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STOCHASTIC NASH EQUILIBRIUM SEEKING FOR GAMES WITH
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Abstract. We introduce a multi-input stochastic extremum seeking algorithm to solve the
problem of seeking Nash equilibria for a noncooperative game whose N players seek to maximize their
individual payoff functions. The payoff functions are general (not necessarily quadratic), and their
forms are not known to the players. Our algorithm is a nonmodel-based approach for asymptotic
attainment of the Nash equilibria. Different from classical game theory algorithms, where each
player employs the knowledge of the functional form of his payoff and the knowledge of the other
players’ actions, a player employing our algorithm measures only his own payoff values, without
knowing the functional form of his or other players’ payoff functions. We prove local exponential
(in probability) convergence of our algorithms. For nonquadratic payoffs, the convergence is not
necessarily perfect but may be biased in proportion to the third derivatives of the payoff functions
and the intensity of the stochastic perturbations used in the algorithm. We quantify the size of
these residual biases. Compared to the deterministic extremum seeking with sinusoidal perturbation
signals, where convergence occurs only if the players use distinct frequencies, in our algorithm each
player simply employs an independent ergodic stochastic probing signal in his seeking strategy,
which is realistic in noncooperative games. As a special case of an N-player noncooperative game,
the problem of standard multivariable optimization (when the players’ payoffs coincide) for quadratic
maps is also solved using our stochastic extremum seeking algorithm.
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1. Introduction. Seeking Nash equilibria in continuous games is a difficult
problem (see [14]). Researchers in different fields including mathematics, computer
science, economics, and system engineering have interest and need for techniques for
finding Nash equilibria. Most algorithms designed to achieve convergence to Nash
equilibria require modeling information for the game and assume that the players can
observe the actions of the other players. The first serious algorithm perhaps is [28],
in which a gradient-type algorithm is studied for convex games. Distributed iterative
algorithms are designed for the computation of equilibrium in [16] for a general class
of nonquadratic convex Nash games. In this algorithm, the agents do not have to
know each other’s cost functionals and private information as well as the parame-
ters and subjective probability distributions adopted by the others, but they have to
communicate to each other their tentative decisions during each phase of computa-
tion. A strategy known as fictitious play is one such strategy that depends on the
actions of the other players so that a player can devise a best response. A dynamic
version of fictitious play and gradient response is developed in [31]. In [38], a syn-
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chronous distributed learning algorithm is designed to the coverage optimization of
mobile visual sensor networks. In this algorithm, players remember their own actions
and utility values from the previous two times steps, and the algorithm is shown to
converge in probability to the set of restricted Nash equilibria. Other diverse engi-
neering applications of game theory include the design of communication networks in
[22, 1, 3, 29], integrated structures and controls in [27], and distributed consensus pro-
tocols in [5, 23, 30]. A comprehensive treatment of static and dynamic noncooperative
game theory can be found in [4].

Extremum seeking is a nonmodel-based real-time optimization approach for dy-
namic problems where only limited knowledge of a system is available. Since the
emergence of a proof of its stability [13], extremum seeking has been an active re-
search area both in applications [11, 17, 21, 24, 25, 37] and in further theoretical
developments [2, 7, 34, 35, 36]. Based on the extremum seeking approach with sinu-
soidal perturbations, in [12], Nash equilibrium seeking is studied for noncooperative
games with both finitely and infinitely many players. In [33], Nash games in mobile
sensor networks are solved using extremum seeking. Owing to certain advantages
of stochastic perturbations over the sinusoidal ones, in [19, 20], we investigated the
stochastic extremum seeking algorithm for the single perturbation input case.

In this work, a multi-input stochastic extremum seeking algorithm is developed
for finding Nash equilibria in N-player noncooperative games. First, to analyze the
convergence of the algorithm, a multi-input stochastic averaging theory is developed.
Here multi-input means multiscaled stochastic perturbation input. Most of the exist-
ing stochastic averaging theory focuses on the systems with the single-scaled stochastic
perturbation input [6, 8, 15, 18] or on two-time-scales systems with slow dynamics and
fast dynamics [32, 10]. There are few results on stochastic averaging for systems with
multiscaled stochastic perturbation inputs. For an N-player noncooperative game,
each player employs independently stochastic extremum seeking to attain a Nash
equilibrium. Similar to the deterministic case [9], the key feature of our approach
is that the players are not required to know the mathematical model of their payoff
function or the underlying model of the game. The players need only measure their
own payoff values. It is proved that under certain conditions, the actions of players
converge to a neighborhood of a Nash equilibrium. The convergence result is local
in the sense that convergence to any particular Nash equilibrium is assured only for
initial conditions in a set around that specific stable Nash equilibrium. Moreover,
convergence to a Nash equilibrium is biased in proportion to the third derivatives
of the payoff functions and is dependent on the intensity of stochastic perturbation.
Compared to the deterministic case, one advantage of stochastic extremum seeking is
that there is no need to choose different perturbation frequencies for each player and
each player only needs to choose his own perturbation process independently, which
is more realistic in a practical game with adversarial players. Finally, when all players
have the same quadratic payoff, the Nash equilibrium seeking problem for an N-player
noncooperative game reduces to a standard multiparameter extremum seeking prob-
lem. For this special case, we design a stochastic multiparameter extremum seeking
algorithm and analyze its convergence.

The paper is organized as follows: we introduce our general problem formulation
in section 2, state our algorithm and convergence results in section 3, and present the
convergence proof in section 4. We provide a numerical example for a two-player game
in section 5. Finally, we state our extremum seeking algorithm for multiparameter
quadratic static maps in section 6 and state our stochastic averaging theory for the
multi-input case in the appendix.
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2. Problem formulation. Consider an N-player noncooperative game where
each player wishes to maximize his payoff function of the general nonlinear form.
Assume the payoff function of player i is of the form

Ji = hi(ui, u−i),(2.1)

where ui is player i’s action, the action (strategy) space is the whole space R, u−i =
[u1, . . . , ui−1, ui+1, . . . , uN ] represents the actions of the other players, hi : RN → R
is smooth, and i ∈ {1, . . . , N}.

Our algorithm is based on the following assumptions.
Assumption 2.1. There exists at least one, possibly multiple, isolated stable Nash

equilibrium u∗ = [u∗
1, . . . , u

∗
N ] such that

∂hi

∂ui
(u∗) = 0,(2.2)

∂2hi

∂u2
i

(u∗) < 0(2.3)

for all i ∈ {1, . . . , N}.
Assumption 2.2. The matrix

Ξ =





∂2h1(u
∗)

∂u2
1

∂2h1(u
∗)

∂u1∂u2
. . . ∂2h1(u

∗)
∂u1∂uN

∂2h2(u
∗)

∂u1∂u2

∂2h2(u
∗)

∂u2
2

. . . ∂2h2(u
∗)

∂u2∂uN

...
...

. . .
...

∂2hN (u∗)
∂u1∂uN

∂2hN (u∗)
∂u2∂uN

· · · ∂2hN (u∗)
∂u2

N




(2.4)

is strictly diagonally dominant and hence, nonsingular.
By Assumptions 2.1 and 2.2, Ξ is Hurwitz.
In our scheme, player i has no knowledge of other players’ payoff hj (j #= i) and

actions uj (j #= i). He can measure only his own payoff hi. Our objective is to
design a stochastic extremum seeking algorithm for each player to approximate Nash
equilibrium.

3. Stochastic Nash equilibrium seeking algorithm. In our algorithm, each
player independently employs a stochastic seeking strategy to attain the stable Nash
equilibrium of the game. Player i implements the following strategy:

ui(t) = ûi(t) + aifi(ηi(t)),(3.1)

dûi(t)

dt
= kiaifi(ηi(t))Ji(t),(3.2)

where for any i = 1, . . . , N , ai > 0 is the perturbation amplitude, ki > 0 is the
adaptive gain, Ji(t) is the measured payoff value for player i, and fi is a bounded
smooth function that player i chooses, e.g., a sine function. ηi(t), i = 1, . . . , N, are
independent time homogeneous continuous Markov ergodic processes chosen by player
i, e.g., the Ornstein–Uhlenbeck (OU) process

(3.3) ηi =

√
εiqi

εis+ 1
[Ẇi] or εidηi(t) = −ηi(t)dt+

√
εiqidWi(t),
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Fig. 1. Stochastic extremum seeking scheme for a two-player noncooperative game.

qi > 0, εi are small parameters satisfying 0 < maxi εi < ε0 for fixed ε0 > 0, and Wi(t),
i = 1, . . . , N , are independent 1-dimensional standard Brownian motion on a com-
plete probability space (Ω,F , P ) with the sample space Ω, σ-field F , and probability
measure P .

System (3.2) is given by an ordinary differential equation with stochastic pertur-
bation (see [8]), namely, a stochastic ordinary differential equation, and its solution
can be defined for each sample path of the perturbation process (ηi(t), t ≥ 0), which
is given by Ito stochastic differential equation (3.3).

Figure 1 depicts a noncooperative game played by two players implementing the
stochastic extremum seeking strategy (3.1)–(3.2) to attain a Nash equilibrium.

To analyze the convergence of the algorithm, we denote the error relative to the
Nash equilibrium as

ũi(t) = ûi(t)− u∗
i .(3.4)

Then, we obtain an error system as

dũi(t)

dt
= kiρ

(1)
i (t)hi

(
u∗
i + ũi + ρ

(1)
i (t), u∗

−i + ũ−i + ρ
(1)
−i (t)

)
,(3.5)

where ρ(1)i (t) = aifi(ηi(t)), ρ(1)−i (t) = [a1f1(η1(t)), . . . , ai−1fi−1(ηi−1(t)),
ai+1fi+1(ηi+1(t)), . . . , aNfN (ηN (t))], ũ∗

−i = [ũ∗
1, . . . , ũ

∗
i−1,ũ

∗
i+1, . . . , ũ

∗
N ], and ũ−i =

[ũ1, . . . , ũi−1,ũi+1, . . . , ũN ].
If the players choose fi(x) = sinx for all i = 1, . . . , N , and ηi as independent OU

processes (3.3), we have the following convergence result.
Theorem 3.1. Consider the error system (3.5) for an N -player game un-

der Assumptions 2.1 and 2.2. Then there exists a constant a∗ > 0 such that for
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max1≤i≤N ai ∈ (0, a∗) there exist constants r > 0, c > 0, γ > 0 and a function
T (ε1) : (0, ε0) → N such that for any initial condition |Λε1(0)| < r and any δ > 0,

lim
ε1→0

inf
{
t ≥ 0 : |Λε1(t)| > c|Λε1(0)|e−γt + δ +O(max

i
a3i )
}
= ∞ a.s.(3.6)

and

lim
ε1→0

P
{
|Λε1(t)| ≤ c|Λε1(0)|e−γt + δ +O(max

i
a3i ) ∀t ∈ [0, T (ε1)]

}
= 1(3.7)

with

lim
ε1→0

T (ε1) = ∞,

where

Λε1(t) =



ũ1(t)−
N∑

j=1

d1jja
2
j , . . . , ũN(t)−

N∑

j=1

dNjja
2
j



 ,(3.8)





d1jj
...

dj−1
jj

djjj
dj+1
jj
...

dNjj





= −Ξ−1





1
2G0(qj)

∂3h1

∂u1∂u2
j
(u∗)

...
1
2G0(qj)

∂3hj−1

∂uj−1∂u2
j
(u∗)

1
6
G1(qj)
G0(qj)

∂3hj

∂u3
j
(u∗)

1
2G0(qj)

∂3hj+1

∂u2
j∂uj+1

(u∗)

...
1
2G0(qj)

∂3hN

∂u2
j∂uN

(u∗)





,(3.9)

and G0(qj) =
1
2 (1−e−q2j ), G1(qj) =

3
8−

1
2e

−q2j + 1
8e

−4q2j= 1
8 (1−e−q2j )2(e−2q2j +2e−q2j +

3).
Several remarks are needed in order to properly interpret Theorem 3.1. From

(3.6) and the fact |Λε1(t)| ≥ maxi |ũi(t)−
∑N

j=1 d
i
jja

2
j |, we obtain

lim
ε1→0

inf




t ≥ 0 : max
i






∣∣∣∣∣∣
ũi(t)−

N∑

j=1

dijja
2
j

∣∣∣∣∣∣




 > c|Λε1(0)|e−γt + δ +O(max
i

a3i )





= ∞ a.s.

By taking all the ai’s small, maxi |ũi(t)| can be made arbitrarily small as t → ∞.
The bias terms

∑N
j=1 d

i
jja

2
j defined by (3.9) appear complicated but have a simple

physical interpretation. When the game’s payoff functions are not quadratic (not
symmetric), the extremum seeking algorithms, which employ zero-mean (symmetric)
perturbations, will produce a bias. According to the formula (3.9), the bias depends
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on the third derivatives of the payoff functions, namely, on the level of asymmetry
in the payoff surfaces at the Nash equilibrium. In the trivial case of a single player
the interpretation is easy—extremum seeking settles on the flatter (more favorable)
side of an asymmetric peak. In the case of multiple players the interpretation is more
difficult, as each player contributes both to his own bias and to the other players’
biases. Though difficult to intuitively interpret in the multiplayer case, the formula
(3.9) is useful as it quantifies the biases.

The estimate of the region of attraction r can be conservatively taken as indepen-
dent of the ai’s, for ai’s chosen sufficiently small. This fact can be seen only by going
through the proof of the averaging theorem for the specific system (3.5). Hence, r is
larger than the bias terms, which means that for small ai’s the algorithm reduces the
distance to the Nash equilibrium for all initial conditions except for those within an
O(maxi a2i ) to the Nash equilibrium.

On the other hand, the convergence rate γ cannot be taken independently of the
ai’s, because the ai’s appear as factors on the entire right-hand side of (3.5). However,
by letting the ki’s increase as the ai’s decrease, independence of γ from the ai’s can
be ensured.

In the rare case where the error system (3.5) may be globally Lipschitz, we obtain
global convergence using the global averaging theorem in [18].

4. Proof of the algorithm convergence. We apply the multi-input stochastic
averaging theory presented in the appendix to analyze the error system (3.5). First,
we calculate the average system of (3.5).

Define χi(t) = ηi(εit) and Bi(t) =
1√
εi
Wi(εit). Then by (3.3) we have

dχi(t) = −χi(t)dt+ qidBi(t),(4.1)

where [B1(t), . . . , BN (t)]T is an N -dimensional standard Brownian motion on the
space (Ω,F , P ).

Thus we can rewrite the error system (3.5) as

dũi(t)

dt
= kiρ

(2)
i (t/εi)hi

(
u∗
i + ũi + ρ

(2)
i (t/εi), u

∗
−i + ũ−i + ρ

(2)
−i (t/ε−i)

)
,(4.2)

where ρ(2)i (t) = ai sin(χi(t)), ρ
(2)
−i (t/ε−i) = [a1 sin(χ1(t/ε1)), . . . , ai−1 sin (χi−1(t/εi−1)),

ai+1 sin(χi+1(t/εi+1)), . . . , aN sin(χN (t/εN ))].
Denote

εi =
ε1
ci
, i = 2, . . . , N(4.3)

for some positive real constants ci and consider the change of variable

Z1(t) = χ1(t), Z2(t) = χ2(c2t), . . . , ZN(t) = χ(cN t).(4.4)

Then the error system (4.2) can be transformed as one with single small parameter
ε1:

dũi(t)

dt
= kiρ

(3)
i (t/ε1)hi

(
u∗
i + ũi + ρ

(3)
i (t/ε1), u

∗
−i + ũ−i + ρ

(3)
−i (t/ε1)

)
,(4.5)

where ρ(3)i (t) = ai sin(Zi(t)), ρ
(3)
−i (t/ε1) = [a1 sin(Z1(t/ε1)), . . . , ai−1 sin (Zi−1(t/ε1)),

ai+1 sin(Zi+1(t/ε1)), . . . , aN sin(ZN (t/ε1))].
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For (χi(t), t ≥ 0) that is ergodic and has invariant distribution µi(dxi) =
1√
πqi

e
− x2

i
q2
i dxi

(see [26]), by Lemma A.2, the vector-valued process [Z1(t), . . . , ZN(t)]T is also ergodic
with invariant distribution (µ1 × · · ·×µN ). Thus by (A.4), we have the average error
system

(4.6)

dũave
i (t)

dt
= kiai

∫

RN

sin(xi)hi

(
u∗
i + ũave

i + ai sin(xi), u
∗
−i + ũave

−i + a−i sin(x−i)
)

µ1(dx1)× · · ·× µN (dxN ),

where a−i sin(x−i) = [a1 sin(x1), . . . , ai−1 sin(xi−1), ai+1 sin(xi+1), . . . , aN sin(xN )],
and µi is the invariant distribution of the process (χi(t), t ≥ 0) or (Zi(t), t ≥ 0).

The equilibrium ũe = [ũe
1, . . . , ũ

e
N ] of (4.6) satisfies

0 =

∫

RN

sin(xi)hi

(
u∗
i + ũe

i + ai sin(xi), u
∗
−i + ũe

−i + a−i sin(x−i)
)

(4.7)

µ1(dx1)× · · ·× µN (dxN )

for all i = {1, . . . , N}.
To calculate the equilibrium of the average error system and analyze its stability,

we postulate that ũe has the form

ũe
i =

N∑

j=1

bijaj +
N∑

j=1

N∑

k≥j

dijkajak +O(max
i

a3i ).(4.8)

By expanding hi about u∗ in (4.7) and substituting (4.8), the unknown coefficients bij
and dijk can be determined.

The Taylor series expansion of hi about u∗ in (4.7) for an N-player game is

hi(u
∗ + vi, u

∗
−i + v−i) =

∞∑

n1=0

· · ·
∞∑

nN=0

vn1
1 · · · vnN

N

n1! · · ·nN !

(
∂n1+···+nNhi

∂un1
1 · · · ∂unN

N

)
(u∗),(4.9)

where vi = ũe
i+ai sin(xi) and v−i = ũe

−i+a−i sin(x−i). Although for any i = 1, . . . , N ,
hi may not have its Taylor series expansion only by its smoothness, here we give just
the form of Taylor series expansion. In fact, we need only its third order Taylor
formula.

Since the invariant distribution µi(dxi) of OU process (χi(t), t ≥ 0) is 1√
πqi

e−
x2
i

qi dxi,

∫

R
sin2k+1(xi)µi(dxi) =

∫ +∞

−∞
sin2k+1(xi)

1√
πqi

e
−

x2
i

q2
i dxi(4.10)

= 0, k = 0, 1, 2, . . . ,
∫

R
sin2(xi)µi(dxi) =

∫ +∞

−∞
sin2(xi)

1√
πqi

e
−

x2
i

q2
i dxi(4.11)

=
1

2
(1 − e−q2i ) = G0(qi),
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∫

R
sin4(xi)µi(dxi) =

∫ +∞

−∞
sin4(xi)

1√
πqi

e
−x2

i
q2
i dxi(4.12)

=
3

8
− 1

2
e−q2i +

1

8
e−4q2i = G1(qi),

∫

R2

sin(xi) sin(xj)µi(dxi)× µj(dxj)(4.13)

=

∫ +∞

−∞

∫ +∞

−∞
sin(xi) sin(xj)

1√
πqi

e
−

x2
i

q2
i

1√
πqj

e
−

x2
j

q2
j dxidxj = 0,

∫

R2

sin2(xi) sin(xj)µi(dxi)× µj(dxj)(4.14)

=

∫ +∞

−∞

∫ +∞

−∞
sin2(xi) sin(xj)

1√
πqi

e
−

x2
i

q2
i

1√
πqj

e
−

x2
j

q2
j dxidxj = 0,

∫

R2

sin3(xi) sin(xj)µi(dxi)× µj(dxj)(4.15)

=

∫ +∞

−∞

∫ +∞

−∞
sin3(xi) sin(xj)

1√
πqi

e
−

x2
i

q2
i

1√
πqj

e
−

x2
j

q2
j dxidxj = 0,

∫

R2

sin2(xi) sin
2(xj)µi(dxi)× µj(dxj)(4.16)

=

∫ +∞

−∞

∫ +∞

−∞
sin2(xi) sin

2(xj)
1√
πqi

e
−x2

i
q2
i

1√
πqj

e
−

x2
j

q2
j dxidxj

=
1

4
(1− e−q2i )(1− e−q2j ) ! G2(qi, qj),

∫

R3

sin(xi) sin(xj) sin(xk)µi(dxi)× µj(dxj)× µk(dxk)(4.17)

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
sin(xi) sin(xj) sin(xk)

1√
πqi

e
−

x2
i

q2
i

1√
πqj

e
−

x2
j

q2
j

1√
πqk

e
−

x2
k

q2
k

× dxidxjdxk = 0,
∫

R3

sin(xi) sin
2(xj) sin(xk)µi(dxi)× µj(dxj)× µk(dxk)(4.18)

=

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
sin(xi) sin

2(xj) sin(xk)
1√
πqi

e
−

x2
i

q2
i

1√
πqj

e
−

x2
j

q2
j

1√
πqk

e
−

x2
k

q2
k

× dxidxjdxk = 0.

Based on the above calculations, substituting (4.9) into (4.7) and computing the
average of each term gives

0 = a2iG0(qi)ũ
e
i
∂2hi

∂u2
i

(u∗) + a2iG0(qi)
N∑

j )=i

ũe
j
∂2hi

∂ui∂uj
(u∗)(4.19)

+

(
a2i
2
G0(qi)(ũ

e
i )

2 +
a4i
6
G1(qi)

)
∂3hi

∂u3
i

(u∗)
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+ a2iG0(qi)ũ
e
i

N∑

j )=i

ũe
j
∂3hi

∂u2
i∂uj

(u∗)

+
N∑

j )=i

(
a2i
2
G0(qi)(ũ

e
j)

2 +
a2i a

2
j

2
G2(qi, qj)

)
∂3hi

∂ui∂u2
j

(u∗)

+
N∑

j )=i

N∑

k>j,k )=i

a2iG0(qi)ũ
e
j ũ

e
k

∂3hi

∂ui∂uj∂uk
(u∗) +O(max

i
a5i ),

or, equivalently,

0 = ũe
i
∂2hi

∂u2
i

(u∗) +
N∑

j )=i

ũe
j
∂2hi

∂ui∂uj
(u∗) +

(
1

2
(ũe

i )
2 +

a2i
6

G1(qi)

G0(qi)

)
∂3hi

∂u3
i

(u∗)(4.20)

+ ũe
i

N∑

j )=i

ũe
j
∂3hi

∂u2
i ∂uj

(u∗) +
N∑

j )=i

(
1

2
(ũe

j)
2 +

a2j
2
G0(qj)

)
∂3hi

∂ui∂u2
j

(u∗)

+
N∑

j )=i

N∑

k>j,k )=i

ũe
j ũ

e
k

∂3hi

∂ui∂uj∂uk
(u∗) +O(max

i
a3i ).

Substituting (4.8) into (4.19) and matching first order powers of ai gives



0
...
0



 = Ξ




b1i
...
bNi



 , i = 1, . . . , N,(4.21)

which implies that bij = 0 for all i, j since Ξ is nonsingular by Assumption 2.2. Simi-
larly, matching second order terms ajak (j > k) and a2j of aj and substituting bij = 0
to simplify the resulting expressions yields




0
...
0



 = Ξ




d1jk
...

dNjk



 , j = 1, . . . , N, j > k,(4.22)

and




0
...
0



 =





Ξ




d1jj
...

dNjj



+





1
2G0(qj)

∂3h1

∂u1∂u2
j
(u∗)

...
1
2G0(qj)

∂3hj−1

∂uj−1∂u2
j
(u∗)

1
6
G1(qj)
G0(qj)

∂3hj

∂u3
j
(u∗)

1
2G0(qj))

∂3hj+1

∂u2
j∂uj+1

(u∗)

...
1
2G0(qj)

∂3hN

∂u2
j∂uN

(u∗)









.(4.23)

Thus, dijk = 0 for all i, j, k when j #= k, and dijj is given by (3.9).
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Therefore, by (4.8), the equilibrium of the average error system (4.6) is

ũe
i =

N∑

j=1

dijja
2
j +O(max

i
a3i ).(4.24)

By the dominated convergence theorem, we obtain that the JacobianΨave = (ψij)N×N

of the average error system (4.6) at ũe has elements given by

ψij = ki

∫

RN

ai sin(xi)
∂hi

∂uj

(
u∗
i + ũe

i + ai sin(xi), u
∗
−i + ũe

−i(4.25)

+ a−i sin(x−i))µ1(dx1)× · · ·× µN (dxN )(4.26)

= kia
2
iG0(qi)

∂2hi

∂ui∂uj
(u∗) +O

(
max

i
a3i
)

and is Hurwitz by Assumptions 2.1 and 2.2 for sufficiently small ai, which implies
that the equilibrium (4.24) of the average error system (4.6) is locally exponen-
tially stable. By the multi-input averaging theorem in the appendix, the theorem
is proved.

5. Numerical example. We consider two players with payoff functions

J1 = −u3
1 + 2u1u2 + u2

1 −
3

4
u1,(5.1)

J2 = 2u2
1u2 − u2

2 .(5.2)

Since J1 is not globally concave in u1, we restrict the action space to A = {u1 ≥ 1/3,
u2 ≥ 1/6} in order to avoid the existence of maximizing actions at infinity or Nash
equilibria at the boundary of the action space. (However, we do not restrict the
extremum seeking algorithm to A. Such a restriction can be imposed using parameter
projection but would complicate our exposition considerably.)

The game (J1, J2) yields two Nash equilibria: (u∗1
1 , u∗1

2 ) = (0.5, 0.25) and (u∗2
1 , u∗2

2 )
= (1.5, 2.25). The corresponding matrices are

Ξ1 =

[
−1 2
2 −2

]
and Ξ2 =

[
−7 2
6 −2

]
,

where Ξ1 is nonsingular but not Hurwitz, while Ξ2 is nonsingular and Hurwitz, and
both matrices are not diagonally dominant. From the proof of the algorithm con-
vergence, we know that diagonal dominance is only a sufficient condition for Ξ to be
nonsingular and is not required in general.

The average error system for this game is

dũave
1 (t)

dt
= k1a

2
1G0(q1)(−3ũave2

1 − 6u∗
1ũ

ave
1 + 2ũave

2 + 2ũave
1 )− k1a

4
1G1(q1),(5.3)

dũave
2 (t)

dt
= k2a

2
2G0(q2)(−2ũave

2 + 2ũave2

1 + 4u∗
1ũ

ave
1 ) + 2k2a

2
1a

2
2G2(q1, q2),(5.4)
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where u∗
1 can be u∗1

1 or u∗2
1 . The equilibria (ũe

1, ũ
e
2) of this average system are

ũe
1 = 1− u∗

1 ±

√

(1− u∗
1)

2 − a21

(
G1(q1)

G0(q1)
− 2G0(q1)

)
,(5.5)

ũe
2 = 2− 2u∗

1 ± 2

√

(1− u∗
1)

2 − a21

(
G1(q1)

G0(q1)
− 2G0(q1)

)
(5.6)

− a21
G1(q1)

G0(q1)
+ 3a21G0(q1),

and their postulated form is

ũe,p
1 =

1

2(1− u∗
1)

(
G1(q1)

G0(q1)
− 2G0(q1)

)
a21 +O(max

i
a3i ),(5.7)

ũe,p
2 =

(
u∗
1

1− u∗
1

G1(q1)

G0(q1)
+

1− 3u∗
1

1− u∗
1

G0(q1)

)
a21 +O(max

i
a3i ).(5.8)

The corresponding Jacobian matrices are

Ψave =

[
(−6ũe

1 − 6u∗
1 + 2)γ1 2γ1

(2ũe
1 + 4u∗

1)γ2 −2γ2

]
,(5.9)

where γi = kia2iG0(qi), i = 1, 2, and their characteristic equation is given by λ2 +
α1λ+ α2 = 0, where

α1 = (6ũe
1 + 6u∗

1 − 2)γ1 + 2γ2,(5.10)

α2 = (2ũe
1 + u∗

1 − 1)4γ1γ2.(5.11)

Thus Ψave is Hurwitz if and only if α1 and α2 are positive. For sufficiently small a1,
which makes ũe ≈ (0, 0), α1 and α2 are positive for u∗

1 = 1.5, but for u∗
1 = 0.5, α2 is

not positive, which is reasonable because Ξ1 is not Hurwitz, but Ξ2 is Hurwitz. Thus,
(u∗1

1 , u∗1
2 ) = (0.5, 0.25) is an unstable Nash equilibrium, but (u∗2

1 , u∗2
2 ) = (1.5, 2.25) is

a stable Nash equilibrium. We employ the stochastic multi-input extremum seeking
algorithm given in section 3 to attain this stable equilibrium.

The top picture in Figure 2 depicts the evolution of the game in the ũ plane,
initialized at the point (u1(0), u2(0)) = (0, 3), i.e., at (ũ1(0), ũ2(0)) = (−1.5, 0.75).
Note that the initial condition is outside ofA. This illustrates the point that the region
of attraction of the stable Nash equilibrium under the extremum seeking algorithm is
not a subset ofA but a large subset of R2. The parameters are chosen as k1 = 14, k2 =
6, a1 = 0.2, a2 = 0.02, ε1 = 0.01, ε2 = 0.8. The bottom two pictures depict the two
players’ actions in stochastically seeking the Nash equilibrium (u∗

1, u
∗
2) = (1.5, 2.25).

From Figure 2, the actions of the players converge to a small neighborhood of the
stable Nash equilibrium.

In the algorithm, bounded smooth functions fi and the excitation processes
(ηi(t), t ≥ 0), i = 1, . . . , N , can be chosen in other forms. We can replace the
bounded excitation signal sin(ηi(t)) = sin(χi(t/εi)) with the signal HT (η̌i(t/εi)),
where η̌i(t) = [cos(Wi(t)), sin(Wi(t))]T is a Brownian motion on the unit circle (see
[19]), and G = [g1, g2]T is a constant vector.

Figure 3 depicts the evolution of the game in the ũ plane for games with Brownian
motion on the unit circle as perturbation. The initial conditions are the same with the
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0 5000 10000 15000 20000
0

0.5

1

1.5

2

Time (sec)

u1(t)

u∗
1

0 5000 10000 15000 20000
2

2.2

2.4

2.6

2.8

3

Time (sec)

u2(t)
u∗

2

Fig. 2. Stochastic Nash equilibrium seeking with an OU process perturbation. Top: evolution
of the game in the ũ plane. Bottom: two players’ actions.
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Fig. 3. Stochastic Nash equilibrium seeking with Brownian motion on the unit circle as pertur-
bation. Top: evolution of the game in the ũ plane. Bottom: two players’ actions.
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case of the OU process perturbation. The parameters are chosen as k1 = 5, k2 = 9,
a1 = 0.2, a2 = 0.04, ε1 = 0.02, ε2 = 0.02. From Figure 3, the actions of the players
also converge to a small neighborhood of the stable Nash equilibrium.

In these two simulations, a possibly different high-pass filter for each player’s
measurement on the payoff is used to improve the asymptotic performance but is not
essential for achieving stability (see [36]), which can also be seen from the following
stochastic multiparameter extremum seeking algorithm.

6. Multiparameter extremum seeking for static maps.

6.1. Stochastic multiparameter extremum seeking algorithm. Let f(θ)
be a function of the form

f(θ) = f∗ + (θ − θ∗)TP (θ − θ∗),(6.1)

where P = (pij)l×l ∈ Rl×l is an unknown symmetric matrix, f∗ is an unknown
constant, θ = [θ1, . . . , θl]T , and θ∗ = [θ∗1 , . . . , θ

∗
l ]

T . Any C2(Rl) function f(θ) with
an extremum at θ = θ∗ and with ∇2f #= 0 can be locally approximated by (6.1).
Without loss of generality, we assume that the matrix P is positive definite.

The objective is to design an algorithm to make |θ − θ∗| as small as possible, so
that the output y = f(θ) is driven to its minimum f∗. This problem is a special case
of a finite and multiplayer noncooperative game: all the players’ payoffs are the same
with a quadratic static map, and the corresponding matrix Ξ is 2P . Here, we do not
assume that Ξ, i.e., 2P , is strictly diagonally dominant. For the static map, we can
prove that the condition of strictly diagonal dominance is not necessary.

Denote θ̂j(t) as the estimate of the unknown optimal input θ∗j and let

θ̃j(t) = θ
∗
j − θ̂j(t)(6.2)

denote the estimation error.
We use stochastic perturbation to develop a gradient estimate for every parameter.

Let

θj(t) = θ̂j(t) + aj sin(ηj(t)),(6.3)

where aj > 0 is the perturbation amplitude and (ηj(t), t ≥ 0) is an OU process as in
(3.3).

By (6.2) and (6.3), we have

θj(t)− θ∗j = aj sin(ηj(t))− θ̃j(t).(6.4)

Substituting (6.4) into (6.1), we have the output

y(t) = f∗ + (θ(t) − θ∗)TP (θ(t)− θ∗),(6.5)

where θ(t)− θ∗ = [a1 sin(η1(t)) − θ̃1(t), . . . , al sin(ηl(t))− θ̃l(t)]T .
We design the parameter update law as follows:

dθ̂j(t)

dt
= −kjaj sin(ηj(t))(y(t) − ξi(t)),(6.6)

dξj(t)

dt
= −hjξj(t) + hjy(t),(6.7)

εjdηj(t) = −ηj(t)dt+
√
εjqjdWj(t),(6.8)
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where hj, kj , j = 1, . . . , l, are scalar design parameters. Different from the extremum
seeking algorithm in section 3, where we excluded the standard washout filter of the
output signal [13], which is not essential for convergence but helps performance, in this
section we use a washout filter s

s+hj
for each parameter, and the gradient estimation

for each parameter is based on the output s
s+hj

[y] = y(t)− ξj(t) of this filter.
Define χj(t) = ηj(εjt) and Bj(t) =

1√
εj
Wj(εjt). Then we have

dχj(t) = −χj(t)dt+ qjdBj(t),(6.9)

where Bj(t) is a 1-dimensional standard Brownian motion defined on the complete
probability space (Ω,F , P ), while [B1(t), . . . , Bl(t)]T is an l-dimensional independent
standard Brownian motion on the same space.

Define the output error variable ej(t) = ξj(t) − f∗, j = 1, . . . , l. Therefore, it
follows from (6.2), (6.5), (6.6), and (6.7) that we have the error dynamics

dθ̃j(t)

dt
= −dθ̂j(t)

dt
(6.10)

= −kjaj sin(ηj(t))((θ(t) − θ∗)TP (θ(t) − θ∗)− ej(t))
= −kjaj sin(χj(t/εj))((θ(t) − θ∗)TP (θ(t) − θ∗)− ej(t)),

dej(t)

dt
= hj(y(t)− f∗ − ej(t))(6.11)

= hj((θ(t)− θ∗)TP (θ(t)− θ∗)− ej(t)), j = 1, . . . , l.

Denote θ̃(t)= [θ̃1(t), . . . , θ̃l(t)]T and e(t) = [e1(t), . . . , el(t)]T . Then we have the
following result.

Theorem 6.1. Consider the static map (6.1) under the parameter update law
(6.6)–(6.8). Then the error system (6.10)–(6.11) is weak stochastic exponentially sta-
ble; i.e., there exist constants r > 0, c > 0, and γ > 0 such that for any initial
condition |Λε1

1 (0)| < r and any δ > 0

lim
ε1→0

inf
{
t ≥ 0 : |Λε1

1 (t)| > c|Λε1
1 (0)|e−γt + δ

}
= +∞ a.s.(6.12)

Moreover, there exists a function T (ε1) : (0, ε0) → N such that

(6.13)

lim
ε1→0

P

{
sup

0≤t≤T (ε1)

{
|Λε1

1 (t)|− c|Λε1
1 (0)|e−γt

}
> δ

}
= 0 with lim

ε1→0
T (ε1) = ∞,

where Λε1
1 (t) = (θ̃(t)T , e(t)T )− (0Tl×l,

∑l
i=1 piia

2
iG0(qi)IT1 ), I1 = [1, 1, . . . , 1]T1×l. Fur-

thermore, (6.13) is equivalent to
(6.14)

lim
ε1→0

P
{
|Λε1

1 (t)| ≤ c|Λε1
1 (0)|e−γt + δ ∀t ∈ [0, T (ε1)]

}
= 1 with lim

ε1→0
T (ε1) = ∞.
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6.2. Convergence analysis. We rewrite the error dynamics (6.10)–(6.11) as

(6.15)

dθ̃j(t)

dt
= kjaj sin(χj(t/εj))

(
[a1 sin(χ1(t/ε1))− θ̃1(t), . . . , al sin(χl(t/εl))− θ̃l(t)]TP

×[a1 sin(χ1(t/ε1))− θ̃1(t), . . . , al sin(χl(t/εl))− θ̃l(t)]
)

= kjaj sin(χj(t/εj))

×




l∑

i,k=1

pik
(
ai sin(χi(t/εi))− θ̃i(t)

)(
ak sin(χk(t/εk))− θ̃k(t)− ej(t)

)


 ,

(6.16)

dei(t)

dt
= hj




l∑

i,k=1

pik
(
ai sin(χi(t/εi))− θ̃i(t)

)(
ak sin(χk(t/εk))− θ̃k(t)

)
− ej(t)



 ,

j = 1, . . . , l.

Now we calculate the average system of the error system. Assume that

εi =
ε1
ci
, i = 2, . . . , l,(6.17)

for some positive real constants ci. Denote

Z1(t) = χ1(t), Z2(t) = χ2(c2t), . . . , Zl(t) = χ(clt).(6.18)

Then the error dynamics become

(6.19)

dθ̃j(t)

dt
= kjaj sin(Zj(t/ε1))

×




l∑

i,k=1

pik
(
ai sin(Zi(t/ε1))− θ̃i(t)

)(
ak sin(Zk(t/ε1))− θ̃k(t)− ej(t)

)


 ,

(6.20)

dej(t)

dt
= hj(y(t)− f∗ − ej(t))

= hj




l∑

i,k=1

pik
(
ai sin(Zi(t/ε1))− θ̃i(t)

)(
ak sin(Zk(t/ε1))− θ̃k(t)

)
− ej(t)



 ,

j = 1, . . . , l.

It is known that for given j = 1, . . . , l, the stochastic process (χj(t), t ≥ 0) is
ergodic and has invariant distribution

µj(dxj) =
1√
πqj

e
−

x2
j

q2
j dxj .

Thus by Lemma A.2, the vector-valued process [Z1(t), Z2(t), . . . , Zl(t)]T is also ergodic
with invariant distribution

µ1(dx1)× · · ·× µl(dxl).
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To calculate the average system of system (6.19)–(6.20), we need to consider the
terms

sin(Zj(t/ε1)) sin(Zi(t/ε1)) sin(Zk(t/ε1)), i #= j, j #= k, k #= i,(6.21)

sin3(Zj(t/ε1)),(6.22)

sin(Zj(t/ε1)) sin
2(Zi(t/ε1)), i #= j,(6.23)

sin2(Zj(t/ε1)),(6.24)

sin(Zj(t/ε1)) sin(Zi(t/ε1)), i #= j.(6.25)

By the integrals (4.17), (4.10), (4.14), (4.11), and (4.13), we get the following average
error system:

dθ̃avej (t)

dt
= −a2jkj(1− e−q2j )

l∑

i=1

pjiθ̃
ave
i (t),(6.26)

deavej (t)

dt
= hj




l∑

i=1

piia
2
i
1

2
(1− e−q2i ) +

l∑

i,k=1

θ̃avei θ̃avek − eavej (t)



 , j = 1, . . . , l.(6.27)

In the matrix form, the average error system is

dθ̃ave(t)

dt
= −ΠP θ̃ave(t),(6.28)

deave(t)

dt
= H

(
l∑

i=1

piia
2
iG0(qi)I1 − eave(t) +Q(θ̃ave(t))

)
,(6.29)

where

Π =





a21k1(1 − e−q21 ) 0 · · · 0

0 a22k2(1− e−q22 ) · · · 0
...

...
. . .

...

0 0 · · · a2l kl(1− e−q2l )




,

θ̃ave(t) = [θ̃ave1 (t), . . . , θ̃avel (t)]T ,

eave(t) = [eave1 (t), . . . , eavel (t)]T ,

H =





h1 0 · · · 0
0 h2 · · · 0
...

...
. . .

...
0 0 · · · hl




,

Q(θ̃ave(t)) = θ̃ave
T

(t)




1 · · · 1
...

. . .
...

1 · · · 1





l×l

θ̃ave(t)I1,

I1 = [1, 1, . . . , 1]T1×l.

The average error system has equilibrium (θ̃e
T
, ee

T
) = (0Tl×1,

∑l
i=1 piia

2
iG0(qi)IT1 ).

The corresponding Jacobi matrix at this equilibrium is

Ξ1 =

[
−ΠP 0
0 −H

]
.(6.30)
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Since Π and P are positive definite, all eigenvalues of the matrix ΠP are positive;
i.e., the eigenvalues of the matrix −ΠP are negative. Furthermore, from the fact
hi > 0, i = 1, . . . , l, it follows that the matrix Ξ1 is Hurwitz and hence the equilibrium
is locally exponentially stable. Thus by Theorem A.3 in the appendix, the convergence
results (6.12) and (6.14) hold. The proof is complete.

To quantify the output convergence to the extremum, for any ε1 > 0, define a
stopping time

τδε1 = inf
{
t ≥ 0 : |Λε1

1 (t)| > c|Λε1
1 (0)|e−γt + δ

}
.

Then by (6.12), we know that limε1→0 τδε1 = ∞ a.s. and

∣∣∣θ̃(t)
∣∣∣ ≤ c |Λε1

1 (0)| e−γt + δ ∀t ≤ τδε1 .(6.31)

Denote θ̂(t)= [θ̂1(t), . . . , θ̂l(t)]T , a sin(η(t))= [a1 sin(η1(t)), . . . , al sin(ηl(t))]T . Then

y(t) = f(θ∗ + θ̃(t) + a sin(η(t))) for -f(θ∗) = 0, and we have

y(t)− f(θ∗) = (θ̃(t) + a sin(η(t)))THf (θ
∗)(θ̃(t) + a sin(η(t))) +O

(
|θ̃(t) + a sin(η(t))|3

)
,

where Hf is the Hessian matrix of the function f .
Thus by (6.31), it holds that

|y(t)− f(θ∗)| ≤ O(|a|2) +O(δ2) + C |Λε1
1 (0)|2 e−2γt ∀t ≤ τδε1(6.32)

for some positive constant C, where |a| =
√
a21 + a22 + · · ·+ a2l . Similarly, by (6.14),

we have

(6.33)

lim
ε1→0

P
{
|y(t)− f(θ∗)| ≤ O(|a|2) +O(δ2) + C |Λε1

1 (0)|2 e−2γt ∀t ∈ [0, T (ε1)]
}
= 1,

where T (ε1) is a deterministic function with limε1→0 T (ε1) = ∞.
Figure 4 displays the simulation results with f∗ = 1, (θ∗1 , θ

∗
2) = (0, 1), P = [ 1 1

1 2 ]
in the static map (6.1), and a1 = 0.8, a2 = 0.6, k1 = 1.25, k2 = 5/3, q1 = q2 = 1,
ε1 = 0.25, ε2 = 0.01 in the parameter update law (6.6)–(6.8) and initial condition
θ̃1(0) = 1, θ̃2(0) = −1, θ̂1(0) = −1, θ̂2(0) = 2.

7. Conclusion. In this paper, we propose a multi-input stochastic extremum
seeking algorithm to solve the problem of seeking Nash equilibria for an N-player
nonoperative game. In our algorithm, each player independently employs his seeking
strategy using only the value of his own payoff but without any information about
the form of his payoff function and other players’ actions. Our convergence result
is local, and the convergence error is in proportion to the third derivatives of the
payoff functions and is dependent on the intensity of stochastic perturbation. The
advantage of our stochastic algorithm over the deterministic ones lies in that there is
no requirement on different frequencies of the perturbation signal for different players.
As a special case of a multiplayer noncooperative game, stochastic multiparameter
extremum seeking for quadratic static maps is investigated.
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Fig. 4. Stochastic extremum seeking with an OU process perturbation. Top: output and ex-
tremum values. Bottom: solutions of the error system.

Appendix. Multi-input stochastic averaging. Consider the system

{
dX(t)
dt = a(X(t), Y1(t/ε1), Y2(t/ε2), . . . , Yl(t/εl)),

X(0) = x,
(A.1)

where X(t) ∈ Rn, Yi(t) ∈ Rmi , 1 ≤ i ≤ l, are time homogeneous continuous Markov
processes defined on a complete probability space (Ω,F , P ), where Ω is the sample
space, F is the σ-field, and P is the probability measure. The initial condition X(0) =
x is deterministic. εi, i = 1, 2, . . . , l, are some small parameters in (0, ε0) with fixed
ε0 > 0. Let SYi ⊂ Rmi be the living space of the perturbation process (Yi(t), t ≥ 0)
and note that SYi may be a proper (e.g., compact) subset of Rmi .

Assume that

εi =
ε1
ci

for some positive real constants ci. Denote Z1(t) = Y1(t), Z2(t) = Y2(c2t), . . . , Zl(t) =
Yl(clt). Then (A.1) becomes

{
dX(t)
dt = a(X(t), Z1(t/ε1), Z2(t/ε1), . . . , Zl(t/ε1)),

X(0) = x.
(A.2)

About the ergodicity of the processes (Yi(t), t ≥ 0) and (Zi(t), t ≥ 0), we have the
following lemma.
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Lemma A.1. For i = 1, . . . , l, if the process (Yi(t), t ≥ 0) is ergodic with invariant
distribution µi(dxi) (i.e., for any x in the living space of (Yi(t), t ≥ 0), we have that
‖Pi(x, t, ·) − µi‖var → 0 as t → ∞, where Pi(x, t, ·) is the distribution of Yi(t) when
Yi(0) = x, and ‖ · ‖var is the total variation norm), then the process (Zi(t), t ≥ 0) is
ergodic with the same invariant distribution µi(dxi).

Proof. Since Z1 ≡ Y1, we need only prove for i = 2, . . . , l. For any i = 2, . . . , l,
denote by Qi(zi, t, ·) the distribution of Zi(t) when Zi(0) = Yi(0) = zi. Then, by
the definition of Zi(t), we have that Qi(zi, t, ·) = Pi(zi, cit, ·), and thus ‖Qi(zi, t, ·)−
µi‖var = ‖Pi(zi, cit, ·)− µi‖var → 0 as t → ∞. The proof is complete.

Denote Z(t) = [Z1(t)T , Z2(t)T , . . . , Zl(t)T ]T . Then for the vector-valued process,
we have the following result.

Lemma A.2. If the process (Yi(t), t ≥ 0) is ergodic with invariant distribution
µi(dxi), and the processes (Y1(t), t ≥ 0), . . . , (Yl(t), t ≥ 0) are independent, then the
process (Z(t), t ≥ 0) is ergodic with the invariant distribution µ1(dx1)× · · ·×µl(dxl).

Proof. By the independence of {Y1, . . . , Yl}, we can assume that the process
(Z(t), t ≥ 0) lives in the product space of SY1 × · · · × SYl . Denote the distribution
of Zi(t) when Zi(0) = zi, i = 1, . . . , l, by Qi(zi, t, ·) and the distribution of Z(t)
when Z(0) = z = (z1, . . . , zl) by Q(z, t, ·). Then by the independence, we have that
Q(z, t, ·) = Q1(z1, t, ·)× · · ·×Ql(zl, t, ·). And thus by Lemma A.1, we get

‖Q(z, t, ·)− µ1 × · · ·× µl‖var
= ‖Q1(z1, t, ·)× · · ·×Ql(zl, t, ·)− µ1 × µ2 × · · ·× µl‖var
≤ ‖Q1(z1, t, ·)× · · ·×Ql(zl, t, ·)− µ1 ×Q2(z2, t, ·)× · · ·×Ql(zl, t, ·)‖var

+‖µ1 ×Q2(z2, t, ·)× · · ·×Ql(zl, t, ·)− µ1 × µ2 ×Q3(z3, t, ·)× · · ·×Ql(zl, t, ·)‖var
+ · · · + ‖µ1 × · · ·× µl−1 ×Ql(zl, t, ·)− µ1 × · · ·× µl−1 × µl‖var

≤ ‖Q1(z1, t, ·)− µ1‖var + · · ·+ ‖Ql(zl, t, ·)− µl‖var → 0, t → ∞.

The proof is complete.
So we obtain the average system of system (A.2) as follows:

dX̄(t)

dt
= ā(X̄(t)), X̄0 = x,(A.3)

where

ā(x) =

∫

SY1×···×SYl

a(x, z1, . . . , zl)µ1(dz1)× · · ·× µl(dzl).(A.4)

To obtain the multi-input stochastic averaging theorem, we consider the following
assumptions.

Assumption A.1. The vector field a(x, y1, y2, . . . , yl) is a continuous func-
tion of (x, y1, y2, . . . , yl), and for any x ∈ Rn, it is a bounded function of y =
[yT1 , y

T
2 , . . . , y

T
l ]

T . Further, it satisfies the locally Lipschitz condition in x ∈ Rn uni-
formly in y ∈ SY1 × SY2 × · · · × SYl ; i.e., for any compact subset D ⊂ Rn, there
is a constant kD such that for all x1, x2 ∈ D and all y ∈ SY1 × SY2 × · · · × SYl ,
|a(x1, y)− a(x2, y)| ≤ kD |x1 − x2|.

Assumption A.2. The perturbation processes (Yi(t), t ≥ 0), i = 1, . . . , l, are
ergodic with invariant distribution µi, respectively, and independent.

By the same method as in our work [19] and [20] for the single input stochastic
averaging theorem, we obtain the following multi-input averaging theorem.
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Theorem A.3. Consider system (A.1) under Assumptions A.1 and A.2. If the
equilibrium X̄(t) ≡ 0 of the average system (A.3) is locally exponentially stable, then
the following statements hold:

(i) the solution of system (A.1) is weakly stochastic exponentially stable under
random perturbation; i.e., there exist constants r > 0, c > 0, and γ > 0 such
that for any initial condition x ∈ {x̌ ∈ Rn : |x̌| < r} and any δ > 0, the
solution of system (A.1) satisfies

lim
ε1→0

inf
{
t ≥ 0 : |X(t)| > c|x|e−γt + δ

}
= +∞ a.s.(A.5)

(ii) Moreover, there exists a function T (ε1) : (0, ε0) → N such that

(A.6)

lim
ε1→0

P

{
sup

0≤t≤T (ε1)

{
|X(t)|− c|x|e−γt

}
> δ

}
= 0 with lim

ε1→0
T (ε1) = ∞.

Furthermore, (A.6) is equivalent to

(A.7)

lim
ε1→0

P
{
|X(t)| ≤ c|x|e−γt + δ ∀t ∈ [0, T (ε1)]

}
= 1 with lim

ε1→0
T (ε1) = ∞.
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[19] S.-J. Liu and M. Krstić, Stochastic averaging in continuous time and its applications to
extremum seeking, IEEE Trans. Automat. Control, 55 (2010), pp. 2235–2250.
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[33] M. S. Stanković, K. H. Johansson, and D. M. Stipanović, Distributed seeking of Nash
equilibrium in mobile sensor networks, in Proceedings of the 2010 IEEE Conference on
Decision and Control, 2010, pp. 5598–5603.
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