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Control of Wing Rock Motion Using
Adaptive Feedback Linearization

Mogen M. Monahemi* and Miroslav Krstic^
University of Maryland, College Park, Maryland 20742

The theory of adaptive control of feedback linearizable systems is applied to designing the control of wing rock
motion with the extension of the technique to include tracking. The adaptation law is designed to adjust the
aerodynamic parameters in the model. Precise tracking and maximum performance can be achieved if sufficient
rolling moment derivative because of lateral control components are available. Case studies and simulation are
carried out to illustrate the results.

Introduction

H IGH-PERFORMANCE aircraft have mission requirements
for operating in high angle of attack and sideslip. Unsteady

aerodynamic effects at high angle of attack generate wing rock phe-
nomenon on aircraft configurations incorporating slender forebod-
ies. Delta wings with leading-edge sweeps greater than 76 deg are
known to exhibit wing rock.1'2 Typically the wing rock is one type
of lateral-directional instability for airplanes flying at high angle of
attack and involves mainly the roll degree of freedom. Studies in
Ref. 3 have concluded that wing rock is triggered by flow asym-
metries developed by negative roll damping and sustained by non-
linear aerodynamic roll damping. Considerable research has been
conducted on the motion of slender delta wings to help understand
the fundamental mechanisms causing wing rock. References 4 and 5
have an excellent bibliography on the experimental, theoretical, and
computational aspects of aerodynamics and also on flight dynam-
ics of wing rock motion. There are three possible approaches to
suppress or prevent wing rock3:

1) The first approach involves attaining the wing rock free capabil-
ity through a detailed aerodynamic reshaping of the basic airframe
configuration.

2) The second approach introduces maneuver limiting by adopt-
ing an alpha limiter, however, this approach degrades maneuver-
ability.

3) The third approach employs stability augmented systems
(SAS) or automatic flight control systems. These have become the
most effective methods for attaining strong resistance to wing rock
without degrading maneuverability.

Research on the suppression of wing rock by the third approach
has not been extensive. Chambers et al.6 utilized lateral-directional
control surfaces for the purpose of eliminating adverse yaw at high
angles of attack and sideslip. In another case in Ref. 7 an SAS was
designed to incorporate a suggested reduction of air departure/spin
resistance. In both studies the main tools involved applied aerody-
namic control techniques. Luo and Lan8 projected an optimal con-
trol in conjunction with Beecham-Titchener9 averaging technique.
In their derivation of the controller,8 it is assumed that the aerody-
namic parameters are known. In a practical situation, the reliability
of such an assumption is limited. Indeed, the uncertainties in the
model, i.e., uncertainties in the aerodynamic moment parameters,
will create an error in the computation of the control input. Fer-
nand and Downing10 considered discrete-time control of wing rock.
They claim that stability and performance can be achieved and im-
proved for sampled data systems by applying a discrete sliding mode
technique on a discretized plant model. Singh et al.11 employed an
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adaptive and neural control of the wing rock motion. In this ap-
proach, however, the control cancels the nonlinearity of the main
equation (the roll moment equation) only in a very limited sense,
i.e., there exists no additional dynamics and/or an actuator control
surface equation.

Flight at high angle of attack, the exhibition of limit cycle be-
havior of the motion variables, and the creation of large amplitudes
for the motion variables lead to severe requirements for the flight
control system that cannot be met using conventional procedures.
Nonlinear properties are essential features of the aircraft dynam-
ics in these regimes. Techniques are needed that 1) are compu-
tationally feasible, 2) retain the nonlinearities inherent within the
vehicle dynamics, 3) accommodate system uncertainties when the
changes in the nominal model are large and severe, and 4) provide
physical and mathematical understanding of the important flying
qualities.

Nonlinear control techniques using particular linearizing trans-
formations are currently receiving a great deal of attention among
researchers. Linearizing transformations are based on the assump-
tion that some nonlinear systems are inherently linear, i.e., they only
appear to be nonlinear because they are being viewed in an inappro-
priate coordinate system. Nonlinear transformations are sought that
take the nonlinear system into a linear representation consisting of
a chain of integrators with nonlinearities matched by the input. In
an ideal situation, if such a transformation does exist, control laws
(nonlinear model followers) can be designed such that the states of
the transformed system track the outputs of a transformed reference
model.

In this paper we employ recent theoretical advances in the dif-
ferential geometric formulation of nonlinear control theory in con-
junction with adaptive control. We use the backstepping design with
tuning functions developed in Ref. 12 for the design of global reg-
ulation and in addition extend the methodology to tracking as well.
The class of systems to which this methodology is applicable in-
cludes systems meeting the definition of a parametric strict-feedback
system. It is characterized via coordinate free geometry conditions
that do not constrain the growth of the nonlinearities.13 The back-
stepping design substantially enlarges the class of nonlinear sys-
tems with unknown parameters for which global stabilization can
be achieved. Using the cited adaptive controllers for the feedback
linearizable system technique inspired by the differential geomet-
ric approach, we developed a practical strategy to suppress wing
rock motion. In particular, roll angle and roll rate can track de-
sired, prespecified trajectories with good accuracy in the transient
stage and achieve steady state in any desired time period. The per-
formance, however, in particular, precise tracking in the transient
stage, requires the availability of sufficient rolling moment from the
aerodynamic lateral control, namely, aileron deflection angle. This
design also accommodates aerodynamic parameter estimation and
updating online while the control system is in operation.

The outline of this paper is as follows. We study the wing rock
model development. We consider the general case of nonlinear
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control development based on the differential geometric formulation
for input-state feedback linearization and adaptive control of feed-
back linearizable systems. We design an aerodynamic parameter
estimator in conjunction with control law development. We present
specific case studies to illustrate the pragmatic application of the
techniques.

Wing Rock Model Development
We exploit subsequently in Eq. (7) the models developed in

Refs. 14 and 15 for wing rock. Each of these references contains
specific advantages: Ref. 14 specifically identified certain of the
aerodynamic parameters with wind-tunnel data, whereas Ref. 15
added two additional terms to the rolling moment equation. Our
Eq. (7) combines these and includes an additional factor identified
with aerodynamic control effectiveness. Furthermore, we supple-
ment Eq. (7) with Eq. (8) characterizing the actuator control surface
dynamics.

In Ref. 14, the model is based on an experimental wind-tunnel
wing rock developed by researchers of NASA Langley Research
Center. In these tests the physical scaled model of 80-deg delta
wings were sting mounted on an apparatus that allows the model to
rotate freely about its body-fixed roll axis with no angular limitation.
The resulting system is a single degree of freedom. The following
equations hold:

0 =P (1)

p = (qSb/Ix)[Clft(a)P sina + C/y>, 0)(pb/2V)] (2)

Where a is angle of attack in degrees, 0 the roll angle in radians,
and p the roll rate in radians per second. The constants q, S, b, Ix
and V are the dynamic pressure, wing reference area, wing span,
roll moment of inertia, and freestream air speed, respectively. The
coefficient Cift is the rolling moment stability derivative because
of sideslip ft. The coefficient C\]y is the rolling moment derivative
because of roll rate p and sideslip rate ft as defined in Ref. 14.

Let us define

02 = (qSb/Ix)(sma)Clfi

#3 - (qSb/Ix)(b/2V)Ctp

= (qSb/Ix)(b/2V)(-l.*2)

(3)

(4)

(5)

where 0 = 2/J. Reference 15 introduces two additional terms, 0\ and

There are no control surfaces in this wind-tunnel model. There-
fore, we add an additional aerodynamic parameter #6 that defines
the influence of the aerodynamic control surface, namely, the rolling
moment derivative because of the aileron coefficient Ct& . This is
given by

C/5 is considered in our development to be a constant developed
from experimental or perhaps computational aerodynamics for a
particular configuration. It could also be generated from thrust vec-
toring in some proposed configurations. Later in this paper we con-
clude that good performance can be acheived if sufficient Cj& is
available. In particular, C\& for a high-performance vehicle must
be large enough to accommodate large and rapid movement of ve-
hicles at extreme flight conditions. The larger C/5 is, the better we
are able to control and suppress wing rock.16 Associated with this
aerodynamic coefficient is the control surface angle 8A. It is possible
that there exists a coupling between the aerodynamic control sur-
face and the motion variables, the roll angle and the angle of attack.
Under these conditions, the numerical data from the wind tunnel in
the presence of the control surface might be different. However, any
such difference is not expected to be significant in the typical range
where wing rock occurs.

These additions now transform Eq. (2) into the following equa-
tion:

Reference 14 provides the following wind-tunnel data at angle of
attack of a = 30 deg:

62 = -26.6667s-1, 6>3 = 0.76485s-1

04 = -2.9225 rad-s-1

We set 0\ and 05 equal to 5 and —2.5, respectively.
Finally, an aileron control surface with first-order actuator dy-

namics is modeled as

°ACOM (8)

the values for r the time constant of the actuator and 0$ are given
later in case studies 1 and 2.

Adaptive Controllers for Feedback
Linearizable Systems

We utilize the method developed by Krstic et al.12 for adaptive
regulation and extend its techniques to tracking situations as well.

Consider a single-input deterministic nonlinear system defined
by

x e R\ ue R1 (9)

We consider this equation as a system that is linear in the unknown
parameters:

= /<)(*) 01 /!(*) u (10)

where 0 = [Oi,02, ..., Or]T is the vector of unknown constant
parameters and /, g,, 0 < i < p, are differentiable vector fields in
a neighborhood of the origin x = 0, with/(0) = 0, 1 < i < p,
*(0) ^ 0.

To use the theory of adaptive controllers for feedback lineariz-
able systems, the system (10) is required to be transformed into the
parametric-strict feedback form

+ 0/( Xj)T0, 1 < i < n •
(11)

Xn =

With 0o, PQ, and the components of 0/, 1 < i <n, are differentiable
nonlinear functions in R", PQ(X) ^ 0 for all x e-R", and /:/, 1 <
/ < n — l,kx,ku are nonzero constants.

The two necessary and sufficient conditions for the existence of
such a transformation are13 1) the feedback linearization condition:
the distribution

Sj = span{ 1 < j < n - 1 (12)

is involutive and of constant rank j -f 1 , and 2) the parametric-strict-
feedback condition

[Y, f i ] e S j for all Y e Sj , 0 < j < n - 2,

(13)

03 p + 04\<l>\p + 6>5|010 + 068A (7)

The objectives of the control are to force the output of the system
(9) to track a definite, known, smooth, and bounded reference signal,
both transiently and in steady state, while keeping all the closed-
loop signals bounded, for any unknown values in the aerodynamic
parameters.

The adaptive regulation and tracking are achieved using a recur-
sive design procedure known as backstepping with tuning functions.
The procedure is such that at each step the subsystem is stabilized
with respect to a Lyapunov function by designing an appropriate
tuning function. At the final step one develops the feedback control
and the update law for the parameter estimates.

The results of this procedure are attained in terms of a regressor
function cut, a tuning function r/, and a stabilizing function a, at
each /th step and, in the final step an adaptive control law and a
parameter update law. Their respective equations are as follows.
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Coordinate change:
1

kl--ki-l

Regressors:

Tuning functions:

*,•(*/,

Stabilizing functions:
Oil (*/ , 0 ,*<//) = -kj _i

1
- ———ki-l
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and

i € 1,2, . . . , w (14)

907

(16)

Adaptive control law:

u = (l/kupo)[an + (l/kn-i)xdn

Parameter update law:

0 - rr,7

where F is the adaptive gain matrix and

*/ = (*1 , . . . , */)> XfH = (Xji

(17)

(18)

(19)

Ci > 0

The GI are available design parameters, chosen on the basis of trade-
offs. On the one hand, the choice of large values yields more accurate
tracking of state variables during transients but, consequently, the
control power will be undesirably large. On the other hand, smaller
values of c\ will result in lesser performance, in particular, in the
transient stage. The control power will as a result be smaller. There-
fore, the tradeoff must be such that the performance of the state
variables (in particular, in transient stages) is satisfactory whereas
the amount of control power should not be prohibitive. The deriva-
tion of these results and the norm of the parameter vector error are
given in the Appendix.

Adaptive Control Development for Wing Rock Motion
We shall now focus on the design of the compensator using the

methods of the preceding section to attain stabilization, tracking,
and adaptation of the aerodynamic parameters for the wing rock
model (6-8).

Let

0 C?)COM (s2 + 2%0)nS + to2) (S + Or)
(20)

be the transfer function for the specified trajectory for the desired
roll angle, where £, con, and a represent the desired damping ratio,
the desired natural frequency, and a real pole in the far left-hand
s plane, respectively. In state-space form, Eq. (20) becomes

where

ad =

+ &</"</,

0
0

MJ e

0
1

(21)

-(a

0
0

The parametric strict feedback form of the wing rock model (6-8)
/15\ by inspection is

" xi)0 (22)

x2 = (23)

(24)

where

00=0,

^ \ (x)9 + kupQU

: [1 *! *2 1*1 1*2 \X2\X2]

kx = -(1/r)

/) r/} /) /) /} /) -\T
U = [t/l C72 "3 "4 ^5J

*i = 0, *2 = /?, *3 = 8 A, and w =

We will illustrate the algorithm developed in the preceding sec-
tion, namely, the design formulas Eqs. (14-19), by the following
case studies. Together with suppressing the undesirable wing rock
motion a prespecified trajectory is to be followed. The computa-
tional results in these case studies are obtained using SIMULINK17

including the integration of Eqs. (6-8), (19), and (22-24) (with the
forcing function ud set equal to zero) by the Gear method.18

Case Study 1
At first we describe the nature of the control aspects of an ad-

vanced research vehicle. The aircraft is a high-angle-of-attack re-
search vehicle flying at a selected altitude and required to bank
30 deg in about 1 s (Ref. 19). The airplane has a slender forebody
and is known to exhibit wing rock at high angle of attack a. There-
fore, Eqs. (1), (7), and (8) will be a proper model for this vehicle at
a flight condition at which it exhibits wing rock.

For our purpose of controlling the wing rock by lateral control, we
assume the aircraft is equipped with certain effectors: the primary
aspect of the control would consist of slaved aileron surfaces and two
differentially deflected stabilizers, and an auxiliary control could be
roll thrust vectoring since the vehicle is a twin engine aircraft. It is
the purpose of these effectors to attain a value of 0.75 for the rolling
moment derivative with respect the lateral control, i.e.,

Without the newly designed adaptive control the dynamic char-
acteristics for the roll angle are indicated by Fig. 1. Limit cycle be-
havior is evident. We now design the control system for this airplane
at this flight condition in accordance with the method described in
the preceding section. With the introduction of the adaptive control
the improvement in the roll angle and roll rate is shown in Figs. 2
and 3, respectively. The control system is initiated at 0 (0) = 30 deg,
and subsequently the wing rock is suppressed within 1.0 s, settling
time with very accurate tracking in the transient stage following the
prespecified response properties. The adaptation time history for
the adjustment of the aerodynamic parameters is shown in Figs. 4-
8. Sensitivity analysis of the aerodynamic parameters as presented
in Ref. 8 reveals that the nonlinear aerodynamic effect is derived
mainly from the aerodynamic parameters 04 and 05, whereas the
other aerodynamic parameters 9\, 92, and #3 produce a lesser effect
that is characterized by linear behavior. Under these conditions we
have set the adaptation gain matrix F of Eq. (19) at 10~3/5x5, the
design constants ci, c2, and c3 of Eq. (17) are 6, 7, and 8, respec-
tively, and the initial conditions of the aerodynamic parameters 94
and 65 account for 35% of the uncertainties in these parameters.
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6

10 15 20
Time (sec)

25 30

Fig. 1 Dynamic characteristics of wing rock based on numerical inte-
gration of the original equation for roll angle for case 1.

0.5 1.5
Time (sec)

Fig. 2 Prespecified trajectory for roll angle (solid) and the roll angle
response (circle) for case 1.

Fig. 3 Prespecified trajectory for roll rate (solid) and the roll rate re-
sponse (circle) for case 1.

1 1.5
Time (sec)

2.5

Fig. 4 Estimated aerodynamic parameter 0\ for case 1.

<'i—
UJ

H -27.5

1 1.5
Time (sec)

Fig. 5 Estimated aerodynamic parameter #2 for case 1.

0.8

H 0.4

§ 0.2
I

I 0

I
1-0.2

-0.6

-0.8
1.5

Time (sec)

Fig. 6 Estimated aerodynamic parameter #3 for case 1.

Case Study 2
We consider an aircraft similar to an AFTI/F-16. The Advanced

Fighter Technology Integration (AFTI) vehicle is a highly modified
F-16 aircraft. It has been changed to allow flight demonstration of
the benefits possible from the integration of advanced technology
features. We consider the aircraft to have a slender delta wing such
that its behavior is modeled by Eqs. (1), (7), and (8). We calculate
the aerodynamic parameters 0\-95 based on the airplane parameters

for the AFTI/F-16. For 0.6 Mach and 39,000 flight altitude, these
airplane parameters are as follows: q (dynamic pressure) = 158.81
lb/ft2, S (wing reference area) = 300.0 ft2, c (wing mean aerody-
namic cord) = 11.32 ft, c (wing span) = 30.0 ft, VT (trim velocity)
= 596.91 ft/s, W (weight) = 21,018.0 Ib, and inertia /, = 10033.4
slug-ft.2

The resulting values for the aerodynamic parameters then be-
come 92 = -32.748, 03 = 1.436, and 04 = -5.481, with 0\ = 4
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1.5
Time (sec)

2.5

Fig. 7 Estimated aerodynamic parameter 64 for case 1.

1 1.5 2 2.5
Time (sec)

Fig. 8 Estimated aerodynamic parameter #5 for case 1.

0.8

0.6

0.4

!o.2
= 0

-0.2

-0.4

-0.6

-0.8
10 15

Time (sec)
25 30

Fig. 9 Dynamic characteristics of wing rock based on numerical inte-
gration of the original equation for roll angle for case 2.

and 65 = 0.1. In addition, the nondimensional aerodynamic rolling
moment derivative because of the aileron control deflection coeffi-
cient C/j is —0.003489 (1/deg), where the aileron control surface
actuator model is deflection limit ±21.5 deg, and rate limit 80 deg/s
with time constant 0.0495 s lag.

We design a wing leveler or bank angle hold autopilot for this
aircraft to suppress the wing rock with the dynamic characteristics
for the roll angle as shown in Fig. 9. The performance objective
is specified as before by a target frequency and damping ratio. By
using the algorithm, the adaptive control is computed. Simulation

_02i————i————'————•————'————i————i————'————'————'——
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (sec)

Fig. 10 Prespecified trajectory for roll angle (solid) and the roll angle
response (circle) for case 2.

^OOCDOCDOOOODOOOOCDOOOO'OOCPO

2 2.5 3 3.5 4 4.5 5
Time (sec)

Fig. 11 Aileron deflection response (circle) and adaptive control; the
commanded aileron deflection (solid) for case 2.

results are shown by the following. Figure 10 shows that the control
system will capture the system and function for an initial roll angle
as high as 0(0) = 46 deg. It also demonstrates achievement of a
steady state with a transient stage of 1.5 s.

Figure 11 shows the aileron deflection angle 8A and the com-
manded aileron deflection 5AcOM, i.e., the required adaptive control,
each as a function of time. Since the initial condition 0(0) is rel-
atively large, one expects a large control input for the wing rock
suppression. Under these conditions, we have set the adaptation
gain matrix F of Eq. (19) at 10~4/5x5, and the design constants
ci, c2, and c3 of Eq. (17) are 7, 6, and 5, respectively. The initial
conditions of the aerodynamic parameters §4 and 95 account for 25%
uncertainties in these parameters.

Conclusions
We have shown the feasibility both theoretically and pragmati-

cally of applications of recent theoretical advances in the differential
geometric formulation of nonlinear control theory. The theory pro-
vides a design approach to achieve an adaptive control for feedback
linearizable systems. We have applied it to the problem of sup-
pressing wing rock with an extension of the technique to include
tracking. The designed control and parameter update laws can track
as a prespecified model system with remarkable accuracy reach-
ing steady state within a transient stage of any desired time length.
Thus, assigned maneuvers can be maintained without degradation
simultaneously with the suppression of wing rock. Of course, such
performance requires the availability of sufficient rolling moment
because of the lateral control. It may be that control augmentation by
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910 MONAHEMI AND KRSTIC

thrust vectoring to boost the rolling moment because of the lateral
control to desired levels will be necessary for some aircraft.

The design procedure accommodates aerodynamic parameter
estimation and updating online while the control system is in
operation.

The attainment of this adaptive control with these properties is
not only a theoretical exercise, we present illustrations by designing
such control laws for an AFTI/F-16 class aircraft and a high-angle-
of- attack research vehicle similar to F-18/HARV under certain pre-
scribed conditions.

Appendix: Details of Procedure
In this appendix we present the details of applying adaptive con-

trol procedure of Ref . 1 2 for parametric strict feedback form systems
with an extension to tracking.

Stepl
Introducing zi = x\ —xdi and £2 = x2 —

xi = k\x2 + <t>J 0 as

z\ =

, we write

(Al)

and use ct\ as a control to stabilize Eq. (Al) with respect to the
Lyapunov function V\ = \z\ + \(9 - 0)rF~1(0 - 0). Then,

To make V\ = — c\z\, we would choose

(A2)

If x-i were our actual control, we would let z2 = 0, that is, k\x2 =
xj2 + <* K Then, we would eliminate 9 — 9 from Vi with the up-
date law 6 = Fti, where

(A3)

(A4)

Since x2 is not our control, we have z2 7^ 0, and we do not use
9 — Fti as an update law. However, we retain r\ as our first stabi-
lizing function. Thus, we postpone the decision about 9 and tol-
erate the presence of 9 — 9 in V\:

(A5)

The second term z\Z2 in V\ will be canceled at the next step. The
closed-loop form of Eq. (Al) with Eq. (A4) is

Z! = -CiZl + kiZ2 + (0 ~ 0)0 (JCO

Step 2
Introducing z3 = x$ — x^/k\k2 — <x2/fc2, we rewrite x2 =

1 as

(A6)

Z2 =

|2L;J A, - ̂  &
9*</i J/ 90 /

, (A7)

and use a2 as a control to stabilize Eqs. (A6) and (A7) with respect
to V2 = Vi + |z2. Then,

= -ciz] + z2 \kizi + a2

90
r40

If *3 were our actual control, we would let z$ = 0 and eliminate
9 — 9 from V2 with the update law 0 = Fr2, where

( rj I \

02- ̂ 01 /^l J0*1 / y (A9)

Then, to make V2 = —c\z\ — c2z2, we would design ct2 such that
the bracketed term multiplying z2 equals — c2z2, namely,

-c2z2

30
(AID)

Since ^3 is not our control, we have ^3 7^ 0, and we do not use
0 = Fr2 as an update law. However, we retain r2 as our second
tuning function. The resulting V2 is

(All)

The first two terms in V2 are negative definite, the third term will
be canceled at the next step, and the last term is tolerated at this step,
as the decision about 0 is again postponed. The closed-loop form of
Eq. (A7)withEq. (A 10) is

(A12)

we rewrite i3 =

Z2 = —kiZi — C2Z2

9o?i ^ "I /

~a§ T l ~ \l
StepS

Introducing z4 = jc4 — Xj4/kik2k3 — cx
0J (^1,^2,^3)0 as

^-Xfr } /kdxji J I

36
(A13)

and use #3 as a control to stabilize the (z\ , z2, 23) system with respect
to V3 = V2 + ^3. Then,

\k+ Z L 2 Z 2 + 3Z4 + a3"

-( '-^-k2x3 + ̂ -XM } Ik2 - ( ̂  6 }
\3x2 dx<i2 )l \dO J

30

+ (rr3- 9) + (0-l

where

l( 9 - Fr3) (A14)

* f3®2^ • 9 a z ^ ^ //= 03-1 T—— 01 + -T— 02 / ^\3j:i 3x2 ) I

(A8)
If *4 were our actual control, we^would let z4 = 0 and eliminate

— 0 from V3 with the update law 0 = Fr3, where

where ct»2 = 02 - (A15)
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MONAHEMI AND KRSTIC 911

Then, to make V"3 — — c\z\ — c2zl — c$z\9 we would design c*3 such
that the bracketed term multiplying z3 equals — c3z3, namely,

3a2 3«2, . 3a2\ /——k2xi, + —— 1 / k2

ki (A16)
30 7 " J ' 30 ""-'

Since x^ is not our control, we have Z4 7^ 0, and we do not
take 9 — F r3 as an update law. However, we retain r2 as our third
tuning function and a3 as our third stabilizing function. The resulting
V3is

»', _ 2 2 ""

30 / 30 / /
(A17)

The first three terms in V3 are negative definite, the fourth term will
be canceled at the next step, and the last term is tolerated at this step,
as then decision about 9 is again postponed. The closed-loop form
of Eq. (A13) with Eq. (A16) is

30

Step i
Introducing z/ + 1 =

30

'0 as
1-1

\, . . . , £ / — « / / £ / , we rewrite

Zi = kjZi + i + oij

and use a/ as a control to stabilize the (zi, Z2, • • • » z/) system with
respect to Vi = V} _ i + ^z2. Then,

/ - i / -1
T> V^ 2
Vi = -^ckzk

A:/Z/ + I + a/ -

x(Jk 30

we would design a/ such that the bracketed term multiplying z/
equals — c/z/, namely,

a/ (*i , . . . , * / , 0, * , / i , . . . , *<//) = -A:/ _ iz/ _ i - c/z,-

dXdk

(A21)
Since jc/ +1 is not our control, we have z, +1 ^ 0, and we do not
use 0 = rTi as an update law. However, we retain r/ as our ith
tuning function and a/ as our z'th stabilizing function. The resulting
V / i s

.„)/*,-,

/

/ — 1 / ^ \ I

ki - 1 ~f~ 0)j 9 + y I ———-—r&)/Zjt I / -
^ V 90 / /

•̂ = -2jc*zi + *.-z.-z.- + i +
^t=l

(A22)

The closed-loop form of Eq. (A 18) with Eq. (A21) is

Zi = -ki _ iz/ - 1 - c/z/ + fez/ + 1 + (0 - 0)r w/

») A t_,
//

(A23)

Stepn
Introducing z« = xn — xdnj k\, . . . , / : „_ ! — otn^\/kn, we rewrite

•̂ n =: kx(f

3an—
<*X ]/•

3ai_l * I- — — o / kn39 /
(A24)

We now design actual update law 9 = Trn and feedback control
u to stabilize the full z system with respect to Lyapunov function
Vn = Vn_ i + ^z^. Our goal is to make Vn nonpositive:

*=1 ^ = 2

where
(A19)

If ^/ +1 were our actual control, we would let z/ +1 = 0 and
eliminate 9 — 9 from Vj with the update law 0 = Ft/, where

(A20)

Then to make

( Xk

Xd(k+i)
/ 3a n_i ^ /

/ kn-i ~ ——— —— 0 / kn
I 39 I

where

, 3
/c = 1

(A25)

To eliminate (0 — 0) from Vn, we choose the update law

0 = FT,, (A26)
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912 MONAHEMI AND KRSTIC

and the control u such that the bracketed term multiplying zn equals
-cnzn:

I
n-\ — CnZn -

fan-i

(A27)

Thus, we have

With Eq. (A27) the closed-loop form of Eq. (A24) becomes

Zn = - fcn- lZn- l ~ CnZn + (0 - 9)T'a)t

To reduce the parameter error vector 9 — 0(0, we have (9 — 9)T

r~l(9 - 0) < 2Vn(t) < 2Vn(0), that is,

(0 - 9)Tr~{(9 - 0) < z(0)rz(0) + [0 - | - 0(0)]
(A28)

This bound shows that a possibility for reducing 9 — 0(0 lies in
z(0), and z(0) can be set to zero by an appropriate initialization of
the reference trajectory.
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