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Leader-Enabled Deployment Onto Planar Curves:
A PDE-Based Approach

Paul Frihauf, Student Member, IEEE, and Miroslav Krstic, Fellow, IEEE

Abstract—We introduce an approach for stable deployment of
agents onto families of planar curves, namely, 1-D formations in
2-D space. The agents’ collective dynamics are modeled by the
reaction–advection–diffusion class of partial differential equa-
tions (PDEs), which is a broader class than the standard heat
equation and generates a rich geometric family of deployment
curves. The PDE models, whose state is the position of the agents,
incorporate the agents’ feedback laws, which are designed based
on a spatial internal model principle. Namely, the agents’ feedback
laws allow the agents to deploy to a family of geometric curves
that correspond to the model’s equilibrium curves, parameterized
by the continuous agent identity . However, many of
these curves are open-loop unstable. Stable deployment is ensured
by leader feedback, designed in a manner similar to the boundary
control of PDEs. By discretizing the PDE model with respect
to , we impose a fixed communication topology, specifically a
chain graph, on the agents and obtain control laws that require
communication with only an agent’s nearest neighbors on the
graph. A PDE-based approach is also used to design observers to
estimate the positions of all the agents, which are needed in the
leader’s feedback, by measuring only the position of the leader’s
nearest neighbor. Hence, the leader uses only local information
when employing output feedback.

Index Terms—Boundary control, cooperative control,
multiagent systems.

I. INTRODUCTION

M UCH research has been conducted in multiagent forma-
tion control, leading to many approaches for stable de-

ployment onto curves. However, the agents in many of these
works implement controllers that depend on the desired deploy-
ment, hence the parameters of each agent’s controller must be
updated to move the agents from one deployment to another,
which may be cumbersome for systems with large numbers of
agents.

We propose a framework that enables agents to achieve
deployment families while employing a single controller with
no knowledge of the desired deployment. These families
correspond to the potentially unstable, nonzero equilibria of
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either two decoupled, linear reaction–advection–diffusion
partial differential equations (PDEs) or one complex-valued,
linear Ginzburg–Landau PDE and are stabilized by a leader
agent. The agents’ positions, needed for the leader’s feedback,
are estimated by observers that require position information
from only the leader’s nearest neighbor. Thus, when the leader
employs output feedback, all the agents use only local informa-
tion. We also propose a nonlinear approach for deployment to a
family of circular arcs, including circles, that does not require
leader feedback. This design, however, is limited to formations
of fixed radius, whereas the leader-enabled design allows the
agents to stabilize formations of any size with an arbitrary
convergence rate. For large multiagent systems, our framework
allows a user to deploy many agents to multiple configurations
while communicating with only two agents.

1) Literature Review: This paper draws from multiagent sys-
tems research in formation control, estimation, and PDE-related
designs. In formation control, feasible geometric patterns are
characterized for agents with global information in [1], and sta-
bilization of any geometric pattern using Laplacian controls are
studied in [2]–[4]. Formation control for unicycles under cyclic
pursuit is considered in [5], [6], a sequence of maneuvers be-
tween formation patterns is achieved with a behavior-based ap-
proach in [7], and planar formations are controlled in a Lie group
setting in [8]. By selecting appropriate density functions that
are known by all the agents, coverage control algorithms de-
signed in [9] can be used to achieve deployments onto a desired
planar curve and 2-D distributions within a desired planar curve.
In [10], decentralized controllers that maintain connectivity are
used to form geometric patterns specified by a smooth function.
Deployment and rendezvous on a line are considered in [11] for
agents connected by a data-rate-constrained network.

Other works use a leader agent to influence the collective
behavior of the agents. Artificial potentials and virtual leaders
are used to control the group’s geometry and mission in [12].
In leader–follower systems, nonholonomic followers use non-
linear controllers to stabilize their relative distances and orienta-
tion in [13], leader-to-formation stability gains are used to quan-
tify a formation’s stability properties in [14], and bounds on a
leader’s velocity and the curvature of its path, which guarantee
the existence of a follower’s formation-maintaining controller,
are determined in [15]. A leader agent is used to steer a for-
mation in [4] and to optimally transfer agents to desired way-
points at specified times in [16]. In [17], leaders employ a hybrid
Stop–Go policy to drive follower agents to a target location.

Multiagent estimation research has focused mainly on dy-
namic consensus filters. Vehicles use an information exchange
methodology, whose stability is decoupled from the local con-
trol of the vehicles, to reach consensus on a formation’s center
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in [2]. Laplacian consensus dynamics are extended in [18] to
handle time-varying signals, arbitrary time delays, and splitting
and merging networks. Dynamic consensus filters are developed
in [19] and implemented in [20] to estimate global information
for use in an agent’s local controller to achieve the system’s de-
sired global behavior. Dynamic consensus filters are also used
in [21] to stabilize parallel or circular collective motion, recov-
ering the results in [22].

Recent years have seen an increase in multiagent research
utilizing PDEs for both design and analysis [23]–[28]. In
particular, [24] uses a PDE from image processing to design
boundary-tracking controllers, [26] models a swarm as an
incompressible fluid for pattern generation, and [27] studies the
stability of large vehicular platoons using a linear hyperbolic
PDE. The Partial difference Equation (PdE) framework is used
in [29] to show that Laplacian control, analyzed in [30] and
[31], coincides with the heat equation. It is also used to develop
control laws in [17] and [32], where in [32], agents use model
reference adaptive control laws to track desired trajectories,
using either the heat equation or the wave equation as reference
models.

2) Results of This Paper: We introduce a framework for
multiagent deployment into families of geometric curves. Our
design employs linear reaction–advection–diffusion equations
and boundary control techniques, which treat the agents as a
continuum. These PDE models are an application of the in-
ternal model principle [33], but in a spatial sense, where the
PDE models allow the agents to achieve a family of deploy-
ments that correspond to the models’ nonzero equilibria. Specif-
ically, the follower agents’ feedback laws, incorporated by the
PDE models, contain a model for a family of geometric curves,
namely, signals in space rather than time. Consequently, the
agents are able to achieve different formations while using the
same controller, whereas other works require a controller’s pa-
rameters to be changed to achieve a new deployment.

The follower agents’ feedback laws, however, do not ensure
stability, and many, if not most, nonelementary deployments
are derived from unstable PDE models. Other PDE-based de-
signs utilize only inherently stable models. Stabilization of the
planar curves is guaranteed by two boundary agents—the leader
agent and the anchor agent—which serve as boundary condi-
tions for the PDE models. These special agents execute con-
trol laws designed using the backstepping approach [34]. Even
for standard deployments, which correspond to stable PDEs,
such as rendezvous or deployment to a line, our leader feed-
back can achieve any desired convergence speed, in contrast to
the convergence speeds of the standard consensus-based algo-
rithms that are limited by the first eigenvalue of the heat equa-
tion [2], [11], [29]. The desired deployment shape is encoded
in these boundary controls in the form of a bias term, which al-
lows the leader and anchor to select a specific curve from the
deployment family for the agents to stabilize. By adjusting their
respective bias terms, the leader and anchor (and by extension,
the user) can induce the agents to unknowingly deploy to other
curves within the deployment family.

Our framework also includes the design of observers, which
are employed by the leader agent, using the backstepping ap-
proach for PDEs with boundary sensing [35]. These observers
require knowledge of only the position of the leader’s nearest

Fig. 1. Communication topology imposed by spatial discretization. The leader
needs global information (dashed) unless it uses output feedback. Legend:
anchor; follower; leader.

neighbor to estimate the positions of all the agents. By spa-
tially discretizing the PDE models, observers, and boundary
controllers, we obtain control laws for the follower agents, the
anchor, and the leader. This discretization imposes a fixed com-
munication topology on the agents, shown in Fig. 1, where if
the leader employs output feedback, all the agents utilize only
local information (in the sense of the communication topology)
in their control laws.

The unstable PDEs place special emphasis on the leader for
stability. For this reason, we explore alternative ways to achieve
deployment families. We focus on circles since they correspond
to unstable PDE models in the leader-based design and are im-
portant benchmarks that extend the deployment ideas beyond
linear deployments [3], [11]. We present a nonlinear PDE model
for deployment to a circle and prove its stability. We use an-
chor agents to move the agents from one deployment to another,
similar to the use of leading reference agents in [32]. A limita-
tion of this method is that the deployment’s radius cannot be
manipulated by the anchors (or user) without communicating
the desired radius to all the agents. In contrast, the leader-based
approach allows deployment to circles/ellipses of arbitrary size
without the need to broadcast any parameters.

3) Organization: Section II introduces leader-enabled de-
ployment for both decoupled 1-D deployments and complex-
valued deployments with – cross-coupling. Section III details
the design of stabilizing controllers with closed-loop stability
proven in Section IV. Observer design, model discretization,
and numerical simulations are presented in Sections V–VII. We
introduce deployment to circular arc families in Section VIII
and conclude with Section IX.

II. LEADER-ENABLED DEPLOYMENT

For the planar deployment problem, we consider a large (con-
tinuum) group of fully actuated agents operating in a common
reference frame, namely, we consider the dynamical model

(1)

where denotes the position of agent at time ,
and are the control inputs for agent ,

, , and . We
refer to the parameter as the agent identity, which serves as
an agent’s identification number and as the spatial variable of
a PDE model for the group’s collective dynamics. Discretizing
(1) with respect to leads to the following dynamical model
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for agent : , , . For
later use, we define the notation: ,

.
Our goal is to stably deploy a continuum of agents to families

of planar curves by designing the controllers , .
Then, a finite number of agents implement the discretized
controllers , . This 2-D deployment problem can be
approached either through: 1) two decoupled 1-D deployment
problems, where the horizontal feedback is decoupled from ver-
tical feedback, i.e., actuation in the -direction does not depend
on the position measurement in the -direction, and vice-versa;
or 2) as a single complex-valued deployment, where the real
and imaginary components represent the horizontal and vertical
coordinates, and actuation in each coordinate direction depends
on the entire position vector. Restated, in 1), the horizontal
velocity command is a function of only the -position, and the
vertical velocity command is a function of only the -position.
In 2), the complex-valued formulation allows for horizontal
and vertical velocity commands that are functions of the planar
position . Using two decoupled 1-D deployments is
simpler than employing a single complex-valued deployment,
so we consider it first for clarity.

A. Decoupled 1-D Deployments

It is common to approach the deployment problem through
consensus-based control laws [2]–[4], [11], whose basic form
is given by

(2)

where denotes the set of agents/neighbors that communicate
with agent . In [29], (2) is formally shown to coincide with the
heat equation

(3)

where each agent employs the diffusion-based feedback
, which depends only on local agent inter-

actions, i.e., an agent’s nearest neighbors. This simple agent
strategy is stable, but it is limited in its convergence rate and
is capable of achieving only linear formations [because the
equilibrium equation is the simplest second-order ordinary
differential equation (ODE), ].

Remark 2.1: Throughout this paper, “nearest-neighbor”
refers to agents that are nearest in terms of the fixed communi-
cation topology, not in terms of physical distance.

Drawing from the connection between consensus and the
heat equation, we approach the PDE-based deployment with
the more general linear reaction–advection–diffusion equation

(4)

where the agents’ velocity-actuated feedback laws are
given by the right-hand side of (4), and follows analo-
gously for the -dimension. These feedback laws maintain the
simplicity of the diffusion-based feedback as they are still based
only on nearest-neighbor information with all the agents ap-
plying the same constant gains and . In the sequel, we drop

the arguments whenever the context allows us to do so
without harming clarity.

We designate a special role for the two boundary agents, i.e.,
agent and agent , whose motions are governed by

(5)

where and are controls to be designed, and which
act as the boundary conditions for the PDE (4). The leader agent

and the anchor agent will control the follower
agents . As indicated by their names, the leader
stabilizes the deployment profile , while the anchor simply
deploys to its designated position . Either the leader agent
or both the leader and anchor agents may be treated as virtual
agents if desired (and as suggested by the use of virtual edge
leaders in [3]), but it is not necessary.

The deployment families of interest correspond to the
nonzero equilibrium curves of (4), which satisfy the two-point
boundary value problem

(6)

with and given. This allows for a much more general
family of deployments than the linear (in ) equilibrium curves
of the heat (3). Equation (6), which is a second-order ODE with
constant coefficients, characterizes all the achievable 1-D de-
ployments with the follower agent feedbacks (4). While these
feedbacks make these deployments feasible, they do not guar-
antee stability since the open-loop response of (4) is

with eigenvalues ,
, and constants , whose values depend on

the initial condition . In particular, deployment families
where are unstable. Hence, the leader and the
anchor agents play a crucial role in stabilizing the possibly non-
linear (in ) deployment curves.

For planar deployment, we utilize a 1-D PDE model for each
coordinate axis, which yields two deployments, and ,
that characterize a planar curve parameterized in

(7)
where and are basis functions associated with
the solutions of (6) for the respective horizontal and vertical
PDE models. We term the coefficients, , , , and the
deployment coefficients, which are scalars the user is free to se-
lect to define a desired deployment. It is of interest to see how
rich the family of possible geometric curves is. Table I catego-
rizes the basis functions according to the values of and . To
the user, who has particular planar formations in mind, the basis
functions are a starting point in selecting the strategies of the fol-
lower agents and also of the leader and anchor agents.

The ability to use two disparate PDE models (one for each
dimension) provides the user with a wide variety of basis-func-
tion combinations that produce various planar deployments. In-
terestingly, the well-known Lissajous curves, given by

, , where , , , , and
are scalars and , , are achieved when the 1-D deploy-
ments are governed by the reaction–diffusion equations,
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TABLE I
BASIS FUNCTIONS FOR 1-D DEPLOYMENT CURVES OF THE

REACTION–ADVECTION–DIFFUSION EQUATION

Fig. 2. Lissajous curves for various values of , , and with ,
. The dots represent agents. Legend: black dots agent;

light dots agents.

and , and the following deploy-
ment coefficients are selected: , ,

, and . Fig. 2 depicts four possible deployments
of 15 agents based on Lissajous curves.

When the same PDE model is used in each dimension, the
parameterized deployment can be written in vector form as

(8)

and the coefficient matrix can be chosen to be a rotation, scaling,
shear, or reflection matrix. For example, the coefficients can be
selected to define the desired deployment

(9)

which is a counterclockwise rotation of the scaled curve
, about the origin by the angle .

When two identical reaction–diffusion equations with are
used, , and (9) rep-
resents a rotated ellipse. If the same PDE models are used, but
with , ,
and (9) represents a rotated hyperbola.

B. Complex-Valued 2-D Deployment With – Cross-Coupling

Until now, we have considered the already rich family of
planar deployments that are created by pairing two independent
1-D deployments. We now extend this family of achievable de-
ployments by utilizing an agent’s full position vector
in a feedback law for each coordinate direction. To do so, we
consider the complex-valued Ginzburg–Landau PDE as a con-
tinuum model of the collective dynamics of the agents in the
plane.

Let be the complex-valued
position at time of agent , where denotes the imaginary
unit, . Now, consider the complex-valued reaction–advec-
tion–diffusion equation (which is a linear Ginzburg–Landau
PDE with constant coefficients)

(10)

where . In the sequel, we use , ,
and for conciseness. Equation (10) represents
the followers’ velocity-actuated feedback laws. As before, the
leader and anchor agents serve as the boundary conditions for
the PDE (10)

(11)

where and are controls to be designed. The open-
loop system is unstable when is positive and large.

The deployments associated with (10) are the equilibrium
curves that satisfy the complex-valued two-point boundary
value problem

(12)

where and are given. The second-order complex
ODE (12) is in fact a fourth-order real ODE, whose solution
is given in terms of four basis functions as

,
alternatively written as

(13)

The presence of four basis functions affords the designer ad-
ditional flexibility in shaping deployments, but the restrictive
structure of the matrices in (13) prevents the user from being
able to shear, reflect, or scale disproportionately the formations.
The deployments can only be rotated or equally scaled.

For the second-order complex-valued ODE (12), the resulting
basis functions are not easy to categorize in terms of the values
of the real and imaginary parts of , , , as was done in Table I
for real second-order ODEs. We characterize the basis functions
for specific subclasses of the complex-valued reaction–advec-
tion–diffusion equation. For , the equilibrium profiles
are linear in , regardless of the value of . The more interesting
cases are characterized next.
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1) Advection–Diffusion Equation :

(14)
where , , and

. If , the deployment reduces to
two independent 1-D profiles.

2) Reaction–Diffusion Equation :

(15)

where ,
, and

denotes the signum function. The deployments become
decoupled if .

3) Reaction–Advection–Diffusion Equation:

(16)

where
,

,

,
,

, ,
and . The deployments in each dimension
become decoupled if .

Clearly, selecting the appropriate PDE model (10)—specifi-
cally the coefficients , , and required for a desired deploy-
ment family—is not as straightforward as in the 1-D case due
to the complicated expressions for and given in (14)–(16).
However, interesting deployments can be found with some ef-
fort. For example, by selecting , , and

, the deployment (14) becomes

(17)
which represents a circle deployment centered about the
point . By simply changing the scalars and ,
the deployment can be moved about the plane. In contrast, a
circle deployment can also be formed using two independent,
open-loop unstable 1-D reaction–diffusion equations with

, whose equilibria correspond to a family of ellipses
centered about the origin. The deployments (15) and (16) model
families of spiral-like deployments.

C. Design Procedure for Desired Deployment Profiles

To achieve leader-enabled deployment onto possibly non-
linear (in ) planar curves using either two 1-D deployments or

one complex-valued deployment, the user applies the following
steps.

1) Select a desired deployment family, i.e., a family of basis
functions.

2) Select specific basis functions by choosing the coefficients
of the appropriate PDE model(s).

3) Choose deployment coefficients to generate a specific
planar deployment.

4) Choose the desired deployment convergence rate.
5) Discretize the PDE model(s) spatially to obtain imple-

mentable control laws for the leader, anchor, and follower
agents.

This procedure encompasses both feasibility (steps 1–3) and
stability (steps 4 and 5). We have discussed deployment fami-
lies for agents with feedback laws derived from PDE model(s),
which guarantee feasibility, but not stability, of the deployments.
For stable deployment, we design the control laws and

for the anchor and the leader, and for the leader, ob-
servers to estimate the agents’ positions. We now focus on these
designs.

III. LEADER FEEDBACK DESIGN

We employ PDE backstepping boundary control [34] for the
complex-valued PDE model (10) and (11) since leader-based
control naturally leads to formulations with actuation at the
boundary. PDE backstepping succeeds in deriving closed-form
controllers that achieve exponential stability with only boundary
actuation. This approach is more elegant than other boundary
methods that produce complicated controllers, which require
solving operator Riccati equations. This design also applies, as
a special case, to the real-valued PDE model (4) with boundary
conditions (5) by treating , , , and as real-valued and
setting .

First, we introduce the deployment profile error

(18)

to shift the equilibrium of (10) to the origin. Substituting (18)
into (10) and (11) yields

(19)

(20)

(21)

and we remind the reader that the coefficients , , and are
complex and . Next, we substitute the change of
variable [34]

(22)

into (19)–(21) to eliminate the advection term and obtain

(23)

(24)

(25)
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Now, let be a new state that is defined by the coordinate
transformation

(26)

where the kernel defined on
is given by [34]

(27)

with , , In (27), denotes
the first-order modified Bessel function of the first kind. The
variable (26) is shown to satisfy the target PDE system

(28)

(29)

(30)

and this transformation can be inverted to obtain

(31)

where the inverse gain kernel [34]. As will be seen
in Section IV, the parameter , which is selected by the user,
determines the convergence rate of the deployment.

From (18), (22), (26), and the boundary conditions (24) and
(29), we obtain the anchor’s control law

(32)

For the leader’s control law, we introduce the operator
acting on the function as

(33)

(34)

where and indicate the second- and third-order modified
Bessel functions of the first kind, respectively. From (18), (22),

(26), and the boundary conditions (25) and (30), we arrive at the
leader’s control law

(35)

that, with (32), stabilizes the deployment profile .
Of note, the control laws (32) and (35) both contain a feed-

back term and a constant bias term, whose value is determined
by the desired formation and can be computed prior to deploy-
ment. By simply changing the bias terms—without changing
the feedback terms or the follower agents’ control strategy—dif-
ferent deployment profiles can be induced and stabilized by the
anchor and the leader. To achieve a specific formation, the user
selects the deployment coefficients to compute the
bias . If the bias terms are zero, rendezvous at the origin
is achieved.

However, if the user has no knowledge of the deployment
family and instead changes the bias values directly—i.e.,
employs the boundary conditions and

, where denote bias
terms set by the user—the agents will stabilize the deploy-
ment profile .
This profile is found by applying the change of variable,

, and the transformation (26) to the
system (10) and (11) to obtain the target PDE system (28)
with boundary conditions and

. The equilibrium of (28) with
these boundary conditions is

(36)

where . We use the inverse transforma-
tion (31) and change of variable, , to
obtain .

IV. CLOSED-LOOP STABILITY

Due to the dynamic character of the boundary condi-
tions (29) and (30), there are several aspects in which the
stability analysis here differs from [34] and other work on
PDE boundary control. A boundary value-dependent per-
turbation term arises on the right-hand side of (28), and the
dynamic boundary conditions necessitate that the analysis be
conducted in the Sobolev space,

,
rather than the function space,

.
Theorem 1: The system (10) with boundary conditions (11)

and control laws (32) and (35) is exponentially stable in the
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norm at the equilibrium , i.e., there exists
such that for all , , where

, , and

(37)
Proof: We begin by proving exponential stability of the

target system (28)–(30). Let be the Lyapunov functional

(38)
where is a positive scalar to be determined. In the sequel, we
omit the arguments unless needed for clarity. Taking the
time derivative of gives

(39)

where denotes the complex conjugate of . Substituting (30)
yields

(40)

Integrating by parts and substituting (28)–(30) gives

(41)

We now apply the Cauchy-Schwarz and Young’s inequalities
with the parameter to obtain

(42)

where . Selecting the parameters
and , we find

(43)
(The choice of assumes that so that
and .)

From the Comparison Lemma [36] and Lemma 4 in the
Appendix, we have

(44)

where ,
, and , are shown in (103)

and (104). The stability result is obtained from (44) with
.

From Theorem 1, we see that the leader-enabled continuum
design achieves exponential stability with a decay rate that can
be arbitrarily set by the user, namely, the gain .

V. LEADER OBSERVER DESIGN

In the previous sections, we have assumed that the leader
agent has knowledge of all the agents’ positions. Since the
leader agent is acting as a boundary actuator, it is also natural
to use it as a boundary sensor, providing measurements to an
observer that estimates the positions of all the agents. We now
consider two scenarios: 1) the leader knows the position of
itself, its nearest neighbor, and the anchor agent, and 2) the
leader knows the position of only itself and its nearest neighbor.
In both cases, the leader agent also knows the anchor’s bias
term. For these scenarios, we use backstepping for PDEs with
boundary sensing [35] to design exponentially stable observers
of the follower agents’ positions for use in the leader agent’s
controller (35). As with boundary control, PDE backstepping
leads to observer designs with closed-form observer gains,
whereas other methods lead to more complicated designs.
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A. Leader, Neighbor, and Anchor Measurements

Consider the observer for the PDE system (10) and (11)

(45)
(46)
(47)

where is the position estimate of agent at time ,
is the leader agent’s control input, and , , and are
measurements. The functions, and , and the con-
stants, and , are observer gains to be determined.

Define the observer error variable and consider the
PDE error system

(48)
(49)
(50)

We eliminate the advection term by substituting the change of
variable into (48)–(50) to obtain the reac-
tion–diffusion equation

(51)

(52)
(53)

Now, define the coordinate transformation [35]

(54)

where the kernel defined on
is given by

with
, . Using (54), we

transform the error system (51)–(53) to the target system

(55)
(56)
(57)

to determine the observer gains. From (51), (54), and (55), we
find

(58)

(59)

and from (52)–(54), (56), and (57), we have and
.

Theorem 2: The observer (45)–(47) with gains (58) and (59),
, and converges exponentially in the

norm to the state , i.e., there exists such that
for all , , where , and

(60)
Proof: The transformation (54) can be inverted to obtain

, where the inverse gain
kernel [34], so we begin by proving exponential sta-
bility of the target system (55)–(57). Let be the Lyapunov
functional

(61)
In the sequel, we omit the arguments unless needed for
clarity.

Computing the time derivative of , integrating by parts,
and substituting (55)–(57) yields

(62)

Integrating by parts gives

(63)

From the Comparison Lemma [36] and Lemma 5 in the
Appendix, we have

(64)

where and are shown in (105) and (106). The stability
result is obtained from (64) with .

B. Leader and Neighbor Measurements

From , we see that choosing the target
system (55)–(57) with results in the observer gain

, nullifying the anchor agent position measure-
ment. Thus, the transformation (54) transforms the error
system (51)–(53) to the target system, , with
boundary conditions , , and
yields an observer that requires communication/sensing of only
the leader agent’s nearest neighbor

(65)
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(66)
(67)

where the observer gains and are given by (58) and
(59) by setting . From Theorem 2, we have exponential
stability in the norm; specifically, .
Note how the decay rate is tied to the control gain and, hence,
cannot be arbitrarily set without knowledge of the anchor
agent’s position.

C. Output Feedback

Equipped with the stabilizing feedback (35) and ob-
server (45)–(47), one can now pursue output feedback
for the leader agent to stabilize the deployment profile,
namely, let be the control
input for the leader agent. To prove stability with output
feedback, we must prove stability of the observer and
observer-error system , which can be converted to
the target system using the change of variables

and ,
and the transformations
and (54). The target system is

(68)
(69)
(70)

where the -system is given by (55)–(57),
, and .

This system is a cascade connection where the exponentially
stable -system drives the -system, which is also exponen-
tially stable when unforced. Consequently, one would expect
stability of this system to be in the or higher norm.

VI. DISCRETIZED AGENT CONTROL LAWS

Implementable control laws for a finite number of agents are
obtained by spatially discretizing the PDE model (10), the leader
agent’s controller (35), and if employed, the observer (45)–(47).
The anchor agent’s controller (32) does not require modification
since it utilizes only the anchor’s own position. When we spa-
tially discretize the system, the state variable becomes

, where , , and is the
total number of agents. We denote the position of the anchor,
follower, and leader agents as , , and .

The discretization process gives rise to two questions:
1) How many agents must be deployed, i.e., how fine
must the spatial discretization be to retain stability in the
closed-loop system? 2) Is the equilibrium of the spatially dis-
cretized system the same as the equilibrium of the continuous
system? One can address the first question by transforming
the spatially discretized system using the transformation,

, where is
the gain kernel (27), and performing a Lyapunov analysis on
the resulting target system. Due to space limitations, we do
not address this issue in this paper, but similar results can be

found in [37]–[39]. Moreover, when compared to other design
options, the benefits of this multiagent control design, which
allows the user to deploy large numbers of agents into various
planar formations by communicating with only two agents, are
mitigated when deploying few agents. Concerning the second
question, we present a method that minimizes the approxi-
mation error due to the spatial discretization at the desired
deployment . Hence, the achieved deployment closely
approximates . Note, however, that both questions 1)
and 2) become irrelevant as the number of agents deployed is
increased.

Using three-point central differencing to approximate the spa-
tial derivatives in (10), we obtain the discretized follower agent
control laws

(71)

For the leader agent, we define the operator , a dis-
cretized version of (33), acting on the vector ,
where , as

(72)

where ,
, and is shown in (34). To obtain (72), we use

the trapezoidal rule and the two-point backward difference to
approximate the integral and terms in (33). The leader’s
discretized control law is simply

(73)

Together, the control laws (32), (71), and (73) govern the dy-
namics of the agents according to the linear ODE system

(74)

We see directly from (71) that the spatial discretization imposes
a fixed communication topology on the follower agents, specif-
ically a chain graph, since the followers depend only on their
nearest neighbors on the graph. The leader agent requires global
information to stabilize the deployment as seen by (73). How-
ever, the observers designed in Section V can be discretized in
a similar manner so that if output feedback were employed, the
leader agent’s control law is

(75)

which requires only local information.
Due to the approximation error inherent in the spatial dis-

cretization, the equilibrium of (74), , will not equal the de-
sired deployment, . Evaluating (74) at , we
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have ,
, and

(76)

where is the accuracy of the three-point central differ-
ence [40]. Because the desired deployment is encoded in the
leader and anchor agents’ bias terms, when

. The followers, however, are unaware of , and
at , .

To make closely approximate , we need to minimize
the approximation error , but we must do so for the entire
deployment family, not for specific deployments. Otherwise, the
error minimization will adversely affect the flexibility of the de-
sign and will require the follower agents to know the desired
deployment. One method is to simply deploy more agents since

as , but we seek a method to decrease
the error for a fixed . We exploit our knowledge of the basis
functions (13) that comprise the desired deployment family, al-
lowing us to characterize a measure of the approximation error
for the entire family.

Define vectors for the family of basis function spa-
tial derivatives as

and
,

where and are the second and first
spatial derivatives of the basis function for agent ,

. The vectors for the approximations of
the spatial derivatives, and , are defined similarly,
but with the three-point central difference approximations

and .
The actual derivatives and approximations are re-
lated by and

.
Now, define the second and first spatial derivative approxima-

tion error for the family of basis functions as
and , and characterize the error as

(77)

where and represent user-determined thresholds for the
approximation error, and denotes the Euclidean norm.
If both inequalities are satisfied, the achieved deployment
will match the desired deployment according to the user’s
specifications.

However, what if one or both of the above inequalities are not
satisfied? We propose the modified follower agent control law

(78)

where , , ,
, , and

. Hence, (78) is minimal in a least

squares sense at because the numerical ap-
proximation error for the family of basis function spatial
derivatives has been minimized by using the approximations

, for the actual derivatives
, . Since and are minimized

over a single parameter, the follower agents can still achieve
a family of deployments while employing a single set of
gains (78). For 1-D deployments, the procedure to find and

is the same, but the minimization is done using two basis
functions instead of four.

If and/or is satisfied, and/or can
be simply set to zero. For example, the three-point central
difference is exact for linear deployments, so . If
after computing and/or , the inequalities and/or

are not satisfied, improved deployment accuracy
can be achieved only by deploying more agents. As an example,
consider a 1-D deployment modeled by ,
which has basis functions . For deploy-
ments with 10 agents , the approximation error is

when the followers employ (71) and is
reduced to , where ,
when implementing (78) instead, indicating that the achieved
deployment is a much closer approximation of when
using the feedback laws (78).

While increasing the number of agents causes to better
approximate because the discretization step-size de-
creases, this smaller leads to large gains in the follower agents
feedback laws (78). However, we can simply scale all the control
laws to prevent disproportionately large gains and, hence, ve-
locity commands. Specifically, we implement the system

, , , which has a decay rate of
instead of . This scaling is meant for the implementation

of the control strategies on velocity-actuated systems. Alterna-
tively, this deployment paradigm could be used as a planning al-
gorithm where represents a nonphysical consensus-like
variable such that no physical actuation is required, making this
scaling unnecessary.

VII. SIMULATIONS

We present a variety of deployment examples to demonstrate
the flexibility of our results. All deployments, unless otherwise
stated, are simulated with 10 agents , where the anchor
and follower agents employ (32) and (78), and the leader agent
employs output feedback (75) using the observer (45)–(47) with

. The agents use the scaling , and the leader
and anchor agents select the control gain . we provide
the parameter set for each PDE model used. In
Figs. 4–6, the trajectories are shaded from light to dark as the
agents move from one desired planar deployment to another.
The desired deployments are also projected onto the plane
when needed for clarity.

Our first example focuses on the family of elliptical de-
ployments that are centered about the origin, which is de-
rived from identical, unstable reaction–diffusion equations

. In Fig. 3(a), the agents’ initial posi-
tions are sampled from the Gaussian distribution
(zero mean with unity variance) and rendezvous at the
origin due to the movements of the anchor and the leader
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Fig. 3. Agents in the ellipse deployment family (a) rendezvous at the origin with (b) the corresponding control effort (top) and observer error (bottom). The agents
converge to the origin after the observer error is negligible ( 14 s). In (b), we plot the control effort and observer error for s to highlight the transients
since all the curves decay to zero after 15 s.

Fig. 4. Agent trajectories for (a) the ellipse deployment family when deploying to a circle and then to a rotated ellipse, and (b) the Lissajous figure-8 deployment
family when deploying to a figure-8 and a distorted figure-8.

agents, whose bias terms are set to zero. The observer’s ini-
tial condition is ,

, where is sampled from the dis-
tribution , and .
Fig. 3(b) shows the control effort and the norm
of the observer error for each agent.
Note how the agents exhibit a transient before converging
toward the origin at approximately 14 s, which is when the
observer error becomes negligible. In Fig. 4(a), the anchor
and leader change their bias terms to deploy the agents onto
a circle [ , ] and then
onto an ellipse rotated counterclockwise about the origin by

rad [ ,
].

For the following examples, we could again initialize the
agents randomly in the plane with an initial observer error, but
instead we assume convergence of the observer and initialize the
agents at the origin to depict the agents deploying, and then re-
deploying, more clearly. Fig. 4(b) depicts the agents deploying
onto a figure-8 [ , ] and a
distorted figure-8 [ ,

], which are in, what we term, the Lissajous figure-8
family. This family is modeled using two unstable reaction–dif-

fusion equations, where the parameters
model the -axis deployment and
the -axis deployment. The deployments depicted in
Fig. 5(a) are formed using the advection–diffusion equa-
tion for the -axis deployment and
an unstable reaction–diffusion equation
for the -axis deployment. At s, the agents stabilize

,
before redeploying to ,

.
We now provide some examples that utilize

Ginzburg–Landau PDE models. In Fig. 5(b), the agents
deploy to a circle centered at (0, 0) [ ,

] and redeploy to a larger circle centered
at (4, 4) [ , ]
using the complex-valued reaction–advection equation

, which generates
circles centered about . The ability to move the
circles about the plane makes this deployment applicable to
capture and escort missions [17], [41]. A logarithmic spiral

is
stabilized in Fig. 6(a) by using a complex-valued reaction–ad-
vection–diffusion equation
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Fig. 5. Agent trajectories (a) using an advection–diffusion equation and a reaction–diffusion equation for the - and -deployments, respectively, and (b) for the
complex-valued circle deployment family when deploying to a circle centered at (0, 0) and to another centered at (4, 4).

Fig. 6. Agent trajectories for (a) the complex-valued spiral deployment family when deploying to a logarithmic spiral, and (b) a helical deployment with
s.

. For this deployment family, the
desired deployment is not precisely reached due to the
approximation error incurred by deploying 10 agents (whereas
the deployment error in the other examples is negligible for
10 agents). This error is significantly reduced by deploying
15 agents and is indiscernible when deploying 30 agents. The
final leader-enabled example [Fig. 6(b)] is a 3-D deployment
to a helix [ , ,

], which is created by combining a de-
ployment derived from a complex-valued advection–diffusion
equation with a linear
deployment generated by the 1-D heat equation.

Requiring a leader agent to achieve these deployments does
give rise to questions about the method’s robustness regarding
deployment stabilization when faced with agent failures. We
categorize a failure as an agent that stops moving prematurely,
which leads to this failed position being continually used in the
feedback laws of the failed agent’s neighbors. Consequently,
the failure of an agent can cause an unstable collective response
when employing an open-loop unstable PDE model. If the failed
agent is the anchor, however, its failure has the same effect as
selecting a different value for its bias term, causing the agents
to stabilize another (unintended) deployment. If the PDE model
is open-loop stable, the agents achieve a stable, but again unin-
tended, deployment no matter which agent fails since a failed

agent acts like an anchor, splitting the deployment into two for-
mations—one between the anchor and the failed agent and an-
other between the failed agent and the leader. In short, the failure
of any agent may prevent the agents from achieving the desired
deployment, but an unstable response is possible only when an
open-loop unstable PDE model is employed.

If the agents have the ability to detect failed agents (that are
not the leader), remove them from the topology, and reconnect
the topology, the agents would stabilize a deployment that dif-
fers slightly from the desired one since the agents’ gains are
based on the initial number of deployed agents. If the leader
were to fail, the agents could elect a new leader, but the user
would have to provide this new leader (a former follower agent)
with the necessary desired deployment information.

Another concern is collision avoidance. To prevent collisions,
potential field-based controllers (or other suitable controllers)
could be appended to the controllers used for deployment, but
modifications would be needed for desired deployments that
have collocated agents. As mentioned at the end of Section VI,
this methodology can also be used as a planning algorithm
where is a nonphysical variable that converges to the
desired deployment while the agents are stationary. Once

has converged, each agent effectively knows its desired
position and may deploy to this position using any controller
that prevents collisions.
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VIII. DEPLOYMENT ONTO CIRCULAR ARCS

The previous sections have discussed families of planar
curves that are stabilized by leader feedback, where the
leader is responsible for: 1) achieving closed-loop stability;
2) selecting a specific deployment from the feasible family;
and 3) setting the convergence rate of the deployment. If we do
not require a specific convergence rate and restrict ourselves to
stable systems, two anchor agents can deploy the agents to a
deployment family in some cases. For instance, linear deploy-
ments can be formed by moving two anchor agents about the
plane [3], [11]. The complex-valued circle deployment shown
in Section VII also does not require leader feedback for stability,
but if two anchor agents are collocated, the agents form a circle
whose radius depends on the agents’ initial positions, which
is undesirable. Many stable schemes have been presented for
the stable formation of circles/regular polygons without leader
agents, such as cyclic pursuit [5], [6], which does not produce
stationary formations, and consensus-based results [2]–[4],
which require each agent to know the desired formation. We
now explore an alternative approach that utilizes a nonlinear
PDE model to achieve a family of circular arc deployments,
including full circles, where only the desired radius needs to
be specified for each agent.

Denote the position of agent at time as
where , and consider agents with single integrator
dynamics, namely, , where

and are the agents’ controllers. In the sequel, we omit
for brevity unless needed for clarity. We propose controllers
and , which lead to the nonlinear PDE model

(79)

(80)

where , , , and is the desired radius of the circular
formation. Two anchor agents ( , ) represent the
boundary conditions for (79) and (80) and have the control laws

(81)

(82)

where , , is the anchor’s de-
sired angular position on the circle, and 0 or 1. The control
laws (79)–(82) cause the agents to deploy to a circular arc from

to with radius , provided no agent (including the an-
chors) is initialized at the origin.

This deployment is seen more readily by con-
verting (79)–(82) to polar coordinates, i.e.,

, ,
where and

. In polar coordi-
nates, the control laws are

(83)

(84)

which result in the - and -subsystems

(85)

(86)

(87)

(88)

It should be noted that (85)–(86) is an -parameterized family
of ODEs, whereas (87)–(88) is a PDE.

Lemma 1: For each , the -subsystem (85) and (86) has
the solution

(89)

where , . For every
, as .

Analyzing the -subsystem (87) and (88) is more subtle. The
equilibrium curves are linear in , and from the boundary con-
ditions, we have , which implies
that the linear deployment lies between and . How-
ever, , , so there exist countably
many equilibria

(90)

that lie “between” the final anchor agent positions.
Lemma 2: The -subsystem (87) and (88) is exponentially

stable in the norm at the equilibrium, , i.e.,
for all , , where

(91)

(92)

Proof: Working in the error variable , we obtain the
error system , with boundary conditions

. Using (91) as a Lyapunov functional, we
take the time derivative, substitute the error system, integrate by
parts, and apply the Poincaré inequality to obtain

(93)
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which implies the stability result by application of the Compar-
ison Lemma [36].

Before providing a stability result for the agents in the
plane, we state the following lemma.

Lemma 3: .
Proof: The proof follows after noting

.
Proving stability of the -subsystem (85) and (86) via

Lyapunov analysis is difficult because the subsystem has two
equilibria: , which is unstable, and , which
is stable. We could remove the equilibrium at the origin by
modifying the control laws (79) and (80), but then the control
laws become singular at the origin. Instead, we consider agents
in the domain and
utilize the explicit solution (89) to give a pointwise convergence
result, whose bounds depend on an agent’s initial position.

Theorem 3: Each agent in the system (79) and
(80), with boundary conditions (81) and (82), exponen-
tially converges to its equilibrium position on the circle

, where
and is given in (90). Specifically, for all initial profiles
such that , the following bound
holds for each agent for all :

(94)

where ,
, and

(95)

(96)

Proof: We show the details of bounding only. We
rewrite by converting to polar coordinates and using
(89), (92), some algebra, and a trigonometric identity as

(97)

From this expression, we develop the bound

(98)

When , the first and second terms of (98) can be
bounded by

(99)

Fig. 7. Agent trajectories for rendezvous on a circle at the point (3,0) using
the control laws (79)–(82). At s, the anchor agents traverse the circle,
creating a circle formation.

(100)

If , we have

(101)

(102)

Using inequalities (99)–(102) with Lemmas 2 and 3, we obtain
the bound .

We have presented the model (79) and (80) with anchor
agents since it enables the agents to deploy onto a circular
arc that, by moving the anchor agents, can be rotated about
the circle or elongated/shortened on the circle of radius .
Collocating the anchor agents causes the agents to either form a
circle or to rendezvous, but the anchors cannot determine which
outcome will occur since the system has multiple equilibria. If
a circle formation is desired, but the agents’ initial positions
dictate that the agents rendezvous instead, the anchors can
transverse the circle in opposite directions until they are again
collocated, dragging the followers into a circle formation.

Fig. 7 depicts this scenario for 10 agents that employ dis-
cretized versions of (79)–(82) with and

. The initial positions (black circles) are sampled from the
Gaussian distribution . For s, setting

rad, given the initial positions, causes the agents to
rendezvous at the point (3,0). For s, setting

rad and
rad forces the anchors—and, consequently, the fol-

lowers—to move about the circle until a circle formation is
formed. Since the -subsystem is fully decentralized, an agent
will obtain the radial position irrespective of the other agents’
motion. The anchor agents (or a failed agent) can affect only the
angular distribution of the agents, which means a deployment’s
radius cannot be changed unless the parameter is changed for
all the agents. In contrast, the agents can achieve circle/ellipse
deployments of any size when using the leader-based approach.
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The same model, but with periodic boundary conditions, i.e.,
a ring communication topology, is truly leaderless as it lacks an-
chor agents and, depending on the agents’ initial positions, sta-
bilizes only a circle or a rendezvous on the circle. This system’s
stability analysis is very much the same since only the boundary
conditions differ from (79)–(82). Without anchors, the agents
cannot form arcs or change deployments, and only with a leader
can the agents stabilize a specific deployment for any initial
condition.

IX. CONCLUSION

We have introduced a PDE-based approach for the deploy-
ment of agents onto families of planar curves. The PDE models
are a spatial application of the internal model principle, meaning
they make a deployment family feasible, but do not guarantee
stability. While the standard diffusion-based feedback leads to
inherently stable deployment to linear formations, for which
leader assistance is not needed, the nonlinear (in ) curves that
we pursue may be open-loop unstable. We employ a leader
and anchor agent, whose controllers are designed using PDE
boundary control techniques, to select and stabilize a desired
deployment from the feasible deployments.

We also introduced a family of circular arcs derived from a
nonlinear PDE model that does not require leader feedback for
stability. This approach extends the stable linear deployments
derived from diffusion-based feedback by enabling the agents
to stably deploy to a circle. The formation, however, is limited
to a fixed, predetermined radius.

It is crucial to observe that, in our framework, the follower
agents deploy out and maintain a stable formation not by being
commanded some reference positions, but by being induced (in-
directly influenced) by the leader’s and anchor’s motions. Such
a paradigm allows a user to control the formation geometry of
an entire group of agents by adjusting the bias terms of only
two agents. With a leader agent, the agents can stably deploy
to the rich geometric family of formations derived from the re-
action–advection–diffusion PDE class, which includes several
deployments of practical interest—for example, the leader de-
ploying out the majority of agents near a target position (oc-
cupied by the anchor) while staying at base, or conversely, de-
ploying out only a few agents; deploying agents out in both di-
rections symmetrically while both the leader and anchor stay at
base, creating a “protective shell” for the leader; or deploying
the agents to encircle a point of interest for surveillance or es-
cort purposes.

If both the boundary agents are treated as virtual agents, more
traditional Dirichlet and Neumann boundary conditions can be
used, which may be necessary to extend this work to the sta-
bilization of deployments governed by nonlinear PDE models
such as the Burgers equation, which allows for shock-like de-
ployments. Extending this paradigm to planar surface deploy-
ments and performing motion planning to control the agents’
transient behavior when deploying are also of interest.

APPENDIX

Lemma 4: The inequalities,
and hold, where and

are given by (37) and (38),

(103)

(104)

, ,
, ,

, and .
Proof: Using (22), (26), (31), and applying the

Cauchy–Schwarz and Young’s inequalities several times
to bound terms in and , one can obtain (103) and
(104). The scalar is immediate from and , and

is found by splitting the last term of and applying the
Poincaré inequality.

Lemma 5: The inequalities
and hold where and are
given by (60) and (61),

(105)

(106)

, , ,
, , and
.

Proof: The proof is analogous to the proof of Lemma 4.
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