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Traditional extremum seeking depends on adding a perturbation to the control input, but it is untenable to
continuously perturb the throttle in a controller meant to minimize fuel consumption. Inspired by a recent
application of extremum seeking to a fusion reactor where internal nonperiodic perturbations were employed in the
seeking process, a novel variant of extremum seeking is proposed that uses naturally occurring stochastic
disturbances in lieu of the traditionally added perturbation signal. Relying on airspeed perturbations from
atmospheric turbulence to reveal the local slope of the drag curve, the scheme induces a gradient descent to the
minimum drag speed. Using stochastic averaging, it is proven analytically that the extremum-seeking controller
stabilizes airspeed to theminimumdrag speed, with an average offset proportional to the third derivative of the drag
curve and the variance of the airspeed. Brief simulation results illustrate the performance of the algorithm.

Nomenclature
A = aspect ratio
a = stochastic disturbance post-saturation scaling

factor
B = timescale-shifted and scaled Brownian motion
b = engine thrust proportionality constant
CD = coefficient of drag
CDi = induced drag coefficient
CD0 = zero-lift drag coefficient
CL = coefficient of lift
C2, C4 = averaging constants
D = drag
!D = recentered drag function
e = Oswald efficiency number (also base of natural

logarithm)
g = acceleration due to gravity
J = Jacobian of a system
kES = extremum-seeking gain
ki = integral gain
kp = proportional gain
L = lift
Lu, Lv, Lw = characteristic lengths of turbulence field

(longitudinal, lateral, vertical)
m = mass of the aircraft
n0, n1, n2 = coefficients of the assumed form of ve;aeq
q = stochastic disturbance presaturation scaling factor
S = reference area
t = time
U0 = nominal airspeed for turbulence model
u = throttle position
V = airspeed
v = ground speed
v! = minimum drag speed
v̂! = estimate of minimum drag speed
W = standard Brownian motion
! = turbulence time constant

" = wind speed, presaturation
#"d"# = invariant distribution of "
$ = air density
% = integrator value
%u, %v, %w = root-mean-square turbulence intensity

(longitudinal, lateral, and vertical components)
&H = simulation high-pass-filter time constant
&L = simulation low-pass-filter time constant
"ug , "vg ,
"wg

= turbulence spectra (longitudinal, lateral, vertical)

' = timescale-shifted wind speed
# = spatial frequency
! = temporal frequency

Subscript

eq = equilibrium value

Superscripts

a = average system variable
e = error variable

Introduction

E XTREMUM seeking is traditionally performed by adding a
perturbation signal to the setpoint of a system. The perturbation

signal is usually a sinusoid [1–3] but can also be nonsinusoidal [4] or
stochastic [5,6]. It is also possible to use naturally occurring
disturbances in lieu of an added perturbation signal [7]. Here, this
approach is taken to optimize the speed of an aircraft for maximum
endurance: that is, to maximize the length of time an aircraft can stay
aloft. Convergence to the optimum speed is proven analytically and
shown in simulation.

Over the past decade, extremum seeking has been adapted tomany
different applications, including antilock braking [8], particle beam
matching [9], axial compressors [10], lean premixed combustion
[11,12], flow control [13], bioreactors [14], tokamak fusion devices
[15], and formation flight [16]. Extremum seeking may also be
applied to an aircraft optimizing airspeed for best possible endur-
ance. Aircraft wings have an optimal angle of attack that provides a
maximum lift-to-drag ratio. All other factors being equal, a jet
aircraft flying at the speed that achieves this angle of attack burns fuel
more slowly thanwhenflying either slower or faster than this optimal
speed. This optimal speed is calculated during the design of the
aircraft based on wind-tunnel data; however, the optimal speed for
any particular aircraft varies from the calculated value to some
degree. The optimal speed varies based on many factors, from
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manufacturing differences to the condition of thewing.Accumulated
bugs, nicks and dents can all change the optimal angle of attack,
which changes the airspeed for optimal endurance. Extremum
seeking may be used to find the optimal airspeed for the current
condition of each individual aircraft as it flies. A recent survey of
extremum seeking is given in [17].

While traditional, perturbation-based extremum seeking is a
possibility, there are potential disadvantages to using this technique.
The first is the possibility that the act of introducing the airspeed
perturbation would decrease endurance. Periodically changing the
commanded airspeed would cause the throttle command to oscillate,
which quite possibly would use more fuel than a more steady throttle
command. While finding the optimal airspeed would decrease drag
and improve endurance, an oscillating throttle command could use
more fuel and hurt endurance.

The second disadvantage to using traditional extremum seeking
has less to do with technical performance than aviation adminis-
tration. It may be seen as undesirable for the speed of an aircraft to be
continuously varying. Traditional extremum seeking alters the
observable motion of the aircraft, whichmay act as an impediment to
its implementation. Used herein is a form of extremum seeking that
relies on naturally occurring disturbances, rather than manually
added perturbations, to avoid these disadvantages.

Aircraft in flight on occasion encounter turbulence, which acts as a
stochastic disturbance in airspeed. By taking advantage of this, a
turbulence-based extremum-seeking algorithm can avoid the dis-
advantages of traditional extremum seeking. If the throttle is used to
control airspeed in response to turbulence, no objection is raised; it is
expected that airspeed will be controlled. Doing so does not use any
additional fuel. The second disadvantage can be answered similarly;
since the aircraft’s speed is only being perturbed by turbulence, the
observable motion of the aircraft is not altered. These two reasons
may make turbulence-based extremum seeking a good fit for this
application.

It should be mentioned that steady level flight is not necessarily
optimal, but is the only form of flight considered in this paper.
Periodic flight consisting of alternating higher-speed climbs and
lower-speed glides can achieve endurance superior to steady flight
[18–21]. Since such periodicflightwould alter the observablemotion
of the aircraft evenmore than traditional extremum seeking, only the
case of steady flight at a given altitude is considered.

This paper is organized as follows. First, the relevant aero-
dynamics are reviewed. Next, the dynamic aircraft model is devel-
oped and the extremum-seeking control law is designed. An analysis
of the stability of the system is then presented, followed by simu-
lation results. A discussion is given and then lastly, some concluding
remarks.

Aerodynamics
This section presents the simplified aerodynamic model that is

used in the following analysis. Additional background can be found
in [22]. Readers comfortable with aerodynamics and turbulence
modeling may proceed to the control design below, noting that for
simplicity the vertical component of turbulence is ignored.

Lift and Drag
Lift is a function of air density, airspeed, a coefficient of lift, and a

reference area. The expression for lift is

L$ CL12$V2S (1)

The coefficient of lift is a function of angle of attack, and is roughly
linear for small angles. Drag is calculated similarly, only using a drag
coefficient CD. Drag is calculated as

D$ CD1
2
$V2S (2)

The coefficient of drag is commonly calculated as the sum of two
parts: the zero-lift drag coefficient and the induced drag coefficient:

CD $ CD0 % CDi (3)

Induced drag is commonly approximated as having a quadratic
dependence on the coefficient of lift [23]:

CDi $
C2
L

(Ae
(4)

Level Flight
Using these expressions for lift and drag, the case of level flight is

analyzed. To maintain a constant altitude, the lift produced by the
aircraft must equal the weight of the aircraft. For a given altitude
and airspeed, this implies a required value of CL. This value of CL is
given by

CL $
mg

1
2
$V2S

(5)

So, the CL required for level flight is a function of speed. From
Eqs. (3) and (4), it is apparent that this implies a certain coefficient of
drag. Substituting this coefficient of drag into Eq. (2) gives the drag
for level flight as a function of speed:

D$ CD0
1

2
$V2S% "mg#2

(Ae 1
2
$V2S

(6)

Here, the first term represents the zero-lift drag (also called parasite
drag) and the second term is the induced drag. These two terms are
plotted along with the total drag in Fig. 1.

Turbulence

Atmospheric turbulence is typically modeled as filtered Gaussian
white noise. The three components of turbulence (i.e., longitudinal,
lateral and vertical) are modeled independently. The Dryden turbu-
lence model is one commonly used atmospheric turbulence model
[24]. It specifies the spectra of the three components of turbulence as
follows:

"ug "## $ %2u
2Lu
(

1

1% "Lu##2
(7a)

"vg "## $ %2v
Lv
(

1% 3"Lv##2
&1% "Lv##2'2

(7b)

"wg"## $ %2w
Lw
(

1% 3"Lw##2
&1% "Lw##2'2

(7c)
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Fig. 1 Drag D!V" in level flight.
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The spectra are given in terms of spatial frequency, which is
converted to temporal frequency! bymultiplying by the speed of the
aircraft:

!$#U0 (8)

At medium to high altitudes (above 2000 ft) the turbulence is
assumed to be isotropic. The characteristic lengths and the intensities
in each direction are equal to each other. A typical characteristic
length is 1750 ft. Intensities are charted as a function of altitude.
Moderate turbulence has a root-mean-square intensity of about
10 ft=s at 2000 ft, decreasing roughly linearly to near zero at
60,000 ft.

Whereas lateral turbulence has little effect on the speed of an
aircraft, longitudinal turbulence has a direct effect on airspeed.
Longitudinal turbulence with a spectrum matching that given in
Eq. (7a) can be obtained by passing white noise through a filter of the
form

%u

!!!!!!!!
2Lu
U0

s
1

Lu
U0
s% 1

(9)

Vertical turbulence has an indirect effect on airspeed, but for this
analysis it is ignored.

Control Design
Dynamic Model

Based on the aerodynamic model presented above, a simple
dynamic model is considered: a scalar system perturbed by turbu-
lence. The system is of the form

m
dv

dt
$(D"V# % bu (10a)

!d"$("dt%
!!!
!
p
qdW (10b)

The wind speed is defined as a headwind being positive, so that
airspeed is the sum of groundspeed and wind speed. More precisely,
airspeed is considered to be given by

V $ v% asat" (11)

where asat" is the wind speed. The saturation function

sat ""# $
( " if ( 1< "< 1
1 if " ) 1
(1 if " * (1

(12)

is introduced for mathematical convenience. Its sole purpose is to
ensure that thewind speed is bounded, which is a requirement for the
stochastic averaging results used below. However, it is quite
reasonable to bound the wind speed because it is not physically
possible for the wind speed to be unbounded. The effect of the sat
function can be made negligible by choosing q small with respect to
one. The constant a can then be chosen to give the desired wind
amplitude. The wind speed is modeled as filtered Gaussian white
noise, as per the Dryden longitudinal turbulence model. The
timescale of the turbulence (!≜ Lu=U0) is taken to be a constant,
using an airspeed representative of the range of airspeeds expected to
be encountered.

Without loss of generality, thewind speed is taken as zeromean. If
there were a steady-state component to the wind, then v would
represent the ground speed plus the steady-statewind component, but
the dynamics of the system would remain the same.

The rate of change of v is determined from total drag, engine
thrust, and the mass of the aircraft. Engine thrust is modeled as
proportional to the control input, namely throttle position. The drag
function is taken as a general convex map with a minimum at
speed v!.

It is assumed that a proportional–integral control law is used to
control airspeed to a setpoint v̂!. The control law is written as

u$ kp"v̂! ( V# % ki% (13a)

d%

dt
$ v̂! ( V (13b)

Combining Eqs. (10) and (13), the aircraft model is written as
follows:

m
dv

dt
$(D"V# % b&kp"v̂! ( V# % ki%' (14a)

d%

dt
$ v̂! ( V (14b)

!d"$("dt%
!!!
!
p
qdW (14c)

In this model, a, b, ki, kp,m, q, v̂!, and ! are positive. The airspeedV
can be measured by a pitot-static system. It is considered that dv=dt,
the acceleration of the aircraft, can also be measured. Further, it is
assumed that the thrust produced by the engine (i.e.,bu) and themass
of the aircraft are known. In the control design below, this is used.

The aircraft model in Eq. (14) represents the quasi-steady
dynamics of the aircraft with altitude tightly controlled. The under-
lying assumptions of this model are that altitude is being controlled
with the elevator, and that the altitude response ismuch faster than the
airspeed response. The assumptions are chosen to be consistent with
a jet aircraft in slow flight. Using elevator to control the airspeed of a
jet in slow flight can result in substantial loss of altitude, so altitude is
maintained with elevator and throttle is used to control airspeed. The
throttle response of a jet aircraft, especially at a low throttle setting, is
slow. Because of this, the airspeed controller is assumed to have a
much lower bandwidth than the altitude controller.

Turbulence-Based Extremum Seeking

The goal is to optimize endurance. It is assumed that fuel con-
sumption is an increasing function of thrust and that the thrust vector
is level with the flight path. Then, optimizing endurance is equivalent
to minimizing throttle position. That is, the cost to be minimized is
the control input u. Normally, this would require adding a
perturbation to the setpoint of the system, v̂!. By modulating the cost
with this perturbation signal, the rate of change of the cost with
respect to v̂! would be estimated. The setpoint of the system would
then be updated using an integral control lawwith a gain proportional
to the estimated gradient. It is desired to do the same thing, but
without adding a perturbation signal.

Observe that the goal of minimizing u is, more specifically, the
goal of minimizing u in steady flight. Note that in steady flight
Eq. (10a) reduces toD"V# $ bu, so minimizing u in steady flight is
equivalent to minimizing D"V#. Also, in steady flight Eq. (13b)
reduces to v̂! $ V. The goal can then be stated as choosing v̂! such
that D"v̂!# is minimized.

While drag is not directlymeasurable, fromEq. (10a) it is seen that
drag is indirectly measurable. Using knowledge of vehicle acceler-
ation, engine thrust, and mass, drag D"V# is calculated as

D"V# $ bu (m dv

dt
(15)

It is desired to demodulate this signal with the perturbation velocity.
If the aircraft has ameasurement of ground speed, say from an inertial
navigation system, and a measurement of airspeed, the difference of
the two could serve as a measurement of the perturbation. If the
aircraft is not so equipped, it is possible to obtain an approximation of
the airspeed perturbation from the error signal feeding the control law
(v̂! ( V). Here, the latter approach is taken. As in traditional
extremum seeking, an integral control law is used to update the
system and a gain proportional to this demodulated signal is chosen:
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dv̂!
dt
$ kES&v̂! ( V'

"
bu (m dv

dt

#
(16)

The system and extremum-seeking control law are shown in
Fig. 2.

Analysis
In this section, analysis of the closed loop system formed by

combining the aircraft model (14) with the extremum-seeking
control law (16) is performed. For analysis, the expression
(bu (mdv=dt) in the control law is written simply as D"V#. The
expression for V from Eq. (11) is also substituted throughout. This
produces the following set of equations:

m
dv

dt
$(D"v% asat"# % b&kp"v̂! ( "v% asat"## % ki%' (17a)

d%

dt
$ v̂! ( "v% asat"# (17b)

dv̂!
dt
$ kES&v̂! ( "v% asat"#'D"v% asat"# (17c)

!d"$("dt%
!!!
!
p
qdW (17d)

Theorem 1: Consider system (17) composed of the aircraft
model (10–13) and parameter update law (16), where D"+# is a
convex map with a minimum at v!, all constants are positive, and
KES 2 "0; bkp=mD!#, where D! is a known upper bound on
minimum drag, D"v!#. Let constants C2 and C4 be defined by

C2"q#≜ q2

2
erf

1

q
( q!!!!

(
p e

( 1

q2 % 1 ( erf
1

q
(18a)

C4"q#≜ 3

4
q4erf

1

q
( q!!!!

(
p e

( 1

q2

"
1% 3

2
q2
#
% 1 ( erf

1

q
(18b)

SupposeD"+# is three times differentiable at v!. Then there exists a
constant a! such that for any 0< a < a! there exist constants r > 0,
c > 0, and ) > 0 and a function T"!#: "0; !0#! Nwith the property
lim!!0T"!# $1, such that for any initial condition j$!;a"0#j< r,
and any *> 0,

lim
!!0

infft ) 0: j$!;a"t#j> cj$!;a"0#je()t %O"a3# % *g$1; a:s:
(19)

and

lim
!!0
Pfj$!;a"t#j * cj$!;a"0#je()t %O"a3# % *

8 t 2 &0; T"!#'g$ 1 (20)

where

$!;a"t#≜
v"t#
%"t#
v̂!"t#

0
B@

1
CA (

v! ( 1
6
D000"v!#
D00"v!#

C4

C2
a2

D"v!#
bki
% D00"v!#

2
C2

bki
a2

v! ( 1
6
D000"v!#
D00"v!#

C4

C2
a2

0
BBB@

1
CCCA

Theorem 1 roughly states that choosing the gain KES as a small
positive number causes the average airspeed to converge (both
almost surely and in probability) to the minimum drag speed, with a
small bias. The conditions for this are that the turbulence amplitude is
small and the initial state of the aircraft is sufficiently close to thefinal
average equilibrium. The remainder of this section is dedicated to the
proof of Theorem 1. These equations are transformed into error
variables that are expected to converge to near zero. Stochastic
averaging is used on this error system to find the average system.
Then the equilibrium of the average system is found and the stability
of the equilibrium is tested. Throughout the analysis, drag is treated
as a general convex map. No assumptions are made about the exact
nature of the nonlinearity.

Error Variables

Define the error variables

ve $ v ( v! (21a)

%e $ % (D"v!#
bki

(21b)

v̂ e! $ v̂! ( v (21c)

The fraction D"v!#=bki is the equilibrium value of the integrator
when the aircraft is flying at the minimum drag speed with no
disturbances. Also define

'"t# $ ""!t# (22a)

Fig. 2 Block diagram of system and extremum-seeking feedback. The algorithm uses measurements of dv=dt, bu, m, and v# asat!, but not of
v and ! alone.
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B"t# $ 1!!!
!
p W"!t# (22b)

Then the error system is

m
dve

dt
$(D"ve % v! % asat'"t=!##

% b
$
kp"v̂e! ( asat'"t=!## % ki

"
%e %D"v!#

bki

#%
(23a)

d%e

dt
$ v̂e! ( asat'"t=!# (23b)

dv̂e!
dt
$ dv̂!

dt
( dv

dt
$ kES&v̂e! ( asat'"t=!#'D"ve % v! % asat'"t=!##

( 1

m

&
(D"ve % v! % asat'"t=!##

% b
$
kp"v̂e! ( asat'"t=!## % ki

"
%e %D"v!#

bki

#%'
(23c)

d'"t# $ ('"t#dt% qdB"t# (23d)

Stochastic Averaging

Using stochastic averaging [5], the average system is then

m
dve;a

dt
$
Z 1
(1
(D"ve;a % v! % asat"##"d"#

% b
$
kp

"
v̂e;a! (

Z 1
(1
asat"#"d"#

#
% ki

"
%e;a %D"v!#

bki

#%
(24a)

d%e;a

dt
$ v̂e;a! (

Z 1
(1
asat"#"d"# (24b)

dv̂e;a!
dt
$
Z 1
(1
kES&v̂e;a! ( asat"' ,D"ve;a% v! % asat"##"d"#

( 1

m

&Z 1
(1
(D"ve;a % v! % asat"##"d"#

% b
$
kp

"
v̂e;a! (

Z 1
(1
asat"#"d"#

#
% ki

"
%e;a %D"v!#

bki

#%'
(24c)

where the invariant distribution of " is given by

#"d"# $ 1!!!!
(
p

q
e
("2
q2d" (25)

To simplify these equations, a function !D"+# is introduced. This
function is the same asD"+#, but recentered around theminimumdrag
point:

!D"ve;a % asat"# - D"ve;a % v! % asat"# (D"v!# (26)

This new drag function is zero when its argument is zero:

!D"0# $ 0 (27)

The average system (24) is simplified using !D and noting that
Z 1
(1
asat"#"d"# $ 0 (28)

This can be seen since sat is an odd function and # is an even
function, making the integrand odd; the integral from (1 to 0
cancels the integral from 0 to1. The average system becomes the
following:

m
dve;a

dt
$(

Z 1
(1

!D"ve;a % asat"##"d"# % b&kpv̂e;a! % ki%e;a'

(29a)

d%e;a

dt
$ v̂e;a! (29b)

dv̂e;a!
dt
$
Z 1
(1
kES&v̂e;a! ( asat"' , & !D"ve;a % asat"# %D"v!#'#"d"#

( 1

m

&
(
Z 1
(1

!D"ve;a % asat"##"d"# % b&kpv̂e;a! % ki%e;a'
'
(29c)

Equilibrium of the Average System

To find the equilibrium of the average system, first observe from
Eq. (29b) that the equilibrium value of v̂e;a! is zero, that is,

v̂ e;a!eq $ 0 (30)

Next, from Eq. (29c) it is seen that at equilibrium,
Z 1
(1
kES&v̂e;a!eq ( asat"' , & !D"ve;aeq % asat"#

%D"v!#'#"d"# (
"
dve;a

dt

#

eq

$ 0 (31)

Here, it has been noted that the second term in Eq. (29c) is just
"dve;a=dt#eq, whichmust be zero at equilibrium. After simplification,
which employs Eqs. (28) and (30), the expression (31) reduces to

Z 1
(1

sat"& !D"ve;aeq % asat"#'#"d"# $ 0 (32)

To solve this equation for ve;aeq , the process is similar to the proof of
stability for a general nonlinear dynamic system presented in [5].
Two expansions are used: one for ve;aeq in a and one for !D in ve;aeq . Take
ve;aeq in the form

ve;aeq $ n0 % n1a% n2a2 % n3a3 %O"a4# (33)

Also use an expansion of the drag function !D in terms of powers of its
argument. Center the expansion around n0.

!D"v# $ !D"n0# % !D0"n0#"v ( n0# %
!D00"n0#
2!
"v ( n0#2

%
!D000"n0#
3!

"v ( n0#3 %O""v ( n0#4# (34)

Using these expansions for ve;aeq and !D, the condition for equilibrium
in Eq. (32) becomes
Z 1
(1

sat"& !D"ve;aeq % asat"#'#"d"#

$
Z 1
(1

sat"

$
!D"n0#

% !D0"n0#"n1a% n2a2 % n3a3 %O"a4# % asat"#

%
!D00"n0#
2!
"n1a% n2a2 % n3a3 %O"a4# % asat"#2

%
!D000"n0#
3!

"n1a% n2a2 % n3a3 %O"a4# % asat"#3

%O""n1a% n2a2 % n3a3 %O"a4# % asat"#4#
%
#"d"#

$ !D0"n0#""C2#a# %
!D00"n0#
2!
""2n2C2#a3 % "2n1C2#a2#

%
!D000"n0#
3!

"3n21C2 % C4#a3 %O"a4# $ 0 (35)
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Here, the following integrals have been used:
Z 1
(1

sat2k%1"#"d"# $ 0; where k$ 0; 1; 2; . . . (36a)

Z 1
(1

sat2"#"d"# $ q
2

2
erf

1

q
( q!!!!

(
p e

( 1

q2 % 1 ( erf
1

q
≜ C2"q#

(36b)

Z 1
(1

sat4"#"d"# $ 3

4
q4erf

1

q
( q!!!!

(
p e

( 1

q2

"
1% 3

2
q2
#

% 1 ( erf
1

q
≜ C4"q# (36c)

Tohelp understand the expressions forC2 andC4, note thatC2 andC4

can be approximated by

C2"q# .
q2

2
(37a)

C4"q# .
3

4
q4 (37b)

for small q. For q smaller than 0.5, the approximation for C2 is
accurate to within 1% and the approximation for C4 is accurate to
within 3%. Both C2 and C4 are zero when q is zero, and
monotonically approach 1 as q grows without bound.

Because the expression in Eq. (35) is a polynomial in a, and the
polynomial is equal to zero, each of the coefficients ofamust be zero.
This gives the following system of equations:

a1: !D0"n0#C2 $ 0 (38a)

a2: !D00"n0#n1C2 $ 0 (38b)

a3: !D00"n0#n2C2 %
!D000"n0#
3!

"3n21C2 % C4# $ 0 (38c)

Since !D is assumed convex, its first derivative can only be zero
when evaluated at a minimum point. Noting this, and that !D has
been defined with its minimum at zero, the solution to this set of
equations is

n0 $ 0 (39a)

n1 $ 0 (39b)

n2 $(
1

6

!D000"0#
!D00"0#

C4

C2

(39c)

so an O"a3# expression for ve;aeq is

ve;aeq $(
1

6

!D000"0#
!D00"0#

C4"q#
C2"q#

a2 %O"a3# (40)

Recalling Eq. (37), it is noted that for small q the following is
obtained:

ve;aeq $(
1

4

!D000"0#
!D00"0#

q2a2

Next, using the expression (40) for ve;aeq , Eq. (29a) is set equal to
zero and solved for %e;aeq . This time a lower-order expansion for !D is
used:

!D"v# $ !D"0# % !D0"0#v%
!D00"0#
2!

v2 %O"v3# (41)

The function !D has been defined so that it has a minimum at the
origin, so the first two terms of the expansion are zero and the
expression is simplified to

!D"v# $
!D00"0#
2!

v2 %O"v3# (42)

Using these expressions for ve;aeq and !D, the condition for equilibrium
in Eq. (29a) becomes
Z 1
(1
( !D"ve;aeq % asat"##"d"# % b&kpv̂e;a!eq % ki%e;aeq '

$
Z 1
(1
(

!D00"0#
2!
"n2a2 %O"a3# % asat"#2

%O""n2a2 %O"a3# % asat"#3##"d"# % bki%e;aeq

$(
!D00"0#
2!
"C2#a2 %O"a3# % bki%e;aeq $ 0 (43)

which gives

%e;aeq $
!D00"0#
2

C2

bki
a2 %O"a3# (44)

So an equilibrium of the average system in terms of the error
variables has been found. Collecting the expressions in Eqs. (30),
(40), and (44), the equilibrium is expressed as the following:

ve;aeq $(
1

6

!D000"0#
!D00"0#

C4

C2

a2 %O"a3# (45a)

%e;aeq $
!D00"0#
2

C2

bki
a2 %O"a3# (45b)

v̂ e;a!eq $ 0 (45c)

Converting back to the original variables, the equilibrium of the
average system is the following:

vaeq $ v! (
1

6

D000"v!#
D00"v!#

C4

C2

a2 %O"a3# (46a)

%aeq $
D"v!#
bki

%D
00"v!#
2

C2

bki
a2 %O"a3# (46b)

v̂ a!eq $ vaeq (46c)

For small disturbance magnitudes (i.e., small a) the average speed of
the system has an equilibrium point at the minimum drag speed, v!.
The deviation from the minimum drag speed is proportional to the
third derivative of the drag curve at the minimum drag speed and
decreaseswith a2. If the drag curve is asymmetric, the speed bias is to
the flatter side of the drag curve relative to the minimum drag point.

Stability of the Equilibrium

To determine the stability of the equilibrium, the average
system (29) is linearized around the equilibrium point and the
linearized system is tested for stability.

The Jacobian of the average system (29) at the equilibrium point in
terms of the error variables "ve;a; %e;a; v̂e;a! # is

J$
J1;1

bki
m

bkp
m

0 0 1
J3;1 ( bki

m J3;3

0
@

1
A (47a)

where J1;1, J3;1, and J3;3 are given by

KRIEGER AND KRSTIC 1881



J1;1 $
1

m

Z 1
(1
( !D0"ve;aeq % asat"##"d"# (47b)

J3;1 $
Z 1
(1
kES&v̂e;a!eq ( asat"' , & !D0"ve;aeq % asat"#'#"d"#

( 1

m

Z 1
(1
( !D0"ve;aeq % asat"##"d"# (47c)

J3;3 $
Z 1
(1
kES& !D"ve;aeq % asat"# %D"v!#'#"d"# (

bkp
m

(47d)

The characteristic equation of the system is given by det"sI ( J# $ 0,
or

((((((

s ( J1;1 ( bki
m ( bkp

m
0 s (1
(J3;1 bki

m s( J3;3

((((((
$0 (48)

Writing this as a polynomial, the characteristic equation is as follows.

s3 ( "J1;1 % J3;3#s2 %
"
J1;1J3;3 (

bkp
m
J3;1 %

bki
m

#
s

( bki
m
"J1;1 % J3;1# $ 0 (49)

By applying Routh’s criterion, it is seen that the system is stable if
each of the coefficients in the characteristic polynomial are positive
and the product of the s2 and s1 coefficients is greater than the product
of the s3 and s0 coefficients. To test this expressions for J1;1, J3;1, and
J3;3 are required. Expressions accurate to O"a3# are found for each.

First, J1;1 is found. Using the expressions ve;aeq $ n2a2 %O"a3#
and !D0"v# $ !D00"0#v% !D000"0#

2!
v2 %O"v3# the following is obtained:

J1;1 $
1

m

Z 1
(1
( !D0"ve;aeq % asat"##"d"#

$ ( 1

m

Z 1
(1

!D00"0#"n2a2 %O"a3# % asat"#

%
!D000"0#
2!
"n2a2 %O"a3# % asat"#2

%O""n2a2 %O"a3# % asat"#3##"d"#

$ ( 1

m

$
!D00"0#n2 %

!D000"0#
2!

C2

%
a2 %O"a3# (50)

Next, using the same expression for ve;aeq and !D0"v# $ !D00"0#v%
O"v2# the expression for J3;1 is found. Note that the second term in
the original expression for J3;1 is the negative of J1;1:

J3;1$
Z 1
(1
kES&v̂e;a!eq(asat"', & !D0"ve;aeq %asat"#'#"d"#

( 1

m

Z 1
(1
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$(
Z 1
(1
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$
$
(kES !D00"0#C2%

1

m

"
!D00"0#n2%

!D000"0#
2!

C2

#%
a2%O"a3# (51)

Finally, an expression for J3;3 is found. Here, the approximations
ve;aeq $ 0%O"a2# and !D"v# $ !D00"0#

2!
v2 %O"v3# are used. Then J3;3

can be expressed as

J3;3 $
Z 1
(1
kES& !D"ve;aeq % asat"# %D"v!#'#"d"# (

bkp
m

$
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(1
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a2 %O"a3# (52)

Now, using these expressions for the components of the Jacobian of
the system, it is possible to calculate the coefficients in the
characteristic equation and test for stability:
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So the characteristic equation of the average system can bewritten as
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or, more simply, as

s3 %
&$
bkp
m
( kESD"v!#

%
%O"a2#

'
s2 %

&
bki
m
%O"a2#

'
s

%
&
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&kES !D00"0#C2'a2 %O"a3#

'
$ 0 (57)

The first step in checking for stability is to ensure that all of the
coefficients of this polynomial are positive. Since all of the constants
in this polynomial are assumed positive, for small a the coefficients
are all positive if

0< kES <
bkp

mD"v!#
(58)

It must also be ensured that the product of the s2 and s1 coefficients is
greater than the product of the s3 and s0 coefficients:

&$
bkp
m
( kESD"v!#

%
%O"a2#

'&
bki
m
%O"a2#

'

>

&
bki
m
&kES !D00"0#C2'a2 %O"a3#

'
(59)

By making an O"a2# approximation, this reduces to

bki
m

"
bkp
m
( kESD"v!#

#
>O"a2# (60)

which is true for small a if Eq. (58) is satisfied. So, by Routh’s
criterion, the linearized average system is stable for small a if kES is
chosen small enough to satisfy Eq. (58).

The stability of the linearized average system implies stability of
the nonlinear perturbed system. Because the linearized average
system is stable, the nonlinear average system (29) is locally
exponentially stable (Corollary 4.3 in [25]). From the stochastic
averaging results in [5], exponential stability of the average system
implies that the system is weakly exponentially stable under the
random perturbation. This result is formalized in Theorem 1. The
stability analysis concludes that turbulence-based extremum seeking
stabilizes the aircraft to the the speed for optimal endurance.

Simulations
A simulation run using Simulink is presented here. The simulation

follows Eq. (17) closely, with the addition of a high-pass filter and a
low-pass filter. Although not necessary for stability, the use of a high-
pass filter has been shown to improve the rate of convergence in other
extremum-seeking applications [5]. Here, the high-pass filter is
applied to the drag signal in the extremum-seeking loop. A low-pass
filter is also added to smooth the controller. The filters are shown in
Fig. 3. The parameters used in simulation are listed in Table 1. A plot
of the simulation results is shown in Fig. 4.

For a direct comparison with the above analysis, a simulation
without the high-pass and low-pass filters is presented in Fig. 5. The
simulation parameters are the same as in Table 1, except that the filter
time constants are not applicable and kES must be chosen much
smaller. The stability limit for kES can be calculated using Theorem 1
and the simulation parameters in Table 1. For the simulation kES was
chosen to be one-eighth of its stability limit. Numerical values for the
stability limit of kES and kES itself are shown in Table 2. Also shown
in Table 2 are the predicted equilibrium point and Jacobian matrix of
the average system, corresponding to Eqs. (46) and (47), respec-
tively. The Jacobian elements J1;1 J3;1 and J3;3 are calculated using
the O"a3# approximations given in Eqs. (50–52).

Discussion
The turbulence-based extremum-seeking algorithm successfully

stabilizes the aircraft model to the airspeed for optimal endurance,
with an average bias proportional to the third derivative of the drag
curve and the square of turbulence intensity. The extremum-seeking
controller does this without adding a perturbation to the setpoint of
the system. Simulations conducted using a quadratic drag polar show
little bias from the true minimum. The drag curve used in simulation
is the same shown in Fig. 1. Note that while a quadratic drag polar is
used, the drag curve is a nonpolynomial function of airspeed and
contains higher order terms sufficient to investigate the bias of the
estimated minimum drag speed predicted by Theorem 1.

The simulation demonstrates performance in turbulence with a
root-mean-square amplitude of 3 ft= sec, which represents light to
moderate turbulence at most altitudes. This raises the question of
how the controller will perform in other turbulence intensities. As
shown in analysis, the steady-state bias improves as the turbulence
intensity decreases. This is limited only by the fidelity of the
accelerometer reading and the accuracy of the thrust and weight
estimates. However, for any given kES the rate of convergence to the
minimum drag speed also decreases with the turbulence intensity.
Because encounters with turbulence are typically fairly short, on the
order of minutes, it is desirable to increase the rate of convergence as

Fig. 3 Block diagram of the control system as simulated, including added filters.
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much as possible. This can be accomplished by increasing kES. Care
should be taken, though, not to increase kES toomuch. The analytical
stability result from Theorem 1 is stated in terms of the limiting case
as a tends to zero. It is expected that the upper stability bound on kES
will decrease as a increases, implying that kES should be chosen
conservatively to prevent the system from becoming unstable in
severe turbulence.

The issue of rate of convergence also demonstrates the necessity of
using the high-pass and low-pass filters. The filters improve the rate
of convergence by orders of magnitude. Indeed without them, the
control design is not practical. The analysis above considers the
simpler control design for improved clarity in the analysis. Omitting
the filters keeps the basic style of analysis and functionality of the
controller from being lost in the details.

A limitation of this work is that vertical gusts have been ignored.
The results in [26], which show the potential robustness of
extremum-seeking control to stochastic disturbances, suggest that
vertical gusts may be handled well by this control scheme. Including
vertical gusts in future analysis and simulations would increase
confidence that the turbulence-based extremum-seeking controller
will function as desired in real turbulence. A related limitation is that
longitudinal aircraft dynamics are not modeled in simulation. This
prevents the simulation from testing the validity of neglecting
altitude dynamics.

The advantage of a turbulence-based approach, that it operates
without using a perturbation signal, is also its disadvantage. Particu-
larly at higher altitudes, an aircraft may not experience turbulence

often. Furthermore, the optimal airspeed varies with theweight of the
aircraft, and possibly also with other flight parameters. Because of
this, the current optimal airspeed may not be the same as the optimal
airspeed found during the last encounter with turbulence. To address
these issues, an application of turbulence-based extremum seeking
would need to provide means of recording optimal speeds found
during encounters with turbulence and extrapolating the recorded
speeds to the current flight condition.

Another facet of this application that may prove complicated
involves the varying curvature of the drag profile with altitude and
weight. To achieve rapid convergence to the optimal speed across the
flight envelope would require scheduling the extremum-seeking
gain. Alternately, an extremum-seeking control law could be
developed that was insensitive to the curvature of the drag profile.
Such a method is developed in [27] for traditional sinusoidal-
perturbation-based extremum seeking. Adapting this method for
stochastic extremum-seeking schemes is a subject of current
research.

Finally, it is noted that while the assumptions made in this paper
apply to a jet aircraft, it may be possible to modify the controller for
propeller aircraft. For jet aircraft, flight at the best lift-to-drag ratio
results in maximum endurance, but for propeller aircraft maximum
endurance is obtained at the minimum power speed. An extremum-
seeking controller for propeller aircraft may be created by
substituting an estimate of required power for the estimated drag.
This can be accomplished by multiplying the drag estimate in the
extremum-seeking controller by the measured airspeed.

Table 1 Simulation parameters

Parameter Value Units

%u 3 ft=s
Lu 1750 ft
U0 142 ft=s
a 149 ft=s
q 0.0285 s(1=2

! 12.30 s
mg 14,300 lb
m 444 slugs
b 100 lbf= deg
kp 2.22 deg ="ft=s#
ki 0.0111 deg =&"ft=s# + s'
kES 1 &"ft=s#=s'=&"ft=s# + lbf'
&H 2 s
&L 5 s
D"V# "5:17 , 106#V2 % "0:0126#=V2 lbf (as in Fig. 1)
v! 142.2 ft=s
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Fig. 4 Simulation results of endurance speed optimization.

Table 2 Parameters for simulation without filters

Parameter Value Units

bkp=mD"v!# 9:790 , 10(4 &"ft=s#=s'=&"ft=s# + lbf'
kES 1:224 , 10(4 &"ft=s#=s'=&"ft=s# + lbf'
vaeq 142.3 ft=s
%aeq 460.4 "ft=s# + s
v̂a!eq 142.3 ft=s
J1;1 (2:640 , 10(21 s(1

J1;2 0.0025 s(2

J1;3 0.5 s(1

J2;1 0 None
J2;2 0 s(1

J2;3 1 None
J3;1 (1:112 , 10(4 s(1

J3;2 (0:0025 s(2

J3;3 (0:4374 s(1
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Fig. 5 Simulation results without added filters. By comparison with
Fig. 4 it is clear that convergence can be sped up by several orders of
magnitude by the addition of the filters.
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Conclusions
A turbulence-based form of extremum seeking has been

developed for optimizing the speed of an aircraft for maximum
endurance. The turbulence-based approach allows extremum seek-
ing to be performed without introducing an external perturbation.
Assuming longitudinal turbulence in level flight and a general
convex drag curve, analysis shows weak exponential stability to the
minimum drag speed. Simulations show similar behavior with high-
pass and low-pass filters added to the extremum-seeking loop.
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