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Technical Notes and Correspondence
Delay-Adaptive Predictor Feedback for Systems

With Unknown Long Actuator Delay

Delphine Bresch-Pietri and Miroslav Krstic

Abstract—Stabilization of an unstable system with an unknown actuator
delay of substantial length is an important problem that has never been
attempted. We present a Lyapunov-based adaptive control design, prove
its stability and regulation properties for the plant and actuator states, and
present a simulation example inspired by the problem of control of pitch
and flight path rates in the unstable X-29 aircraft.

Index Terms—Adaptive control, delay systems, distributed parameter
systems.

I. INTRODUCTION

Adaptive control in the presence of actuator delays is challenging.
Examples of existing results include [3], [9], [10]. All the existing re-
sults deal with unknown parameters but known delay. In this note, we
address the more challenging problem where the delay itself is un-
known and arbitrarily long.

Consider the system

(1)

where and where the delay length is unknown (though
constant) and arbitrarily large. We use an actuator delay model given
by a transport PDE

(2)

(3)

(4)

where is the state of the actuator. Instead of a full-state mea-
surement of the actuator state, , we employ
the state estimate

(5)

where is the estimate of the unknown delay, obtaining the fol-
lowing transport equation representation:

(6)

(7)
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Note that we do not use the infinite-dimensional observer (6) but only
the static estimate (5), where only is updated. Let

, which yields .
We employ an adaptive predictor feedback

(8)

where is selected to make the matrix Hurwitz, which
means, in particular, that for any , there exists

such that .
A crucial element of our design and analysis is the backstepping

transformation

(9)

(10)

Contribution and Organization: In a companion conference paper
[6], we established a global adaptive result when is measured.
In this note we establish a local result when is replaced by the
estimate . The local adaptive result, established in Section III,
builds upon robustness of predictor feedback with respect to small er-
rors in , which is shown in Section II. Simulations for an unstable
scalar plant inspired by the X-29 aircraft are shown in Section IV.

II. NONADAPTIVE ROBUSTNESS TO DELAY ERROR

We take as constant and establish the robustness of the pre-
dictor feedback to a small error in an appropriate norm in
which the adaptive problem will also be studied in Section III (this is a
higher norm than the one in which we established delay-robustness in
[4]). We denote , and use for
a vector 2-norm.

Theorem 1: Consider the system (2)–(4), (6)–(8). There exists
such that for any , i.e., for any
, the zero solution of the system is exponentially stable,

namely, there exist such that for all initial conditions satis-
fying , the following holds:

(11)

(12)

Corollary 2: Consider system (1) with the controller
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Fig. 1. Interconnections between the different variables.

There exists such that, for any , there
exists such that for all ,

the following holds:

We prove the theorem using the following lemmas.
Lemma 3: The system (2)–(4), (6)–(8) is equivalent to the system

in which the -subsystem is represented as

(13)

the -subsystem is represented as

(14)

(15)

with

and the -subsystem is represented as

(16)

(17)

(18)

(19)

The -system is shown in Fig. 1. The -connections are
‘weak’ and disappear when . The exponentially stable cascade
connections and are “strong” and present
even when . The potentially destabilizing feedback connec-
tions through can be suppressed by making small. An additional
difficulty is that an ‘unbounded’ connection from to exists. We
deal with it by including an norm in the stability analysis.

Lemma 4: The following holds for (9) and (10):

(20)

(21)

Lemma 5: The following holds for (9), (10), (20), and (21):

(22)

(23)

(24)

(25)

where

Lemma 6: Consider the Lyapunov function

(26)

There exist positive constants , , , and such that for any
, the following holds:

(27)

Proof: Differentiating (26), along the solutions of (13), (14), (16),
(18), and using integration by parts, we obtain



2108 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 9, SEPTEMBER 2010

Let us define the following constants, ,
, , ,

, , and choose .
Using the Cauchy-Schwartz and Young inequalities, we have

Grouping the like terms, we obtain

(28)

and, with some further majorizations (for ), we get

Assuming that , where

and , from (28), we obtain

(29)

(30)

where , and

is positive. Having obtained (30), to complete the proof of (27), we first
obtain the following inequalities from (26):

(31)

From (30) and (31), we complete the proof of (27) with
.

Lemma 7: such that .
Proof: From (22)–(25), we get

and

so
and .

We now complete the proof of Theorem 1. From Lemma 6,
it follows that . From Lemma 7, we get

. So , which completes the
proof of Theorem 1. Next, we prove Corollary 2.

Lemma 8: such that .
Proof: By substituting into (12), we

get

Thus, ,
.

By combining Theorem 1 with Lemma 8, we complete the proof of
Corollary 2 with .
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III. ADAPTIVE CONTROL WITH ESTIMATION

OF THE TRANSPORT PDE STATE

Now we establish local stability for an adaptive controller. A global
result is not obtainable because the solution
is not linearly parametrizable in .

Assumption 1: A lower bound and an upper bound
on the unknown delay are known.

The update law for is chosen as

(32)

(33)

where the standard projection operator is given by

and
and

else

Theorem 9: Consider the closed loop consisting of the plant (2)–(4),
(6), (7), the control law (8), and the update law defined by (32), (9). Let
Assumption 1 hold and let

denote the norm of the overall state of the closed-loop system.
There exist positive constants and such that if the initial state

is such that , then

Proof: Mimicking the (omitted) proof of Lemma 3, we obtain the
-system as

(34)

(35)

(36)

(37)

(38)

where

(39)

(40)

Since our Lyapunov analysis will involve an norm of , we also
need the governing equations of the -system

(41)

(42)

where we get the (43), as shown at the bottom of the next page. We
now start our Lyapunov analysis by introducing
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With (34)–(43), we get

Using (32), (39), (40), (42), (43), the properties of the projection op-
erator, and Agmon’s inequality (with the fact
that ), we find constants (independent of
initial conditions) such that

Then

(43)



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 9, SEPTEMBER 2010 2111

where we have chosen . By
choosing , and defining

and
, where

To eliminate the parameter error term, we employ the bound

which yields

(44)

If we choose the analysis parameter as

(45)

and restrict the initial conditions so that

(46)

we obtain , where

are nonnegative functions if the initial conditions are as in (46). Hence,
, . From this result for , we the result for

. Using Lemma 5 (which holds both when is constant and with
a time-varying ), we obtain

(47)

Hence, from (46) and (47), we obtain . Similarly, using
Lemma 5, we show that

(48)

(49)

Then, using (47), (48), we complete the local stability
proof with

. To prove regulation, from
, it follows that , , , , are uni-

formly bounded. Then, from (10), using Cauchy-Schwartz inequality,
we obtain the uniform boundedness of and consequently
also of for from (8). Thus, is
uniformly bounded for . Using (2), we get that
is uniformly bounded for . From (44), it follows that
is square integrable. Finally, by Barbalat’s lemma, we get that

. To also prove the regulation of , we start by deducing
from (44) the square integrability of . Then, from Lemma
5, we have the square integrability of and, from (8), using
Cauchy-Schwartz inequality, the square integrability of . To
establish the boundedness of , we compute it as



2112 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 9, SEPTEMBER 2010

Fig. 2. System response of the system (2)–(4), (6)–(9) for . Bottom: the
estimation error of the actuator state,

.

The signal is uniformly bounded for according to (32). By
using the boundedness of , , and over

, we get boudedness of for . Then, by Barbalat’s
lemma, as .

IV. SIMULATIONS

Consider the system , which is a
model of the dynamics of an X-29 aircraft in an unstable regime [2],
with the input being the control surface deflection, and with the output
being a linear combination of the pitch rate (measured with a gyro-
scope) and the rate of change of the flight path (measured with a gy-
roscope). We take the plant parameters as , , and the
nominal control gain as (which means that

for ). Fig. 2 shows a simulation example with ,
, , , , , and .

V. RELATED RESULTS

In this note, the only parametric uncertainty considered is the un-
known delay. In a companion paper [1] we present an extension with
unknown plant parameters and where the control objective is not regu-
lation to zero but trajectory tracking. The design technique in this note
is inspired by the techniques for parabolic PDEs in [7] and the non-
adaptive techniques for hyperbolic PDEs [8]. Nonlinear extensions of
predictor feedback are introduced in [5].
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