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Slow sensors arise in many applications, including sensing chemi-
cal concentrations in tracking of contaminant plumes. Slow sen-
sors are often the cause of poor performance and a potential
cause of instability. In this paper, we design a modified extremum
seeking scheme to account and exploit slow sensor dynamics. We
also consider the worst case, which is sensor dynamics governed
by a pure integrator. We provide stability results for several dis-
tinct variations of an extremum seeking scheme for one-
dimensional optimization. Then we develop a design for source
seeking in a plane using a fully actuated vehicle, prove its closed-
loop convergence, and present simulation results. We use metal
oxide microhotplate gas sensors as a real world example of slow
sensor dynamics, model the sensor based on experimental data,
and employ the identified sensor model in our source seeking
simulations. !DOI: 10.1115/1.4003639"

1 Introduction
Recent advances in extremum seeking have shown it to be a

powerful tool in real time nonmodel based control and optimiza-
tion !1–6". Success has been achieved in compensating slow ac-
tuator dynamics !7–9", but no results have been reported on ex-
tremum seeking for plants with slow sensor dynamics or in the
extreme case of sensors governed by a pure integrator #drifting
sensors$. In this paper, we introduce a new idea of how to extend
extremum seeking to deal with a slow or drifting sensor.

For simplicity, we first consider a single-parameter extremum
seeking problem with a static map and sensor dynamics. Then we
consider a 2D problem with simple vehicle dynamics and with
slow sensor dynamics. The classical extremum seeking scheme
!10" is modified by observing that the integrator, a key adaptation
element, is already present in the sensor dynamics, if they are
governed by a pure integrator. We perform an appropriate #time-
varying$ swap of the integrator block and the demodulation block
#Sec. 3$, and as a result obtain a scheme where the map output
converges to the extremum fast, while the sensor output may con-
verge slowly, or it may even drift to infinity. Stability and simu-
lation results are presented first for a system with a slow sensor
#Sec. 4$. This is followed by the results for a sensor governed by
a pure integrator #Sec. 5$. #These results do not imply one an-
other.$ Finally, results for the case of a 2D point mass vehicle with
a slow sensor are presented #Sec. 6$.

Traditional methods for gas plume seeking using slow metal
oxide sensors !11–13" #reviewed in Sec. 2$ either wait for a big
enough change in the sensor reading or for the sensor reading to
settle before they act. Most of these search methods !14–16" are

based on mimicking insect behavior #mainly moths$ to localize
source of odor without much consideration of the sensor dynam-
ics. The modified extremum seeking #ES$ scheme reacts to the
sensor reading continuously, which allows the overall system to
converge to an optimum much faster than the sensor settling time.

Our compensation of slow sensor dynamics does not amount to
employing a differentiator after the sensor to cancel the integrator
in the sensor and act on the trend of the signal, rather than on the
value of the signal. This approach would result in amplification of
noise. Instead, our approach leverages the integrator action in the
sensor, to have it assume the role of the tuning element in the
extremum seeking loop. We highlight this by considering both a
version of the modified scheme with the standard washout filter in
the loop and a version without the washout filter, proving stability
in each case.

To show the capabilities of the modified extremum seeking
scheme with the metal oxide sensors, we consider the realistic two
dimensional problem of trying to localize a gas leak in a room
with a single moving sensor. In the 2D source seeking problem,
we are faced with the problem that two integrators exist in the
loop, one from the sensor and one associated with the vehicle
model. A modification of the extremum seeking scheme is needed
to reduce the loop phase drop from 180 deg to a lesser value. This
modification comes in the form of a washout filter to approximate
differentiator, or, if preferred, in the form of a phase-lead compen-
sator.

2 Model of a Metal Oxide Sensor
Due to their small size, metal oxide based microhotplate sen-

sors can be used to develop a portable, sensitive, and low-cost gas
monitoring system to detect, for example, leakage of hazardous
gases. Modeling metal oxide microhotplate sensor dynamics ac-
curately can prove to be very difficult, as seen in Refs. !17–19". In
this section, we make a reasonable assumption to simplify the
complicated models. The basic premise of the sensor model in
Refs. !17–19" is that the sensor reading is driven by an exponen-
tial of the concentration of several gases, and the gas concentra-
tions are governed by several coupled ordinary differential equa-
tions #ODEs$, which correspond chemical reactions. To better
understand the sensor dynamics, the metal oxide sensor was ex-
posed to different concentrations of ethanol shown in Fig. 1#a$.

From these tests, we see that the dominant dynamics of the
sensor are governed by a first order system

Gsensor#s$ =
b

s + !
#1$

where b and ! are the positive constants that depend on the sensor
and the type of gases. After performing several tests, we observed
that, although ! is positive, its magnitude is quite small #on the
order of 10−2$. By inspection, we set b=0.037 and !=0.046 to get
the model for the gas sensor reacting to ethanol. Figure 1#b$ com-
pares the identified sensor model against the real TGS2602 gas
sensor reading. The sensor model parameters change for different
gases and different sensors but always stay positive.

3 Extremum Seeking Design for Slow Sensors
In this section, we modify the classical extremum seeking

scheme to work with very slow sensors. In the extreme case, the
sensors are governed by a pure integrator, namely, drifting sen-
sors. We start with a key observation that an integrator is already
a part of the classical extremum seeking loop in Fig. 2#a$. We
need to modify the scheme so that the sensor itself is performing
the task of this integrator. To do this, we need to swap the inte-
grator and the multiplication by sin#"t$ in Fig. 2#a$, i.e., to move
the integrator upstream in the signal path. This is not a simple
swap of linear blocks because a multiplication by a time varying
signal is involved. However, using integration by parts, we get
that %0

t ##$$sin#"$$d$=sin#"t$%0
t ##$$d$−"%0

t cos#"$$%0
$##%$d%d$.

1Corresponding author.
Contributed by the Dynamic Systems Division of ASME for publication in the

JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received
December 16, 2008; final manuscript received October 28, 2010; published online
April 11, 2011. Assoc. Editor: Guoming George Zhu.

Journal of Dynamic Systems, Measurement, and Control JULY 2011, Vol. 133 / 044504-1
Copyright © 2011 by ASME



We use this observation to convert the scheme in Fig. 2#a$ to the
scheme in Fig. 2#b$, where the guiding idea is that the sensor is a
pure integrator. As we shall see, this modification also works
when !&0.

4 Slow Sensor and a Static Map
We consider applications in which the goal is to maximize the

output of an unknown nonlinear map f#'$ by varying the input '.
The signal f#'#t$$ is measured through a slow sensor, namely, the
signal (#t$, governed by (̇=−!(+bf#'$, is measured. Let the
maximizing value of ' be denoted as '!. We assume that the
nonlinear map is quadratic,

f#'$ = f! − q'#' − '!$2 #2$
where besides '! and f! being unknown, q' is an unknown posi-
tive constant.

In this section, we study the case of a slow sensor #!&0 but
small$. We consider both the ES scheme with a washout filter #h
&0$ and without a washout filter #h=0$. In the next section, we
address the same two cases but for a sensor modeled as a pure
integrator #!=0$.

Let '̂ be the estimate of '!, and '̃= '̂−'! be the error. From Fig.
2#b$, we obtain

'̂ = k&# sin#"t$ +
1
s

!− #" cos#"t$"' #3$

Note that we mix the time and frequency domain notation by
using the brackets ! · " to denote that the transfer function acts as
an operator on a time-domain function.

To prove stability, we are going to analyze '̃, #, and (. Assum-
ing the nonlinear map #2$ and the block diagram in Fig. 2#b$, we
obtain

( =
b

s + !
!f! − q'#' − '!$2" #4$

# =
s

s + h
!(" #5$

'̃ = k&# sin#"t$ +
1
s

!− #" cos#"t$"' − '! #6$

By rearranging Eq. #5$, multiplying Eqs. #4$ and #6$ by s, replac-
ing ' with '̃, and setting $="t, we obtain

d(

d$
=

1
"

!bf! − bq'#'̃ + a sin#$$$2 − !(" #7$

d#

d$
=

1
"

!bf! − bq'#'̃ + a sin#$$$2 − !( − h#" #8$

d'̃

d$
= −

1
"

k#h# + !( − bf! + bq'#'̃ + a sin#$$$2$sin#$$ #9$

Using the following two identities:

1
2)
(

0

2)

#'̃ + a sin#$$$2d$ = '̃2 +
a2

2
#10$

(a) (b)

Fig. 1 „a… An example of metal oxide sensor TGS2602 responding to four different concentrations of
ethanol. „b… Comparison of the first order sensor model and the real sensor reaction to ethanol.
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Fig. 2 Extremum seeking block diagrams. The modified extremum seeking algorithm
„b… applies both to the case with a slow sensor „ε>0… and to the case with a sensor
modeled as a pure integrator, which we also refer to as a “drifting sensor” „ε=0…. In both
cases „ε>0 and ε>0…, the washout filter is optional „both h>0 and h=0 are permissible….
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1
2)
(

0

2)

#'̃ + a sin#$$$2sin#$$d$ = '̃a #11$

to average Eqs. #7$–#9$, we obtain

d(avg

d$
=

1
"
)bf! − bq'&'̃2 +

a2

2
' − !(avg* #12$

d#avg

d$
=

1
"
)bf! − bq'&'̃2 +

a2

2
' − !(avg − h#avg* #13$

d'̃avg

d$
= −

kbaq'

"
'̃avg #14$

The equilibrium of the averaged system #12$–#14$ is
!(avg

e ,#avg
e , '̃avg

e "= !#b /!$#f!+ #q'a2 /2$$ ,0 ,0", with the Jacobian of

Javg =
1
"+− ! 0 0

− ! − h 0

0 0 − kbaq'
, #15$

Given that the nonlinear map has a maximum #q'&0$ and that the
sensor is stable #!&0$ and noninverting #b&0$, it follows that, if
we choose a ," ,k ,h&0, the Jacobian #15$ is Hurwitz and the
equilibrium of the averaged system #12$–#14$ is locally exponen-
tially stable. From averaging theorem !20", we get the following
result.

THEOREM 1. There exists "! such that for all finite "&"!, the
system in Fig. 2 with nonlinear map (2) has a unique exponen-
tially stable periodic solution #(2)/"#t$ ,#2)/"#t$ , '̃2)/"#t$$ of pe-
riod 2) /", which satisfies

-+(2)/"#t$ −
b

!
& f! +

q'a2

2
'

#2)/"#t$

'̃2)/"#t$
,- * O#1/"$, ∀ t + 0 #16$

Since '−'!= '̃+a sin#"t$= #'̃− '̃2)/"$+ '̃2)/"+a sin#"t$, the theo-
rem implies that the first term is zero, the second term is O#1 /"$,
and the third term is O#a$. Thus lim supt→,.'#t$−'!.=O#1 /"$.
Hence, we get lim supt→,.f#'#t$$− f!.=O#a2+1 /"2$, which char-
acterizes the asymptotic performance of the extremum seeking
loop in Fig. 2.

Figure 4 shows the simulations for a moving sensor along the
length of a pipe, where the objective is to localize a gas leak on
the pipe with the use of sensor-compensated extremum seeking,
with the gas distribution, which is shown in Fig. 3, modeled in the
form f#'$=-! /1+ p'#'−'!$2, where -!=250, p'=0.5, and '!=0.
The extremum seeking parameters were chosen as "=30, a=0.2,
k=10, and h=1. We assume the sensor model #1$ with the param-
eters !=0.046 and b=0.037. Figure 4#b$ shows the position of the
sensor in reference to the gas leak with a starting position of 3.
The nonlinear map output #J$ and the sensor position #'$ quickly
converge to a periodic motion around f! and '!, respectively.

Note in Fig. 4#d$ that the sensor reading converges very slowly.
The time interval for which J and '̂ are shown in Fig. 4 is only
one-tenth of the time interval on which # and y are shown. This is
done in order to display the details of the rapidly convergent sen-
sor position '̂, while the sensor reading y is about ten times
slower. More specifically, even though it takes the sensor reading
120 s to settle the extremum seeking algorithm is able to tune '̂ to
achieve maximum output from the nonlinear map in less than 6 s.
The convergence would be orders of magnitude slower if the al-
gorithm had to wait for the sensor reading to settle every time it
wanted to tweak '.

In some applications, the use of washout filters may be unde-
sirable because they act as approximate differentiators and there-
fore may result in the amplification of noise. Dropping the wash-
out filter still results in a stable system, namely, the washout filter
is used for performance reasons, not for stability reasons or to
“cancel” the extremely slow #integratorlike$ dynamics of the sen-
sor. The proof for this case #omitted$ is very similar to the proof
for the case where the sensor is a pure integrator but the ES
scheme does employ a washout filter #Theorem 3$, with the Jaco-
bian of the averaged system given as

Javg =
1
"
)− ! 0

0 − kbaq'
* #17$

THEOREM 2. Consider the system in Fig. 2 with the nonlinear map
of form (2) and without the washout filter. There exists "! such
that for all finite "&"! the system has a unique exponentially
stable periodic solution #y2)/"#t$ , '̃2)/"#t$$ of period 2) /", which
satisfies

-+y2)/"#t$ −
b

!
& f! +

q'a2

2
'

'̃2)/"#t$
,- * O#1/"$, ∀ t + 0 #18$

Simulation #not included$ for the system in Theorem 2 shows
convergence rate that is inferior to that of the algorithm with the
washout filter #Theorem 1$. This convergence rate difference is
not captured by the averaging analysis because the approximation
accuracy of averaging is low when some of the eigenvalues of the
average system are small due to small !.

5 Drifting Sensor and a Static Map
Our scheme works even when !=0, namely, when the sensor is

a pure integrator. This is a rather extreme situation of a sensor that
responds but permanently drifts in its value #toward infinity$. All
that we can achieve in this case is to maximize the sensor’s input,
since its output never settles.

The stability analysis for this case mimics some parts of the
proof for Theorem 1. Assuming the nonlinear map in Eq. #2$ and
setting !=0, we write Eq. #4$ as (=b /s!f!−q'#'̃+a sin#"t$$2".
Since the sensor output ( is not going to settle when its input '̂
settles, we do not include the sensor output as a state for which we
are proving convergence. Using the identities #10$ and #11$, we
obtain the following averaged equations:

d#avg

d$
=

1
"
)bf! − bq'&'̃2 +

a2

2
' − h#avg* #19$
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Fig. 3 Gas concentration distribution along the pipe with gas
leak at position 0
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d'̃avg

d$
=

1
"

!− kbaq''̃avg" #20$

The averaged systems #19$ and #20$ have the equilibrium
!#avg

e , '̃avg
e "= !#b /h$#f!+ #q'a2 /2$$ ,0", with the Jacobian of

Javg =
1
"
)− h 0

0 − kbaq'
* #21$

THEOREM 3. There exists "! such that for all finite "&"!, the
system in Fig. 2 with the nonlinear map of form (2) and !=0 in
the sensor dynamics has a unique exponentially stable periodic
solution ##2)/"#t$ , '̃2)/"#t$$ of period 2) /", which satisfies

-+#2)/" −
b

h
& f! +

q'a2

2
'

'̃2)/" ,- * O#1/"$, ∀ t + 0 #22$

Figure 5 shows a simulation with a sensor Gsensor#s$=b /s, '!=0,
f!=1, q'=0.5, and b=1. The ES parameters are chosen as "
=30, a=0.2, k=10, and h=1. Figure 5#a$ shows the ability of the
sensor-compensated ES scheme to maximize the output of a non-
linear map even with a marginally stable sensor. Figure 5#b$
shows '̂ starting from 3 and converging to a periodic motion
around '!=0.

The scheme studied in Theorem 3 contains a cascade of the
sensor’s integrator dynamics and of a washout filter. It may appear
that the key to the result is that a differentiator cancels an integra-
tor. This is not the case at all, as we illustrate with the next simu-
lations, for the system with Gsensor#s$=b /s and without the wash-

out filter #i.e., with h=0$. This simple result is given without a
proof, which follows from the fact that the #scalar$ Jacobian is
−kbaq' /" #in the $ time scale$.

THEOREM 4. Consider the system in Fig. 2 without the washout
filter, with ! set to zero in the sensor dynamics, and the nonlinear
map of form (2). There exists "! such that for all "&"!, the
system has a unique exponentially stable periodic solution
'̃2)/"#t$ of period 2) /", which satisfies /'̃2)/"#t$/
*O#1 /"$ , ∀ t+0.

Simulation results for the system in Theorem 4 are shown in
Fig. 6 for f!=1, q'=0.5, b=1, "=30, a=0.2, k=10, and h=1. As
expected, ' and f converge to a periodic motion around '! and f!,
respectively. The drifting sensor without the washout filter has
significant oscillations after settling compared with the previous
case with the washout filter. The significance of the result in Theo-
rem 4, shown in Fig. 6, is that the modified extremum seeking
scheme is not merely acting based on the signal trend/derivative
rather than on the signal value, which would have been the case if
the inclusion of a washout filter had turned out to be crucial.
Rather than “canceling” the sensor’s integrator, our scheme lever-
ages it, by using its presence for the function of tuning of '̂#t$ in
the ES loop.

6 Navigation of a 2D Point Mass With a Slow Sensor
In this section, we study the case of a slow sensor #!&0 but

small$ on a vehicle modeled as a 2D point mass ẋ#t$=ux#t$ and
ẏ#t$=uy#t$, where ux#t$ ,uy#t$ are two independent velocity inputs
to the vehicle. For simplicity of our presentation, we assume that
the nonlinear map is quadratic with the form
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Fig. 4 Simulation results for modified extremum seeking with slow sensor dynamics. „a… Output of
the nonlinear map. „b… The sensor position relative to !!. „c… The signal after the high pass filter. „d…
The slow sensor reading.
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f#x,y$ = f! − qx#x − x!$2 − qy#y − y!$2 #23$
where #x! ,y!$ is the maximizer, f! is the maximum, and qx ,qy are
some unknown positive constants.

We develop a scheme that accounts for the vehicle integrator
dynamics in the following manner. We start from the scheme for a
static map in Fig. 2. To get an integrator to appear at the input of
the nonlinear map, we first place the term 1=s /s between the ES
gain #k$ and the addition of the perturbation a sin#"t$. Then, tak-
ing the term 1 /s from the term s /s and moving it downstream the
signal flow direction and past the perturbation input, which results

in a differentiation of the perturbation, we get an integrator to
appear in at the input of the nonlinear map. Then, realizing that a
differentiator s, which remains from the term s /s, cannot be
implemented, we replace it with an approximate differentiator,
i.e., a washout filter s / #s+dx$. Finally, we take advantage of the
availability of the integrator in the lowest branch of the extremum
seeking loop and, with a suitable block diagram manipulation,
arrive at the scheme given in the x-channel of the scheme in Fig.
7.

To go from a 1D scheme to a two-input 2D-navigation scheme,
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Fig. 5 Simulation results for extremum seeking with Gsensor„s…=b /s with washout filter. „a… Output of
the nonlinear map. „b… The sensor position relative to !!. „c… The signal after the high pass filter.
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Fig. 6 Simulation results for extremum seeking with Gsensor„s…=b /s and without washout filter. „a…
Output of the nonlinear map. „b… The sensor position relative to !!.
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we simply add another extremum seeking channel with the per-
turbation and the demodulation applied with a 90 deg phase shift,
as was done in Ref. !7". The vehicle control is given by ux#t$
=a" cos#"t$+kx.x#t$ and uy#t$=−a" sin#"t$+ky.y#t$.

We introduce the new coordinates x̃=x−x!−a sin#"t$ and ỹ
=y−y!−a cos#"t$. With the new coordinates, the map #23$ be-
comes f#x ,y$= f!−qx#x̃+a sin#"t$$2−qy#ỹ+a cos#"t$$2. From the
block diagram in Fig. 2#c$, we write the equations for (, #, .x,
and .y,

( =
b

s + !
!f! − qx#x − x!$2 − qy#y − y!$2" #24$

# =
s

s + h
!(" #25$

.x = # sin#"t$ −
1
s

!#" cos#"t$ + dx.x" #26$

.y = # cos#"t$ +
1
s

!#" sin#"t$ − dy.y" #27$

By replacing #x ,y$ with #x̃ , ỹ$, letting $="t, and using Eqs. #10$
and #11$ to average, we obtain

d(avg

d$
=

1
"
)− !(avg + bf! − bqx&x̃avg

2 +
a2

2
' − bqy&ỹavg

2 +
a2

2
'*
#28$

d#avg

d$
=

1
"
)− h# − !(avg + bf! − bqx&x̃avg

2 +
a2

2
' − bqy&ỹavg

2

+
a2

2
'* #29$

d.x avg

d$
= −

1
"

#baqxx̃avg + dx.x avg$ #30$

dx̃avg

d$
=

kx

"
.x avg #31$

d.y avg

d$
= −

1
"

#baqyỹavg + dy.y avg$ #32$

dỹavg

d$
=

ky

"
.y avg #33$

The equilibrium of the averaged system #28$–#33$ is
!(avg

e ,#avg
e ,.x avg

e , x̃avg
e ,.y avg

e , ỹavg
e "= !#b /!$#f!+ ##qx+qy$a2 /2$$ ,0 ,

0 ,0 ,0 ,0", with the Jacobian

Javg =
1
"+

− ! 0 0 0 0 0

− ! − h 0 0 0 0

0 0 − dx − baqx 0 0

0 0 kx 0 0 0

0 0 0 0 − dy − baqx

0 0 0 0 ky 0

, #34$

Given that qx ,qy &0,!&0 and b&0, it follows that, if we choose
a ," ,kx ,ky ,dx ,dy ,h&0, the Jacobian #34$ is Hurwitz and the equi-
librium of the averaged system #28$–#33$ is locally exponentially
stable. From averaging theorem !20", we get the following result.

THEOREM 5. There exists "! such that for all finite "&"!, the
system in Fig. 2(c) with nonlinear map (23) has a unique expo-
nentially stable periodic solution #(2)/"#t$ ,#2)/"#t$ ,.x

2)/"#t$ ,
x̃2)/"#t$ ,.y

2)/"#t$ , ỹ2)/"#t$$ of period 2) /", which satisfies

-+
(2)/"#t$ −

b

!
& f! +

#qx + qy$a2

2
'

#2)/"#t$
.x

2)/"#t$
x̃2)/"#t$
.y

2)/"#t$
ỹ2)/"#t$

,- * O#1/"$, ∀ t + 0

#35$

Since x−x!= x̃+a sin#"t$= #x̃− x̃2)/"$+ x̃2)/"+a sin#"t$, the theo-
rem implies that the first term is zero, the second term is O#1 /"$,
and the third term is O#a$. Thus lim supt→,.x#t$−x!.=O#1 /"$
+O#a$. Similarly in y, we obtain lim supt→,.y#t$−y!.=O#1 /"$
+O#a$. Hence, we get lim supt→,.f#x#t$ ,y#t$$− f!.=O#a2+1 /"2$,
which characterizes the asymptotic performance of the extremum
seeking loop in Fig. 7.

Figure 8 shows the simulations of a point mass vehicle starting
at position #1,1$ with a slow sensor dynamics using actuator-
sensor-compensated extremum seeking on a nonlinear map mod-
eled in the form f#x ,y$=-! / #1+ px#x−x!$2+ py#y−y!$2$, where
-!=250, px=1, py =0.5, and #x! ,y!$= #0,0$. The extremum seek-
ing parameters are "=20, a=0.5, kx=1, ky =1, dx=0.2, dy =0.2,
and h=1. We assume the sensor model #1$ with the parameters
!=0.046 and b=0.037. It is interesting to note that the time it
takes the vehicle to settle to the location of the maximum concen-
tration is one-fourth the time that it takes the sensor reading to
settle. The increase in convergence time of the position of the
sensor from the previous 1D case to the 2D case is mainly due to
the addition of the actuator dynamics for the vehicle.

Similar to the modified one-dimensional case, the two dimen-
sional modified extremum seeking case with point mass actuator
dynamics can be extended to the two dimensional case with no
washout filter or with a purely drifting sensor.

Fig. 7 Modified ES for 2D point mass vehicle with slow sensor.
The scheme applies both to the case with a slow sensor „ε
>0… and to the case with a sensor modeled as a pure integrator,
which we also refer to as a “drifting sensor” „ε=0…, and with
both h>0 and h=0 being permissible.
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Fig. 8 Simulation results for extremum seeking on a 2D point mass with a slow sensor.
„a… Vehicle trajectory with the intensity of the nonlinear map in the background. „b…
Output of the nonlinear map. „c… The slow sensor output. „e… The output of the washout
filter. „„d… and „f…… The control input of x-axis and y-axis before the addition of the per-
turbation, respectively.
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