Technical Notes and Correspondence

Delay-Adaptive Predictor Feedback for Systems With Unknown Long Actuator Delay
Delphine Bresch-Pietri and Miroslav Krstic

Abstract—Stabilization of an unstable system with an unknown actuator delay of substantial length is an important problem that has never been attempted. We present a Lyapunov-based adaptive control design, prove its stability and regulation properties for the plant and actuator states, and present a simulation example inspired by the problem of control of pitch and flight path rates in the unstable X-29 aircraft.

Index Terms—Adaptive control, delay systems, distributed parameter systems.

I. INTRODUCTION

Adaptive control in the presence of actuator delays is challenging. Examples of existing results include [3], [9], [10]. All the existing results deal with unknown parameters but known delay. In this note, we address the more challenging problem where the delay itself is unknown and arbitrarily long.

Consider the system

$$\dot{X}(t) = AX(t) + BU(t - D)$$

(1)

where $X \in \mathbb{R}^n$ and where the delay length D is unknown (though constant) and arbitrarily large. We use an actuator delay model given by a transport PDE

$$\dot{X}(t) = AX(t) + Bu(0,t)$$

(2)

$$Du_x(x,t) = u_x(t)$$

(3)

$$u(1,t) = U(t)$$

(4)

where $u(x,t)$ is the state of the actuator. Instead of a full-state measurement of the actuator state, $u(x,t) = U(t + D(x - 1))$, we employ the state estimate

$$\hat{u}(x,t) = U\left(t + \hat{D}(t)(x - 1)\right)$$

(5)

where $\hat{D}(t)$ is the estimate of the unknown delay, obtaining the following transport equation representation:

$$\dot{\hat{u}}(x,t) = \hat{u}_x(x,t) + \hat{D}(t)(x - 1)\hat{u}_x(x,t)$$

(6)

$$\hat{u}(1,t) = U(t)$$

(7)

Note that we do not use the infinite-dimensional observer (6) but only the static estimate (5), where only $\hat{D}(t)$ is updated. Let $\hat{u}(x,t) \triangleq u(x,t) - \hat{u}(x,t)$, which yields $\dot{X}(t) = AX(t) + Bu(0,t) + B\hat{u}(0,t)$.

We employ an adaptive predictor feedback

$$U(t) = K\left(e^{A\hat{D}(t)}X(t) + \hat{D}(t)\int_0^t e^{A\hat{D}(t)(1-s)}B\hat{u}(y,t)dy\right)$$

(8)

where K is selected to make the matrix $A + BK$ Hurwitz, which means, in particular, that for any $Q = Q^T > 0$, there exists $P = P^T > 0$ such that $P(A + BK) + (A + BK)^TP = -Q$.

A crucial element of our design and analysis is the backstepping transformation

$$\dot{\hat{u}}(x,t) = \hat{u}(x,t) - \hat{D}(t)\int_0^x Ke^{A\hat{D}(t)(x-y)}B\hat{u}(y,t)dy$$

(9)

$$\hat{u}(x,t) = \hat{u}(x,t) + \hat{D}(t)\int_0^x Ke^{(A+BK)\hat{D}(t)(x-y)}B\hat{u}(y,t)dy$$

(10)

Contribution and Organization: In a companion conference paper [6], we established a global adaptive result when $u(x,t)$ is measured. In this note we establish a local result when $u(x,t)$ is replaced by the estimate $\hat{u}(x,t)$. The local adaptive result, established in Section III, builds upon robustness of predictor feedback with respect to small errors in D, which is shown in Section II. Simulations for an unstable scalar plant inspired by the X-29 aircraft are shown in Section IV.

II. NONADAPTIVE ROBUSTNESS TO DELAY ERROR

We take $\hat{D}(t)$ as constant and establish the robustness of the adaptive feedback to a small error $|\hat{D} - D|$ in an appropriate norm in which the adaptive problem will also be studied in Section III (this is a higher norm than the one in which we established delay-robustness in [4]). We denote $\omega(\theta) = U(\theta)$, $\theta \in [-\max(D,\hat{D}),0]$ and use \cdot_2 for a vector 2-norm.

Theorem 1: Consider the system (2)–(4), (6)–(8). There exists $\delta^* > 0$ such that for any $|\hat{D} - D| < \delta^*$, i.e., for any $D \in (D - \delta^*, D + \delta^*)$, the zero solution of the system (X, u, \hat{u}) is exponentially stable, namely, there exist $R, \rho > 0$ such that for all initial conditions satisfying $(X_0, u_0, \hat{u}_0) \in \mathbb{R}^n \times L_2(0,1) \times H_1(0,1)$, the following holds:

$$\Gamma(t) \leq R\Gamma(0)e^{\rho t}$$

(11)

$$\Gamma(t) = \|X(t)\|^2 + \int_0^t [u(x,t)]^2 + \hat{u}(x,t)^2 + \hat{u}_x(x,t)^2] \, dx$$

(12)

Corollary 2: Consider system (1) with the controller

$$U(t) = K\left(e^{AD}X(t) + \int_0^t e^{A(t-s)}BU(\theta)\theta\right).$$

Manuscript received August 27, 2008; revised February 03, 2009; accepted May 03, 2010. Date of publication May 17, 2010; date of current version September 09, 2010. This work was supported by the National Science Foundation and by Bosch. Recommended by Associate Editor A. Astolfi.

The authors are with the Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411 USA (e-mail: delphine.bresch-pietri@mines-paristech.fr; krstic@ucsd.edu).

Color versions of one or more of the figures in this paper are available online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2010.2050352
There exists $\delta^* > 0$ such that, for any $|\hat{D}| = |D - \hat{D}| < \delta^*$, there exists $\rho > 0$ such that for all $x_0 \in \mathbb{R}^n$, $w \in L_2\{-\max\{\bar{D}, \hat{D}\}, 0\} \cap H_1[-\hat{D}, \bar{D}]$, the following holds:

$$\Pi(t) \leq \rho^2 \Pi(0)e^{\rho t}$$

where

$$\Pi(t) = |X(t)|^2 + \int_{\max\{\bar{D}, \hat{D}\}}^t U(\theta)^2d\theta + \int_{-\hat{D}}^t V(\theta)^2d\theta.$$

We prove the theorem using the following lemmas.

Lemma 3: The system (2)–(4), (6)–(8) is equivalent to the system in which the X-subsystem is represented as

$$\dot{X}(t) = (A + BK)X(t) + B\dot{\phi}(0,t) + B\bar{u}(0,t) $$

the \bar{u}-subsystem is represented as

$$\dot{D}\bar{u}(x,t) = \bar{u}_x(x,t) - \hat{D}r(x,t)$$

with

$$r(x,t) = Ke^{(A+BK)D_x}(A+BK)X(t) + \frac{\dot{w}_x(x,t)}{D}$$

and the \dot{w}/\dot{w}_x-subsystem is represented as

$$\dot{D}\dot{w}_x(x,t) = \dot{w}_x(x,t) - \dot{D}Ke^{AD_x}B\dot{u}(0,t)$$

$$\dot{w}_x(1,t) = 0$$

and

$$\hat{D}\dot{w}_x(x,t) = \hat{w}_x(x,t) - \hat{D}Ke^{AD_x}AB\bar{u}(0,t)$$

$$\hat{w}_x(1,t) = \hat{D}Ke^{AD}\hat{u}(0,t).$$

The $(X, \bar{u}, \dot{\phi})$-system is shown in Fig. 1. The \hat{D}-connections are ‘weak’ and disappear when $\hat{D} = \bar{D}$. The exponentially stable cascade connections $\bar{u} \to X$ and $\dot{w} \to \bar{u} \to X$ are “strong” and present even when $\hat{D} = \bar{D}$. The potentially destabilizing feedback connections through \hat{D} can be suppressed by making \hat{D} small. An additional difficulty is that an ‘unbounded’ connection from \dot{w} to \bar{u} exists. We deal with it by including an H_1 norm in the stability analysis.

Lemma 4: The following holds for (9) and (10):

$$\dot{w}_x(x,t) = \dot{w}_x(x,t) + \hat{D}KB\dot{\phi}(x,t)$$

$$\quad + \hat{D} \int_0^x K(A+BK)Ke^{AD_x}D_y\bar{u}(y,t)dy$$

$$\quad + K(A+BK)\dot{D}e^{(A+BK)D_x}X(t)$$

$$\bar{u}_x(x,t) = \bar{u}_x(x,t) + \hat{D}K\bar{u}(x,t)$$

$$\quad + \hat{D} \int_0^x KA\dot{D}e^{AD}D_y\bar{u}(y,t)dy$$

$$\quad + KA\dot{D}e^{AD}X(t).$$

Lemma 5: The following holds for (9), (10), (20), and (21):

$$||\dot{w}(t)||^2 \leq p_1 ||\dot{w}(t)||^2 + p_2 |X(t)|^2$$

$$||\bar{u}_x(t)||^2 \leq 4 ||\bar{u}_x(t)||^2 + p_3 ||\dot{w}(t)||^2 + p_4 |X(t)|^2$$

$$||\dot{w}(t)||^2 \leq q_1 ||\dot{w}(t)||^2 + q_2 |X(t)|^2$$

$$||\bar{u}_x(t)||^2 \leq 4 ||\bar{u}_x(t)||^2 + q_3 ||\dot{w}(t)||^2 + q_4 |X(t)|^2$$

where

$$p_1(\hat{D}) = 3\left(1 + \hat{D}^2|K|^2e^{2\hat{D}(A+BK)|D|}\right)$$

$$p_2(\hat{D}) = 3|K|^2e^{2\hat{D}(A+BK)|D|}$$

$$p_3(\hat{D}) = 4\hat{D}^2|K|^2\hat{D}(1 + \hat{D}^2|A + BK|^2e^{2\hat{D}(A+BK)})$$

$$p_4(\hat{D}) = 4|K|^2\hat{D}(1 + \hat{D}^2|A|^2e^{2\hat{D}(A)})$$

$$q_1(\hat{D}) = 3\left(1 + \hat{D}^2|K|^2e^{2\hat{D}(A+D)|D|}\right)$$

$$q_2(\hat{D}) = 3|K|^2e^{2\hat{D}(A+D)|D|}$$

$$q_3(\hat{D}) = 4\hat{D}^2|K|^2\hat{D}(1 + \hat{D}^2|A|^2e^{2\hat{D}(A)})$$

$$q_4(\hat{D}) = 4|K|^2\hat{D}(1 + \hat{D}^2|A|^2e^{2\hat{D}(A+D)}).$$

Lemma 6: Consider the Lyapunov function

$$V(t) = X(t)^T P X(t) + b_2 D \int_0^1 (1 + x)^2 \dot{v}(x,t)^2 dx + b_2 \hat{D} \int_0^1 (1 + x)^2 \dot{v}(x,t)^2 dx$$

where

$$\dot{v}(t) = X(t)^T P X(t) + 2X(t)^T PB(\dot{v}(0,t) + \dot{\phi}(0,t))$$

$$+ 2b_1 D \int_0^1 (1 + x)^2 \dot{v}(x,t)\dot{u}(x,t) dx$$

$$+ 2b_2 D \int_0^1 (1 + x)^2 \dot{v}(x,t)\dot{u}_1(x,t) dx$$

$$+ \hat{D} \int_0^1 (1 + x)^2 \dot{v}_x(x,t)\dot{w}_x(x,t) dx$$

$$= -X(t)^T P X(t) + 2X(t)^T PB(\dot{v}(0,t) + \dot{\phi}(0,t))$$

$$-2b_1 \left(\dot{v}(0,t)^2 + |\dot{w}(t)|^2\right) + \hat{D} \int_0^1 (1 + x)^2 \dot{v}(x,t)\dot{r}_x(x,t) dx$$

$$-2b_1 \left(\dot{v}(0,t)^2 + |\dot{w}(t)|^2\right) + \hat{D} \int_0^1 (1 + x)^2 \dot{v}_x(x,t)\dot{w}_x(x,t) dx$$

Instead of (13), (14), (16), (18), and integration by parts, we obtain

$$\dot{V} = -X(t)^T P X(t) + 2X(t)^T PB(\dot{v}(0,t) + \dot{\phi}(0,t))$$

$$+ 2b_1 D \int_0^1 (1 + x)^2 \dot{v}(x,t)\dot{u}(x,t) dx$$

$$+ 2b_2 D \int_0^1 (1 + x)^2 \dot{v}(x,t)\dot{u}_1(x,t) dx$$

$$+ \hat{D} \int_0^1 (1 + x)^2 \dot{v}_x(x,t)\dot{w}_x(x,t) dx$$

$$= -X(t)^T P X(t) + 2X(t)^T PB(\dot{v}(0,t) + \dot{\phi}(0,t))$$

$$-2b_1 \left(\dot{v}(0,t)^2 + |\dot{w}(t)|^2\right) + \hat{D} \int_0^1 (1 + x)^2 \dot{v}(x,t)\dot{r}_x(x,t) dx$$

$$-2b_1 \left(\dot{v}(0,t)^2 + |\dot{w}(t)|^2\right) + \hat{D} \int_0^1 (1 + x)^2 \dot{v}_x(x,t)\dot{w}_x(x,t) dx$$

$$\leq -\rho \dot{V}.$$
\[-2b_2 \left(\frac{\tilde{w}_x(t)^2}{2} - \tilde{w}_x(1,t)^2 + \|\tilde{w}_x(t)\|^2 \right) = \tilde{D}^2 K_A \int_0^1 (1+\lambda(x,t) - 2\tilde{w}_x(x,t)e^{\lambda_2 x} B\tilde{u}(0,t)x) dx. \]

Let us define the following constants, \(c_1 = K||B||, \ c_2 = \tilde{D} K||A + BK||, c_3 = \frac{c_2}{2} (\tilde{D} ||B||), c_4 = 2 D_k^2 K||A||, c_5 = \frac{c_4}{2}, c_6 = 2 D_k^2 K||A|| B_{\lambda_{\min}(Q)}^2||B||, \) and choose \(b_2 \geq 2 \|B\|\) such that \(b_2 \geq 2 \|B\|\). Using the Cauchy-Schwarz and Young inequalities, we have

\[
\dot{V}(t) \leq -\frac{\lambda_{\min}(Q)}{2} ||X(t)||^2 + \frac{b_2}{2} \left(\tilde{w}(0,t)^2 + \tilde{w}(0,t)^2 \right) - 2\left(1 - 2 \tilde{D} \left(\frac{1}{D} + c_2^2 + c_3^2 + c_4^2 \right) \right) \|\tilde{v}(t)||^2
\]

\[
- \left(b_1 \left(1 - 2 \left(1 - 2 \tilde{D} \left(\frac{1}{D} + c_2^2 + c_3^2 + c_4^2 \right) \right) \right) \right) \|\tilde{v}(t)||^2
\]

\[
- \left(b_2 \left(1 - 2 \tilde{D} \left(\frac{1}{D} + c_2^2 + c_3^2 + c_4^2 \right) \right) \right) \|\tilde{v}(t)||^2
\]

\[
- \left(\frac{b_2}{2} - 2 \tilde{D} \left(1 - 2 \tilde{D} \left(\frac{1}{D} + c_2^2 + c_3^2 + c_4^2 \right) \right) \right) \|\tilde{v}(t)||^2
\]

\[
- \left(\frac{b_2}{2} \right) \|\tilde{v}(0,t)^2 - b_2 \tilde{v}_x(0,t)^2 \right)
\]

Grouping the like terms, we obtain

\[
\dot{V}(t) \leq -\frac{\lambda_{\min}(Q)}{2} ||X(t)||^2 - 2b_2 \left(\frac{1}{2} - \tilde{D} b_1 \left(\frac{1}{D} + c_2^2 + c_3^2 + c_4^2 \right) \right) \|\tilde{v}(t)||^2
\]

Assuming that \(|\tilde{D}| < D^*,\) where

\[
\delta^* = \min \left\{ \frac{D}{3 + (c_2^2 + c_3^2 + c_4^2)} b_1, \frac{b_2}{4b_1}, \frac{\lambda_{\min}(Q)D}{4b_1} \right\}
\]

and \(b_1 > 2/(1+4c_2^2 + c_3^2 + c_4^2), b_2, \) from (28), we obtain

\[
\dot{V} \leq -\eta \left(\|X(t)||^2 + \|\tilde{v}(t)||^2 + \|\tilde{w}(0,t)^2 + \|\tilde{w}(t)||^2 \right)
\]

\[
+ \|\tilde{w}(0,t)^2 + \|\tilde{v}(0,t)^2 + \|\tilde{w}_x(0,t)^2 \right)
\]

(29)

(30)

From (30) and (31), we complete the proof of (27) with \(p = \eta/\min\{\lambda_{\min}(Q), b_1, D, b_2 \tilde{D} \}\).

Lemma 7: \(\exists h_1, h_2 > 0\) such that \(d_1 \Gamma(t) \leq V(t) \leq d_2 \Gamma(t)\).

Proof: From (22)–(25), we get

\[
\Gamma(t) \leq ||X(t)||^2 + 2 ||\tilde{v}(t)||^2 + ||\tilde{v}_x(t)||^2 + \|\tilde{v}_x(t)||^2 + \|\tilde{w}(t)||^2 + \|\tilde{v}(t)||^2 + \|\tilde{w}(t)||^2 \leq \max \{1 + 3p_2 + p_4, 2, 3p_1, p_3, 4\} \Gamma(t)
\]

and

\[
\dot{V}(t) \leq \lambda_{\max}(P) ||X(t)||^2 + 2 \|\tilde{v}(t)||^2 + \|\tilde{w}_x(t)||^2 \leq \lambda_{\max}(P) ||X(t)||^2 + 4 \|\tilde{v}(t)||^2 + p_3 \|\tilde{v}(t)||^2 + p_2 \|\tilde{x}(t)||^2 + p_2 \|\tilde{v}(t)||^2 \leq \lambda_{\max}(P) \left(||X(t)||^2 + 4 \|\tilde{v}(t)||^2 + \|\tilde{w}_x(t)||^2 \right)
\]

(28)

so \(d_1 = \max \{1 + 3p_2 + p_4, 2, 3p_1, p_3, 4\} \min \{\lambda_{\min}(P), b_1 D, b_2 \tilde{D} \}\) and \(d_2 = \max \{\lambda_{\max}(P) + 2p_2, 2, 3p_1, p_3, 4\}\).

We now complete the proof of Theorem 1. From Lemma 6, it follows that \(\dot{V}(t) \leq V(t) e^{-\delta t}\). From Lemma 7, we get \(\Gamma(t) \leq (d_2/d_1) \Gamma(t) e^{-\delta t}\). So \(R = d_2/d_1\), which completes the proof of Theorem 1. Next, we prove Corollary 2.

Lemma 8: \(\exists d_3, d_4 > 0\) such that \(d_3 \Gamma(t) \leq \Pi(t) \leq d_4 \Gamma(t)\).

Proof: By substituting \(u(x,t) = U(t + D(x - 1))\) into (12), we get

\[
\Gamma(t) = ||X(t)||^2 + \frac{1}{D} \int_{t-D}^t U(\theta)^2 d\theta + \frac{1}{D} \int_{t-D}^t U(\theta)^2 d\theta + \int_{t-D}^t U(\theta)^2 d\theta.
\]

Thus, \(d_3 = 1/2 \max \{1, 1/D, 0, 1/D, \tilde{D}, \}\) and \(d_4 = \max \{1, D, \tilde{D}, 1/D, \}\).

By combining Theorem 1 with Lemma 8, we complete the proof of Corollary 2 with \(R' = (d_4/d_3) R\).
III. ADAPTIVE CONTROL WITH ESTIMATION OF THE TRANSPORT PDE STATE

Now we establish local stability for an adaptive controller. A global result is not obtainable because the solution $u(t, x) = U(t + D(x - 1))$ is not linearly parametrizable in D.

Assumption 1: A lower bound $\underline{D} > 0$ and an upper bound $\overline{D} \geq D$ on the unknown delay D are known.

The update law for D is chosen as

$$\dot{D}(t) = \gamma \text{Proj}_{l[\underline{D}, \overline{D}]}^{*}(\tau(t)), \quad \gamma > 0$$

$$\tau(t) = -\int_{0}^{1} (1 + x) \hat{w}(x, t) Ke^{A\hat{D}(x)\epsilon} dx \times (AX(t) + B\hat{w}(0, t))$$

where the standard projection operator is given by

$$\text{Proj}_{l[\underline{D}, \overline{D}]}^{*}(\tau) = \begin{cases} 0, & \hat{D} = \underline{D} \text{ and } \tau < 0 \\ 0, & \hat{D} = \overline{D} \text{ and } \tau > 0 \\ \tau, & \text{else} \end{cases}$$

Theorem 9: Consider the closed loop consisting of the plant (2)–(4), (6), (7), the control law (8), and the update law defined by (32), (9). Let Assumption 1 hold and let

$$\gamma(t) = |X(t)|^2 + \frac{1}{0} u(x, t)^2 dx + \frac{1}{0} \hat{w}(x, t)^2 dx + \frac{1}{0} \hat{w}(x, t)^2 dx + \dot{\gamma}(t)^2$$

denote the norm of the overall state of the closed-loop system. There exist positive constants ρ and R such that if the initial state $(X_0, u_0, \hat{w}_0, \hat{D}_0)$ is such that $\gamma(0) < \rho$ then

$$\gamma(t) \leq R\gamma(0), \quad \lim_{t \to -\infty} X(t) = 0, \quad \lim_{t \to -\infty} U(t) = 0.$$

Proof: Mimicking the (omitted) proof of Lemma 3, we obtain the (X, \hat{u}, \hat{w})-system as

$$\dot{X}(t) = (A + BK)X(t) + B\hat{w}(0, t) + B\dot{w}(0, t)$$

$$\dot{\hat{u}}(x, t) = \hat{w}(x, t) - \dot{D}(t)(x - 1) r(x, t)$$

$$\dot{\hat{u}}(1, t) = 0$$

$$\dot{\hat{w}}(x, t) = \hat{w}(x, t) - \dot{D}(t) \hat{D}(t)(x - 1) s(x, t)$$

$$\dot{\hat{w}}(1, t) = 0$$

where

$$r(x, t) = \frac{\hat{w}(x, t)}{\hat{D}(t)} + KB\hat{w}(x, t)$$

$$+ \int_{0}^{x} K(A + BK) \dot{D}(t) e^{(A+HK)(x-y)} B\hat{w}(y, t) dy$$

$$+ K(A + BK) e^{(A+HK)(x-y)} X(t)$$

$$s(x, t) = (1 - x)$$

$$\times \left(\frac{\hat{w}(x, t)}{\hat{D}(t)} + K e^{A\hat{D}(t)\epsilon} (KX(t) + \hat{w}(0, t)) \right)$$

$$+ \frac{1}{x} \hat{w}(x, t)$$

$$\times \left[\sum_{y} K \left(I + A\hat{D}(t)(x - y) \right) e^{A\hat{D}(y)(x-y)} B \right]$$

$$+ \dot{D}(t) \int_{0}^{1} K \left(I + A\hat{D}(t)(x - y) \right) e^{A\hat{D}(y)(x-y)} B \right]$$

$$\times e^{A\hat{D}(x)(x-y)} BK$$

$$\times e^{(A+HK)(x-y)} dy$$

$$X(t)$$

Since our Lyapunov analysis will involve an H_1 norm of \hat{w}, we also need the governing equations of the \hat{w}_x-system

$$\hat{w}_x = \frac{\hat{D}(t)}{\hat{D}(t)}$$

$$= \hat{w}_xx(x, t) - \dot{D}(t) s_x(x, t)$$

$$- K A \hat{D}(t) e^{(A+HK)(x-y)} B \hat{w}(0, t)$$

$$\hat{w}_x(1, t) = 0$$

$$\hat{D}(t) \hat{w}_x(x, t) = \hat{w}_x(x, t) - \dot{D}(t) \hat{D}(t)(x - 1) s(x, t)$$

$$- \dot{D}(t) e^{(A+HK)(x-y)} B \hat{w}(0, t)$$

$$\hat{w}_x(1, t) = 0$$

where we get the (43), as shown at the bottom of the next page. We now start our Lyapunov analysis by introducing

$$V(t) = X^T(t) PX(t) + b_1 D \int_{0}^{1} (1 + x) \hat{w}(x, t)^2 dx$$

$$+ b_2 \dot{D}(t) \int_{0}^{1} (1 + x) \left(\hat{w}(x, t)^2 + \hat{w}_x(x, t)^2 \right) dx + b_3 \dot{D}(t)^2.$$
With (34)–(43), we get

\[
\dot{V}(t) = -X^T(t)QX(t) + 2X^T(t)PB(\bar{\phi}(0,t) + \bar{\xi}(0,t)) + b_1(-\bar{\phi}(0,t)^2 - ||\bar{\phi}(t)||^2) \\
- 2\hat{D}(t) \int_0^1 (1 + x)\bar{w}(x,t)r(x,t)dx \\
- 2\hat{D}(t) \int_0^1 \left(x^2 - 1 \right) \bar{w}(x,t)r(x,t)dx \\
+ b_2 (\bar{\phi}(0,t)^2 - ||w(t)||^2) \\
- 2\hat{D}(t) \dot{D}(t) \int_0^1 (1 + x)\bar{w}(x,t)s(x,t)dx \\
- 2\hat{D}(t) \int_0^1 \left((1 + x)Ke^{A\hat{D}(t)x}B\bar{u}(0,t)\bar{w}(x,t)dx \\
+ b_2 (2\bar{w}(1,t)^2 - \bar{w}(0,t)^2 - ||\bar{w}(t)||^2) \\
- 2\hat{D}(t) \dot{D}(t) \int_0^1 (1 + x)\bar{w}(x,t)s_x(x,t)dx \\
- 2\hat{D}(t)^2 \int_0^1 (1 + x)Ke^{A\hat{D}(t)x}x \times B\bar{u}(0,t)\bar{w}(x,t)dx \\
+ \dot{D}(t)b_2 \int_0^1 (1 + x)\bar{w}(x,t)^2dx \\
+ \int_0^1 (1 + x)\bar{w}(x,t)^2dx \\
- 2b_3\hat{D}(t)\dot{D}(t).
\]

Using (32), (39), (40), (42), (43), the properties of the projection operator, and Agmon’s inequality \(\bar{\phi}(0,t)^2 \leq 4||\bar{w}(x,t)||^2\) (with the fact that \(\bar{\phi}(1,t) = 0\)), we find constants \(M_1, M_2, \ldots, M_6\) (independent of initial conditions) such that

\[
\int_0^1 (1 + x)\bar{w}(x,t)r(x,t)dx \\
\leq M_1 (||\bar{w}(t)||^2 + ||\bar{w}(t)||^2 + ||\bar{w}(t)||^2 + ||X(t)||^2)
\]

Then

\[
\dot{V}(t) \leq -\frac{\lambda_{\min}(Q)}{2} ||X(t)||^2 - b_2 \bar{w}(0,t)^2 - b_2 \bar{w}(1,t)^2 \\
- \left(b_2 - \frac{b_2}{4} \right) ||\bar{w}(t)||^2 - \left(b_2 - \frac{b_2}{4} \right) ||\bar{w}(t)||^2 \\
- b_1 ||\bar{w}(t)||^2 - \left(b_1 - b_2 \right) \left(\frac{1}{2} + M_3 + M_5 + M_6 \right) \\
\times \bar{u}(0,t)^2 + b_2 M_5 \int_0^1 (1 + x)\bar{w}(x,t)^2dx + \bar{w}(x,t)^2 + 2b_3 \int_0^1 \bar{D}(t) \bar{w}(x,t)dx \\
\times \left(||\bar{w}(t)||^2 + ||\bar{w}(t)||^2 + ||\bar{w}(t)||^2 + ||X(t)||^2 \\
+ b_2 M_5 \int_0^1 \bar{D}(t) \bar{w}(x,t)dx + \bar{w}(x,t)^2 \right) \times \left(||\bar{w}(t)||^2 + ||\bar{w}(t)||^2 + ||\bar{w}(t)||^2 + ||X(t)||^2 \\
\right)
\]

For \(s_x(x,t)\), we have

\[
s_x(x,t) = \frac{1}{\hat{D}(t)} \left[(1 - x)\bar{w}(x,t) + K e^{A\hat{D}(t)x} \left(A\hat{D}(t)(1 - x) - I \right) B \right] \left[(1 - x)\bar{w}(x,t) + K e^{A\hat{D}(t)x} \left(A\hat{D}(t)(1 - x) - I \right) B \right] \\
\times \left[\int_0^x K \left(BK + A(2I + A\hat{D}(t)(x - y)) \right) e^{A\hat{D}(t)(x - y)}B + \hat{D}(t) \\
\times \left[\int_0^y K \left(BK + A \left(2I + A\hat{D}(t)(x - y) \right) \right) e^{A\hat{D}(t)(x - y)}B + \hat{D}(t) \\
\times \left[\int_0^y K \left(BK + A \left(2I + A\hat{D}(t)(x - y) \right) \right) e^{A\hat{D}(t)(x - y)}B + \hat{D}(t) \\
\times \left[\int_0^y K \left(BK + A \left(2I + A\hat{D}(t)(x - y) \right) \right) e^{A\hat{D}(t)(x - y)}B + \hat{D}(t) \\
\times \left[\int_0^y K \left(BK + A \left(2I + A\hat{D}(t)(x - y) \right) \right) e^{A\hat{D}(t)(x - y)}B + \hat{D}(t) \\
\times \left[\int_0^y K \left(BK + A \left(2I + A\hat{D}(t)(x - y) \right) \right) e^{A\hat{D}(t)(x - y)}B + \hat{D}(t) \\
\right)
\right)
\right)
\right)
\right)
\right)
\right)
\right)
\]
where we have chosen \(b_2 \geq 8|P_2D|/\lambda_{\min}(Q) \). By choosing \(b_1 > b_2/(1/2 + M_1 + M_2 + M_3) \), and defining
\[
\eta = \min \left\{ \left(\lambda_{\min}(Q)/2 \right), b_2/2, b_1 - b_2/(1/2 + M_3 + M_5 + M_6) \right\}
\]
and \(\phi(t) = |X(t)|^2 + \|\dot{u}(t)\|^2 + \|\dot{w}(t)\|^2 + \|\dot{v}(t)\|^2 \), where \(\eta > 0 \),

\[
\dot{V} (t) \leq 0 \quad \eta \left(|X(t)|^2 + \|\dot{u}(t)\|^2 + \|\dot{w}(t)\|^2 + \|\dot{v}(t)\|^2 \right)
\]

To eliminate the parameter error term, we employ the bound

\[
\|\dot{D}(t)\|^2 \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \|\dot{D}(t)\|^2
\]

which yields

\[
\dot{V} (t) \leq -\eta \left(|X(t)|^2 + \|\dot{u}(t)\|^2 + \|\dot{w}(t)\|^2 + \|\dot{v}(t)\|^2 \right)
\]

If we choose the analysis parameter \(\varepsilon \) as

\[
\varepsilon \leq \min \left\{ \frac{2\eta}{8\lambda_3 M_6 + b_1 M_1}, \frac{(8\lambda_3 M_6 + b_1 M_1) \min \left\{ \lambda_{\min}(P), b_1 D_2 b_2 D_2 \right\}}{8\lambda_3 M_6 \left(b_1 M_1 D_2 + 2b_2 (2M_2 + 2M_4 + 1) \right)} \right\}
\]

and restrict the initial conditions so that \(V(0) \leq \rho_1 \)

\[
\rho_1 = \min \left\{ \frac{b_2/2}{b_1 M_1 D_2 + 2b_2 (2M_2 + 2M_4 + 1)}, \lambda_{\min}(P) b_1 D_2 b_2 D_2 \right\}
\]

we obtain \(\dot{V} (t) \leq -\rho_1(t) V(t) - \rho_2(t) V(t)^2 \), where

\[
\rho_1(t) = \frac{(8\lambda_3 M_6 + b_1 M_1) \left(\frac{\varepsilon}{2} + \frac{1}{2\lambda_3 M_6} V(t) \right)}{2b_2 \lambda_3 M_6 + b_1 M_1}
\]

\[
\rho_2(t) = \min \left\{ \lambda_{\min}(P), b_1 D_2 b_2 D_2 \right\}
\]

are nonnegative functions if the initial conditions are as in (46). Hence, \(V(t) \leq V(0) \), \(\forall t \geq 0 \). From this result for \(\dot{V}(t) \), we get the result for \(\ddot{V}(t) \). Using Lemma 5 (which holds both when \(D \) is constant and with a time-varying \(\dot{D}(t) \)), we obtain

\[
\dot{T}(t) = |X(t)|^2 + \|\dot{u}(t)\|^2 + \|\dot{w}(t)\|^2 + \|\dot{v}(t)\|^2 + \|\dot{D}(t)\|^2
\]

\[
\leq |X(t)|^2 + 2 \left(\|\dot{u}(t)\|^2 + \|\dot{w}(t)\|^2 \right) + \|\dot{v}(t)\|^2
\]

\[
\leq \max \left\{ 1 + 3p_2 + p_3, 2|X(t)|^2 + \|\dot{u}(t)\|^2 + \|\dot{w}(t)\|^2 \right\}
\]

\[
\leq \max \{ 1 + 3p_2 + p_3, \|\dot{v}(t)\|^2 \}
\]

Hence, from (46) and (47), we obtain \(\rho = \rho_1 \rho_2 \). Similarly, using Lemma 5, we show that

\[
V(0) \leq \max \left\{ \lambda_{\max}(P), 2b_1 D_2 b_2 D_2 \right\}
\]

\[
\times \left(|X(t)|^2 + \|\dot{u}(t)\|^2 + \|\dot{w}(t)\|^2 + \|\dot{v}(t)\|^2 \right)
\]

\[
\leq \max \left\{ \lambda_{\max}(P), 2b_1 D_2 b_2 D_2 \right\}
\]

\[
\times \max \left\{ 1 + 3p_2 + p_3, \|\dot{v}(t)\|^2 \right\}
\]

Then, using (47), (48), we complete the local stability proof with \(R = \max \{ 1 + 3p_2 + p_3, \|\dot{v}(t)\|^2 \} \). To prove regulation, from \(V(t) \leq V(0) \), it follows that \(X(t), \|\dot{u}(t)\|, \|\dot{w}(t)\|, \|\dot{v}(t)\|, \dot{D}(t) \) are uniformly bounded. Then, from (10), using Cauchy-Schwartz inequality, we obtain the uniform boundedness of \(\|\dot{u}(t)\| \) and consequently also of \(U(t) \) for \(t \geq 0 \) from (8). Thus, \(u(t) = U(t - D) \) is uniformly bounded for \(t \geq D \). Using (2), we get that \(d|X(t)|^2/dt \) is uniformly bounded for \(t \geq D \). From (44), it follows that \(|X(t)|^2 \) is square integrable. Finally, by Barbalat’s lemma, we get that \(X(t) \rightarrow 0 \). To also prove the regulation of \(\dot{U}(t) \), we start by deducing from (44) the square integrability of \(\|\dot{u}(t)\| \). Then, from Lemma 5, we have the square integrability of \(\|\dot{u}\| \) and, from (8), using Cauchy-Schwartz inequality, the square integrability of \(\dot{U}(t) \). To establish the boundedness of \(d|U(t)|^2/dt \), we compute it as

\[
\frac{d}{dt} U(t)^2 \leq 2U(t) K \left(e^{AD(t)} X(t) + \dot{D}(t) G_1(t) + \dot{D}(t) G_2(t) \right)
\]

\[
G_1(t) = \text{Re} e^{AD(t)} X(t) + \left(x - 1 \right) \int_0^1 e^{AD(t)(1 - \theta)} B \dot{u}_e(y, t) dy
\]

\[
+ \left(I + AD(t)(1 - \theta) \right) e^{AD(t)(1 - \theta)} B \dot{u}_e(y, t) dy
\]

\[
G_2(t) = \int_0^1 e^{AD(t)(1 - \theta)} B \dot{u}_e(y, t) dy
\]
IV. Simulations

Consider the system $X(s)/U(s) = e^{-17s}B/(s-A)$, which is a model of the dynamics of an X-29 aircraft in an unstable regime [2], with the input being the control surface deflection, and with the output being a linear combination of the pitch rate (measured with a gyroscope) and the rate of change of the flight path (measured with a gyroscope). We take the plant parameters as $A = 0.75$, $B = 1$, and the nominal control gain as $K = -A - 1 = -1.75$ (which means that $P = 1$ for $Q = 2$). Fig. 2 shows a simulation example with $D = 1$, $A = 0.5$, $B = 1$, $K = -1.5$, $P = 1$, $Q = 2$, and $\gamma = 5$.

V. Related Results

In this note, the only parametric uncertainty considered is the unknown delay. In a companion paper [1] we present an extension with unknown plant parameters and where the control objective is not regulation to zero but trajectory tracking. The design technique in this note is inspired by the techniques for parabolic PDEs in [7] and the non-adaptive techniques for hyperbolic PDEs [8]. Nonlinear extensions of predictor feedback are introduced in [5].

REFERENCES