variable damping. Then we proceeded to create the
parametric model through low-pass filtering of the states. Lastly we
used a least-squares estimator with forgetting factor to identify the
unknown parameters, even in the presence of measurement noise
and slowly varying parameters and despite the nonlinear parameter-
ization in the onset parameter of variable damping. This estimator
provides a basis for a future model-based control design.

As noted by Berghuis et al. [17], while least-squares adaptation
is fast relative to a gradient based method, the least-squares algo-
rithm is computational complex. However in a gradient based
methods, gain tuning of large sets of adjustable parameters becomes
a matter of heuristics, since the relative strength of different regres-
sor channels may not be a priori known, which is especially the
case when an identifier is used in adaptive control. If the least-
squares method is computationally too complex to run in real time,
the gain matrix C obtained as a long-time limit in simulations with
the least-squares algorithm can provide insight into the choice of an
appropriate constant gain matrix in a gradient based method.

Appendix

This section contains a detailed proof of Proposition 1.
Proof. Taking the inverse of Eq. (20) we have

_C�1 ¼ �bC�1 þ UUT (A1)

with initial condition

C�1
0 ¼ C�T

0 (A2)

which yields

C�1ðtÞ ¼ e�btC�1
0 þ

ðt

0

e�bðt�sÞUðsÞUTðsÞds :

Using the condition that U(t) is persistently exciting we can show
that for all t � T0

C�1ðtÞ �
ðt

0

e�bðt�sÞUðsÞUTðsÞds

¼
ðt

t�T0

e�bðt�sÞUðsÞUTðsÞds

þ
ðt�T0

0

e�bðt�sÞUðsÞUTðsÞds

� e�bT0a0T0I (A3)

For t � T0, we have

C�1ðtÞ � e�btC�1
0 � e�bT0C�1

0

� 1

kmaxðC0Þ
e�bT0 I

(A4)

Conditions Eqs. (A3) and (A4) imply that

C�1ðtÞ � c1I (A5)

for all t � 0, with

c1 ¼ min a0T0;
1

kmax C0ð Þ


 �
e�bT0 (A6)

For the upper limit we can use the boundedness of U and establish

C�1ðtÞ � C�1
0 þ sup

t�0

kmax UðtÞUðtÞT
n oðt

0

e�b t�sð ÞdsI

� c2I

(A7)

where

c2 ¼
1

kminðC0Þ
þ

supt�0kmax UðtÞUðtÞT
n o
b

(A8)

Combining (A5) and (A7) we get

c1I � C�1ðtÞ � c2I (A9)

with c1> 0, c2> 0 and therefore,

c�1
2 I � CðtÞ � c�1

1 I

This guarantees C;C�1 2 L1.

With ~h ¼ h � ~h and Y¼UTh we get

Y � UT ĥ ¼ UTh� UT ĥ ¼ UT ~h (A10)

which, after substitution into Eq. (19), yields

_~h ¼ �CUUT ~h (A11)

Now proceed with the following Lyapunov function

V ¼ ~hTC�1 ~h (A12)

Taking the derivative of Eq. (A12) in time yields

_V ¼ 2
_~h

T
C�1 ~hþ ~hT _C�1 ~h

Substituting Eqs. (A1) and (A11) into the previous equation
results in

_V ¼ �2~h
T
UUTCC�1 ~hþ ~h

T �bC�1 þ UUT
� 	

~h

¼ �~h
T
UUT ~h� ~h

T
bC�1 ~h � 0 (A13)

Since �~hTUUT ~h is negative definite and b is a positive scalar
value we bound (A13) by

_V � �bV (A14)

which could be rewritten as

VðtÞ � V0e�bt; 8t � 0 (A15)

Now we take the original Lyapunov equation (A12) and combine
it with the results of (A9) to bound V (t) as follows
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c1
~hðtÞ
�� ��2 � VðtÞ � c2

~hðtÞ
�� ��2 (A16)

Knowing that the upper bound of V(t) can be described with
(A15), from (A16) we get

~hðtÞ
�� ��2 � 1

c1

VðtÞ � 1

c1

V0e�bt (A17)

Finally, substituting c2
~hð0Þ
�� ��2 as the maximum value of V0, we

get the result

~hðtÞ
�� ��2 � c2

c1

~hð0Þ
�� ��2e�bt
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