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Further Results on Stabilization of Shock-Like
Equilibria of the Viscous Burgers PDE

Andrey Smyshlyaev, Thomas Meurer, and Miroslav Krstic

Abstract—In this note we show that a symmetric shock profile of the lin-
earized viscous Burgers equation under high-gain “radiation” boundary
feedback is exponentially stable, though the previously reported numer-
ical eigenvalue calculations have reported instability. We also show limi-
tations of the radiation feedback by deriving an analytical bound on the
closed-loop decay rate for a given shock profile. We prove that the decay
rate goes to zero exponentially as the shock becomes sharper. This limita-
tion in the decay rate achievable by radiation feedback highlights the im-
portance of backstepping designs for the Burgers equation, which achieve
arbitrarily fast local convergence to arbitrarily sharp shock profiles.

Index Terms—Boundary control, Burgers equation, radiation feedback.

I. INTRODUCTION

A recent paper [4] considers a problem of nonlinear stabilization of
the viscous Burgers equation and, for a family of unstable symmetric
“shock-like” stationary profiles (see Fig. 1), it designs stabilizing non-
linear full-state feedbacks with arbitrarily fast decay rates, using the
method of infinite-dimensional backstepping.

The paper [4] highlights the inability of a simple “radiation boundary
feedback” to achieve the same goals (of arbitrary decay rates for arbi-
trary shock profiles). Radiation boundary feedback is a form of static
proportional feedback based on a collocated input-output pair, where
the temperature at the boundary is measured and the heat flux at the
same boundary is actuated.

The emphasis in [4] and in the present note is on sharp shock-like
profiles. The sharpness of a shock-like profile is measured in terms of
the maximum of the spatial derivative of the equilibrium profile. The
sharpness is quantified in Section II in terms of a scalar parameter .

The evidence presented in [4, Sec. IV, Fig. 3] for the inability of radi-
ation feedback to exponentially stabilize sharp shock profiles is numer-
ical. Numerical calculations of closed-loop eigenvalues in [4, Sec. IV,
Fig. 3] display the first eigenvalue which appears to remain positive for
any value of the gains in the radiation boundary conditions, when the
shock coefficient is sufficiently large. This numerical result happens to
be incorrect and the error occurs due to high numerical sensitivity at
high parameter values (high shock coefficient and high feedback gain).
Rather than remaining slightly positive, as displayed in [4, Fig. 3], the
first eigenvalue is slightly negative, which we show analytically in this
note.

It is important to clarify that the numerical error in [4, Sec. IV, Fig.
3] does not affect any of the theoretical results in [4]. The numerical
results in question are related to the linear radiation feedback, whereas
the theoretical result in [4] are related to the nonlinear full-state back-
stepping feedback.
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Fig. 1. Equilibrium profiles for the Burgers (1)–(3), parameterized in terms of
the shock coefficient .

The results of this note are the following. We show that arbitrarily
sharp shock profiles are stabilizable using sufficiently high-gain radi-
ation feedback. However, we also show that, as the shock coefficient
goes to infinity, the first closed-loop eigenvalue goes to zero irrespec-
tive of the radiation gain. These two analytical results are formulated
as Theorems 1 and 2.

Theorem 1 is a partly redeeming result for radiation feedback as it
shows that this feedback does achieve exponential stability for arbitrary
shock profiles. The theorem gives a necessary and sufficient stability
condition for the radiation gain. For very sharp shock profiles the gain
becomes very high, making numerical calculations of the eigenvalues
very sensitive, which explains the incorrect conclusions drawn based
on numerical results in [4, Sec. IV, Fig. 3].

Theorem 2 shows that, as the shock coefficient grows (shock be-
comes sharper), the best achievable decay rate under radiation feed-
back goes to zero. Moreover, we prove that even for infinite gain this
convergence is exponential in the shock coefficient, so even for mild
profiles (like the middle profile in Fig. 1) radiation feedback results in
extremely sluggish closed-loop response.

The results presented in this note amplify the importance of the back-
stepping design in [4] which, unlike the radiation boundary feedback,
is capable of assigning an arbitrarily fast decay, with an explicit control
law, using either full-state feedback, or using feedback based only on
boundary measurement [5], as in the case of radiation feedback.

II. BURGERS EQUATION UNDER “RADIATION FEEDBACK”

Consider the viscous Burgers equation

(1)

with boundary conditions

(2)

(3)

where and are the control inputs.
The following family of “shock-like” stationary profiles exists for

(1)–(3):

(4)
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where is a nonnegative constant parameter (see Fig. 1), which we
refer to as the “shock coefficient.” Introducing

one gets

(5)

(6)

(7)

where and . Using
the “radiation feedback” , and
linearizing the closed-loop system (with the new state ), we get

(8)

(9)

(10)

In Sections III–IV we derive a condition on that ensures stability of
(8)–(10). In Sections V–VI we prove that even for , the decay
rate decreases exponentially w.r.t. the parameter .

III. EIGENVALUE PROBLEM

To analyze stability properties of the system (8)–(10) we look at the
eigenvalues. Introducing we obtain the following
two-point boundary value (Sturm-Liouville) problem for :

(11)

(12)

(13)

Let us make a change of variables

(14)

Equation (11) becomes

(15)

where .
The general solution of (15) is given by [1]

(16)

where , are the associated Legendre functions of 1st and
2nd kind, respectively.

Going back to the original variables, we get

(17)

To obtain characteristic equation for , it remains to substitute (17)
into the boundary conditions (12) and (13). However, it is clear that
the resulting equation is impossible to solve analytically. Therefore,
instead of deriving this equation, we are going to use (17) to find a
condition on that ensures exponential stability of the zero equilibrium
of (8)–(10).

IV. STABILITY CONDITION

Suppose that for some and there is an eigenvalue at zero. Setting
in (17), and using the definitions [1]

(18)

and , after simplifications we get

(19)

Substituting (19) into the boundary conditions (12), (13), we get

(20)

and

(21)

respectively. The system (20)–(21) has a non-trivial solution for and
only when its determinant is zero. We get the following condition:

(22)

This equation has two solutions for

(23)

(24)

Note that for all . We have the following result.
Theorem 1: The system (8)–(10) is exponentially stable in

norm if and only if . For each , there exist
and such that

(25)

Proof: It is easy to check that the differential operator that cor-
responds to (8)–(10) is self-adjoint. In particular, this implies that all
the eigenvalues are real. From Lemma A.1 it follows that for
all eigenvalues are negative. From Theorem A.2 it follows that as
decreases from , all the eigenvalues continuously and mono-
tonically increase until at the first (largest) eigenvalue becomes
zero. Therefore, for all all the eigenvalues are negative.
The corresponding eigenfunctions form an orthogonal basis that spans



1944 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 55, NO. 8, AUGUST 2010

Fig. 2. Largest eigenvalue of the system (8)–(10) and the bound (27)
for different values of .

(this follows from the corresponding operator being self-ad-
joint and standard properties of the Sturm-Liouville problem, see [7],
[8]). Therefore, the system (8)–(10) is exponentially stable in .

V. MAXIMUM DECAY RATE ACHIEVABLE

WITH RADIATION FEEDBACK

In the previous section we established that for sufficiently high , the
system (8)–(10) is exponentially stable. In this section we show that as

increases, the system’s decay rate exponentially goes to zero for any
.

Theorem 2: The largest eigenvalue of the Sturm-Liouville
problem (11)–(13) satisfies

(26)

for all and all , where

(27)

(28)

and

(29)

Corollary 3: For all and all , the decay rate in (25)
satisfies

(30)

and hence

(31)

This corollary follows from (28), the fact that for ,
and the arguments in the proof of Theorem 1.

In Fig. 2 we show the bound (27) and the numerically computed first
eigenvalue as functions of for different values of . Note that the
bound (27) is very accurate for all and all . The error
between the bound (27) and the actual eigenvalue is largest at ,

, when it is equal to . It is clear that for
greater than , the time response of the system (8)–(10) would be

too sluggish since the largest eigenvalue is very close to zero.

PROOF OF THEOREM 2

A. Rayleigh-Ritz Method

To bound the first eigenvalue of (11)–(13), we are going to use the
well known Rayleigh-Ritz method (see, e.g., [6]). A version of this
method tailored to our problem is given below.

Theorem 4: For the Sturm-Liouville problem

(32)

(33)

(34)

where is a smooth function, the lower bound on the first (largest)
eigenvalue is

(35)

where is an arbitrary function that satisfies ,
. Equality in (35) is achieved only when is

the eigenfunction corresponding to the first eigenvalue.
Proof: Let us denote , where is given by (35).

Note that , which is easy to see if one integrates by parts
in (35) and uses (32). From general Sturm-Liouville theory it follows
that eigenfunctions form an orthogonal basis. Therefore, it
is possible to write as a linear combination of functions , i.e.,

. Using the orthogonality property and integrating by
parts in , one can write as

Therefore, (since
is the largest eigenvalue), and we get .

The key to obtaining a useful lower bound on the first eigenvalue
(i.e., a bound that, as increases, behaves asymptotically in the same
way as the true first eigenvalue) is choosing a test function . For
example, the simple function , often used in Raleigh-
Ritz method, leads to a bound which grows in absolute value as

, while the absolute value of the true eigenvalue decreases. There-
fore, we have to come up with a more sophisticated choice for .

Before we start choosing , let us convert the eigenvalue problem
(11)–(13) into the form (32)–(34). Using the transformation

, we obtain the following equation for :

(36)

(37)

(38)
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so that and
.

B. Choosing a Test Function in Theorem 4

Since equality in (35) is achieved when is the eigenfunction
corresponding to the first eigenvalue and we want to show that the first
eigenvalue becomes closer and closer to the imaginary axis as in-
creases, a good first candidate for is a function that satisfies (36)
for . Using (19), we have

(39)

Using the boundary condition , we
get and

Let us drop the terms “ ” in . This is for two reasons:
first, for large this term is small compared to other terms; second, we
would like to avoid polynomial functions in a test function because they
make the integrals in (35) not computable in closed form. Note also
that multiplication of by a constant does not affect the bound (35),
therefore we can divide any test function by a constant. As a result, our
modified candidate for a test function is

(40)

This function approaches the first eigenfunction as (we do not
define a metric of closeness of these two functions since our discussion
here serves only motivational purposes), however, it does not satisfy
the boundary conditions exactly (which is required by Theorem 4). Let
us compute

(41)

(42)

Let us introduce a new candidate , where
should satisfy several conditions. First, it should make the right-hand
sides in (41)–(42) zero. Second, it should keep asymptotic properties
of , in other words, for large it should be small compared to .
Finally, we want to compose only from hyperbolic functions so
that integrals in (35) can be found explicitly. A simple function satis-
fying all of the above conditions is

(43)

and our next candidate becomes (after simplification)

Multiplying the result by a constant factor , we obtain our
final test function

(44)

C. Bounds and

Substituting (44) into (35) and computing the integrals, we obtain

which, after simplifications, gives the bound (27).
To obtain a simpler (but more conservative) bound, let us first show

the following result.
Lemma 5: For any and the following inequality

holds:

(45)

where is given by (29).
Proof: Denote

(46)

It is easy to check that (45) is equivalent to the condition .
Using the identity , one can rewrite

in the following way:

(47)

Since , , for , we get

(48)

To show that , we compute its derivative

(49)

It’s clear that . Since , we have
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From (27) and (45) we get

(50)

The proof of Theorem 2 is completed.

VI. CONCLUSION

This note corrects the numerical result in [4, Sec. IV, Fig. 3] which
claimed a lack of stabilizability of sharp shock profiles using radia-
tion boundary feedback. We show analytically that any shock profile is
stabilizable by radiation feedback with sufficiently high gain, however,
the stability margin (the distance of the eigenvalues from the imaginary
axis) decays to zero as the shock coefficient grows, irrespective of the
gain value.

The vanishing stability margin under radiation feedback amplifies
the importance of the backstepping designs in [4], [5]. The backstep-
ping designs achieve arbitrarily fast decay rates, which is established
using Lyapunov estimates in [4], [5].

APPENDIX

Lemma A.1 ([3]): The eigenvalues of the Sturm–Liouville
problem

(A1)

(A2)

where is an arbitrary smooth function, are real and negative.
Theorem A.2: For the eigenvalues of the Sturm–Liouville

problem

(A3)

(A4)

(A5)

where is an arbitrary smooth function, the following holds for all
:

(1) is continuously differentiable for all and

(A6)

where is the corresponding normalized eigenfunction.
(2) , where are the eigenvalues of

the problem (A1)–(A2).
Proof: Statement (1) is a corollary of [2, Theorem 4.2]. Statement

(2) follows from [8, Theorem 4.4.3].
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On Almost Sure Stability of Hybrid Stochastic
Systems With Mode-Dependent Interval Delays

Lirong Huang and Xuerong Mao

Abstract—This note develops a criterion for almost sure stability of hy-
brid stochastic systems with mode-dependent interval time delays, which
improves an existing result by exploiting the relation between the bounds
of the time delays and the generator of the continuous-time Markov chain.
The improved result shows that the presence of Markovian switching is
quite involved in the stability analysis of delay systems. Numerical exam-
ples are given to verify the effectiveness.

Index Terms—Almost sure stability, LaSalle-type theorem, Markov
chain, stochastic systems, time delays.

I. INTRODUCTION

Since Markov jump systems were firstly introduced in early 1960s
(see, e.g., [16] and [23]), hybrid systems driven by continuous-time
Markov chains have been widely employed to model many real-life
systems where they may experience abrupt changes in system structure
and parameters such as systems, failure prone manufacturing,
electric power systems, population dynamics, solar-powered systems,
and macroeconomic models of national economy (see [1], [4], [7], [9],
[16], [19], [21] and the references therein). Recently, hybrid stochastic
delay systems (HSDSs) have received considerable attention (see, e.g.,
[14], [17] and [21]) since time delays and stochastic perturbation are
often encountered in various practical models in many branches of sci-
ence and engineering. An area of particular interest has been the sta-
bility analysis of this class of hybrid systems and its application to auto-
matic control (see [6], [13], [14], [22], [23] and the references therein).
The presence of the Markovian switching is quite involved in stability
analysis of the hybrid systems (see, e.g., [2], [4], [7], [16]). Even if all
the subsystems are stable, the hybrid system may not be stable; on the
other hand, the hybrid system may be stable even if all the subsystems
are unstable (see, e.g., [2]–[4] and [16]).

The classical stochastic analysis theory studies stability not only in
moment sense but also in almost sure sense (see, e.g., [5], [11] and
[22]). Among the existing results, [22] studied almost sure stability of
HSDSs with the techniques proposed in [11] while most of the others
dealt with moment stability. However, the results in [22] require the
time delays of all subsystems to be equal to a constant. This may be
too restrictive to apply to hybrid systems in many practical situations
(see, e.g., Example 4.1). This note extends the results in [22] to hybrid
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