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Dead-Time Compensation for
Wave/String PDEs
Smith predictorlike designs for compensation of arbitrarily long input delays are com-
monly available only for finite-dimensional systems. Only very few examples exist, where
such compensation has been achieved for partial differential equation (PDE) systems,
including our recent result for a parabolic (reaction-diffusion) PDE. In this paper, we
address a more challenging wave PDE problem, where the difficulty is amplified by
allowing all of this PDE’s eigenvalues to be a distance to the right of the imaginary axis.
Antidamping (positive feedback) on the uncontrolled boundary induces this dramatic
form of instability. We develop a design that compensates an arbitrarily long delay at the
input of the boundary control system and achieves exponential stability in closed-loop.
We derive explicit formulae for our controller’s gain kernel functions. They are related to
the open-loop solutions of the antistable wave equation system over the time period of
input delay (this simple relationship is the result of the design approach).
�DOI: 10.1115/1.4003638�
Introduction

1.1 Background on Delay Compensation and Predictor
eedback. Despite decades of development, the area of delay
ystems remains a seemingly endless source of research chal-
enges and continues to be an active area of research, especially in

echanical engineering �1–14�.
One problem in control of delay systems that has received con-

inuous attention over the last 5 decades is the problem of systems
ith input or output delay, or, simply, systems with dead-time.
tarting with the Smith predictor �15�, ODE systems with dead-

ime have been studied successfully from numerous angles, lead-
ng even to adaptive designs and designs for nonlinear ODEs
16–42�.

1.2 Delay Compensation for PDEs. Control of PDEs with
nput delays, or, to be more precise, predictor-based compensation
f actuator or sensor delays in control of PDEs, is a new area that
s just opening up for research. The motivation partly comes from
he classical examples by Datko et al. �43� and Datko �44� who
dentified some classes of hyperbolic PDE systems, which, al-
hough exponentially stabilizable, have zero robustness to insert-
ng a delay in the feedback loop, i.e., arbitrarily small dead-time
eads to instability.

In recent work, Guo and Xu �45� presented an observer-based
ompensator of sensor delay for a wave equation, which Guo and
hang �46�, then, followed by an extension to an Euler–Bernoulli
eam problem. The wave/string PDE is the subject of continuing
dvances in boundary control �47–50�. It serves as a benchmark
nd a stepping stone for the more complex beam equation. While
ew experiments have been conducted with stringlike systems,
everal experimental applications of boundary control of beams
ave been reported �51–54�.

In a recent manuscript �55�, we initiated an effort for develop-
ng predictor feedbacks for PDEs with input delay, via the method
f backstepping �see Refs. �56,57,68,69� for other uses of back-
tepping in boundary control of PDEs�. The PDE considered in
ef. �55� is a parabolic �reaction-diffusion� system, which, al-

hough open-loop unstable and with a long delay at the input, is
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not as challenging a problem as wave/hyperbolic equations since
this class of PDEs does not exhibit a Datko-type loss of delay
robustness margin.

1.3 Contribution of the Present Paper. Our focus in the
present paper is on wave equations with input delay, as displayed
in Fig. 1. We pursue a problem similar to Ref. �45� but with two
differences, one methodological and one in the system being con-
sidered. The methodological difference is that we approach the
problem with a backstepping-based technique for compensation of
the input delay and arrive at a compensator, whose gain functions
we derive explicitly, which achieves exponential stabilization in
the presence of arbitrarily long actuator delay. The other differ-
ence, in the class of systems, is that we consider a wave equation
of an unconventional type. The standard wave equation has all of
its infinitely many eigenvalues on the imaginary axis. In this pa-
per, we consider a wave equation that contains an antidamping
effect on the boundary opposite to the controlled boundary. This
antidamping effect results in all of the infinitely many eigenvalues
of the uncontrolled system being in the right-half plane, and pos-
sibly being arbitrarily far to the right of the imaginary axis.

One of the key tools employed in the design in this paper is a
new type of backstepping transformation recently introduced by
Smyshlyaev and Krstic �58� for wave equations with boundary
antidamping. The rest of the tools are a collection of techniques
we recently introduced in Refs. �24,55,59,60�.

The difference between the present paper and Ref. �58� is that
the presence of the delay requires the construction of an additional
backstepping transformation for the delay state, which has to also
incorporate the displacement and velocity states of the wave equa-
tion. As a result, the construction of the transformation kernels in
this paper is much more complex than for the wave equation alone
in Ref. �58�. The results of the present paper are of interest even in
the absence of antidamping in the wave equation �58�; in that
case, one obtains a novel control law for the conventional un-
damped wave/string system with input delay. The difference be-
tween the present paper and Ref. �55� is that the second-order
character of the PDE plant makes not only the backstepping trans-
formation of the delay state more complex but it also makes the
stability analysis much more involved, requiring, among other
things, that the input delay state be quantified not in the L2 norm
�as appropriate when the plant is an ODE� in the H1 norm �as
appropriate when the plant is a parabolic PDE� but in the H2

norm.
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1.4 Physical Motivation for the Wave Equation With
ntidamping. The 1D wave equation is a good model for acous-

ic dynamics in ducts and vibration of strings. The phenomenon of
ntidamping that we include in our study of wave dynamics rep-
esents injection of energy in proportion to the velocity field, akin
o a damper with a negative damping coefficient. Such a process
rises in combustion dynamics, where the pressure field is dis-
urbed in proportion to varying heat release rate, which, in turn, is
roportional to the rate of change of pressure. Figure 2 shows the
lassical Rijke tube control experiment �61�. For the sake of our
tudy, we assume that the system is controlled using a loud-
peaker, with a pressure sensor �microphone� near the speaker.
oth the actuator and the sensor are placed as far as possible from

he flame front, for their thermal protection. The process of anti-
amping is located mostly at the flame front. In a Rijke tube, the
ame front may not be at the end of the tube, however, the leaner

he fuel/air mixture, the longer it takes for the mixture to ignite,
nd the further the flame is from the injection point. In the limit,
or the leanest mixture for which combustion is sustained, the
ame is near the exit of the tube, which corresponds to a situation
ith boundary antidamping.
An input delay can arise from a computational delay, as de-

icted in Fig. 2. Alternatively, if the system is controlled not using
oudspeaker actuation but using modulation of the fuel injection
ate �62–64�, a long delay may result both from the delay associ-
ted with the servovalve and feed line operation and from the
ransport process within the combustor from the injection point to
he ignition location. The leaner the mixture, the longer the input
elay in this configuration.

Another physical example involving antidamping in string dy-
amics is discussed in Sec. 6.

1.5 Organization of This Paper. This paper is organized as
ollows. In Sec. 2, we present a control design and state the sta-
ility result. In Sec. 3, we derive the gain functions of this control
aw explicitly. In Sec. 4, we prove exponential stability of the
arget system resulting from the backstepping construction. In
ec. 5, we establish our main result, through a stability analysis
or the system in its original variables. In Sec. 6, we offer some
losing comments.

Control Design for Antistable Wave PDE With Input
elay
We consider the delay-wave cascade system

utt�x,t� = uxx�x,t�, x � �0,1� �1�

ux�0,t� = − qut�0,t� �2�

delay
anti-stable

wave PDE
U(t)

Fig. 1 Antistable wave PDE system with input delay

CONTROLLER
(computational delay)

pressure

injection of
fuel/air mixture

loudspeaker

flame front

ACOUSTICS

sensor

x 1 0

ig. 2 Control of a thermoacoustic instability in a Rijke tube

61‡ „a duct-type combustion chamber…
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u�1,t� = U�t − D� �3�

where for q�0 and U�t��0, one obtains an “antistable” wave
equation, with all of its infinitely many eigenvalues in the right-
half plane and given by Ref. �56�, p. 82

�n =
1

2
ln�1 + q

1 − q
� + j��n +

1

2
, 0 � q � 1

n, q � 1
� �4�

The structure of the system is such that the destabilizing force acts
on the opposite boundary from the input, as represented by the
string example in Fig. 3.

By denoting v�x , t��U�t+x−1−D�, the delay-wave systems
�1�–�3� are alternatively written as transport-wave PDE cascades

utt�x,t� = uxx�x,t�, x � �0,1� �5�

ux�0,t� = − qut�0,t� �6�

u�1,t� = v�1,t� �7�

vt�x,t� = vx�x,t�, x � �1,1 + D� �8�

v�1 + D,t� = U�t� �9�

where U�t� is the overall system input and �u ,ut ,v� is the state.
Hence, we formulate the control problem as boundary control of a
cascade of a transport PDE with a wave equation. For an example
of a control problem involving a nonscalar transport PDE with
reaction effects and nonlinearities, see Ref. �65�.

The spatial variable x, the time variable t, and the delay D are
non dimensional. This is achieved by a standard nondimensional-
ization procedure. Consider a more general wave equation
ǔťť�x̌ , ť�=�2ǔx̌x̌�x̌ , t� on the domain x̌� �0,L�, where L is the length
of the domain in meters, � is the wave propagation speed in
meters per second, and ť is time in seconds. We introduce a new
spatial variable x= x̌ /L and a new time variable t=�ť /L, which are
both nondimensional. Then, the new state variable u�x , t�
= ǔ�Lx ,Lt /�� satisfies the wave equation utt�x , t�=uxx�x , t� for x
� �0,1�. Similarly, if the boundary input of the wave equation is

ǔ�L , ť�= Ǔ�ť− Ď�, the new control is defined as U�t�= Ǔ�Lt /�� and

the actuator state is defined as v�x , t�= Ǔ�L�t+x−1−D� /��, where

D=�Ď /L. The quantity 1+D in Eqs. �8� and �9� is nondimen-
sional.

We consider the backstepping transformation

w�x,t� = u�x,t� −
q�q + c�
1 + qc

u�0,t� +
q + c

1 + qc	0

x

ut�y,t�dy �10�

z�x,t� = v�x,t� −	
1

x

p�x − y�v�y,t�dy − ��x�u�0,t�

−	
0

1

��x,y�u�y,t�dy −	
0

1

��x,y�ut�y,t�dy �11�

control

anti-damping
force

Fig. 3 A diagram of a string with control applied at boundary
x=1 and an antidamping force acting at the boundary x=0
where Eq. �10� was introduced by Smyshlyaev and Krstic in Ref.
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58�, the kernels p ,� ,� ,� need to be chosen to transform the
ascade PDE system into the target system

wtt�x,t� = wxx�x,t�, x � �0,1� �12�

wx�0,t� = cwt�0,t� �13�

w�1,t� = z�1,t� �14�

zt�x,t� = zx�x,t�, x � �1,1 + D� �15�

z�1 + D,t� = 0 �16�

nd c is a positive gain, used in the gain kernels of the control law

U�t� =	
1

1+D

p�1 + D − y�v�y,t�dy + ��1 + D�u�0,t�

+	
0

1

��1 + D,y�u�y,t�dy +	
0

1

��1 + D,y�ut�y,t�dy

�17�

he target system �w ,z�, which is a transport-wave cascade inter-
onnected through a boundary, is exponentially stable in an ap-
ropriate norm, as we shall establish in Sec. 4.

By differentiating Eq. �11� once with respect to t and once with
espect to x, equating the two expressions, substituting the PDEs
or u and v, and integrating by parts with respect to y, we obtain
onditions that the kernels p ,� ,� ,� need to satisfy in order for the
u ,v�-system and the �w ,z�-system to be equivalent. The kernel �
s governed by the PDE

�xx�x,y� = �yy�x,y� �18�

�y�x,0� = − q�x�x,0� �19�

��x,1� = 0 �20�

here x� �1,1+D� and y� �0,1�. Note that this system has a
tructure identical to the uncontrolled wave equation plant. Since
qs. �19� and �20� play the role of boundary conditions, the vari-
ble x can be viewed as a timelike variable, even though it plays
he role of a spatial variable in the kernel of the transformation
q. �11�. The initial condition of Eq. �18� is

��1,y� = −
q + c

1 + qc
�21�

�x�1,y� = 0 �22�

fter solving for ��x ,y�, the kernels p ,� ,� are obtained as

p�s� = − �y�1 + s,1�, s � �0,D� �23�

��x� = − q��x,0� �24�

��x,y� = �x�x,y� �25�
We present a detailed Lyapunov stability analysis in Secs. 4 and

, however, we state first a result on closed-loop eigenvalues �for
he target system �w ,z��.

PROPOSITION 1. The finite part of the spectrum of systems
12)–(16) is given by

�n = −
1

2
ln�1 + c

1 − c
� + j��n +

1

2
, 0 � c � 1

n, c � 1
� �26�

here n�Z.
Proof. Systems �12�–�16� are a cascade connection of the trans-

ort PDE zt�x , t�=zx�x , t� ,z�1+D , t�=0, whose eigenvalues have
eal parts equal to negative infinity �see, for example, Ref. �66�,

ppendix C�, and of the boundary-damped wave PDE wtt�x , t�
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=wxx�x , t� ,wx�0, t�=cwt�0, t� ,w�1, t�=0, whose eigenvalue Eq.
�26� was determined in Ref. �56�, p. 82.

The inverse backstepping transformation, which is needed in
our analysis, is given by

u�x,t� = w�x,t� −
c�q + c�
1 + qc

w�0,t� −
q + c

1 + qc	0

x

wt�y,t�dy �27�

v�x,t� = z�x,t� −	
1

x

��x − y�z�y,t�dy − 	�x�w�0,t�

−	
0

1


�x,y�w�y,t�dy −	
0

1

��x,y�wt�y,t�dy �28�

where the kernels � ,	 ,
 ,� are defined next. The kernel � is
governed by the PDE

�xx�x,y� = �yy�x,y� �29�

�y�x,0� = c�x�x,0� �30�

��x,1� = 0 �31�

where x� �1,1+D� and y� �0,1�. Again, note that the structure
of this system is identical to the target system w. The initial con-
dition of this PDE is

��1,y� =
q + c

1 + qc
�32�

�x�1,y� = 0 �33�

After solving for ��x ,y�, the kernels � ,	 ,
 are obtained as

��s� = − �y�1 + s,1�, s � �0,D� �34�

	�x� = c��x,0� �35�


�x,y� = �x�x,y� �36�

3 Explicit Gain Functions
In the standard predictor feedback form, the controller is writ-

ten as

U�t� = − q��1 + D,0�u�0,t� +	
0

1

�x�1 + D,y�u�y,t�dy

+	
0

1

��1 + D,y�ut�y,t�dy −	
t−D

t

�y�t − �,1�U���d�

�37�

and so, our task is to find the solution ��x ,y� and its first deriva-
tives with respect to both x and y. The procedure of solving for

ϖ (59)
−−−→ ϑ (45)

−−−→ ς (43)−−−→ ρ

Fig. 4 The process of finding the solution to the PDEs
„18…–„22… for the gain function �„x ,y…. First, the undamped wave
equation with homogeneous boundary conditions, Eqs.
„60…–„62… or Eqs. „63…–„65…, is solved for � using Lemmas 4
and 5. Second, Lemma 3 yields the solution � to the wave
equation with domainwide antidamping �, Eqs. „47…–„49… or
Eqs. „50…–„52…. Third, Lemma 2 yields the solution ς to the wave
equation with boundary antidamping q, Eqs. „38…–„42…. Finally,
using Eq. „43…, the gain functions � ,�x ,�y, which are needed in
the controller Eq. „37…, are found in Proposition 6.
��x ,y� is outlined in Fig. 4.
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We seek the solution of Eqs. �18�–�22� by seeking the solution
f the �space-reversed� PDE system

�tt�x,t� = �xx�x,t� �38�

��0,t� = 0 �39�

�x�1,t� = q�t�1,t� �40�
ith initial conditions

��x,0� = −
q + c

1 + qc
�41�

�t�x,0� = 0 �42�
rom which we shall obtain

��x,y� = ��1 − y,x − 1�, y � �0,1�,x 
 1 �43�

We present the construction of ��x , t� through a series of lem-
as. Most lemmas that we state are reasonably straightforward to

rove, or the proofs can be obtained by direct �albeit possibly
engthy� verification. Hence, we omit most proofs.

The first lemma introduces a backstepping-style transformation,
hich moves the antidamping effect from the boundary condition

x�1, t�=q�t�1, t� into the domain, where it can be handled �for the
urpose of solving the PDE� more easily.

LEMMA 2. Consider systems (38)–(40) and the transformations

��x,t� = cosh��x���x,t� +	
0

x

sinh��y���t�y,t� − ���y,t��dy

�44�

��x,t� = cosh��x���x,t� −	
0

x

sinh��y���t�y,t� + 2���y,t��dy

�45�

here � denotes the function

��q� = 
− tanh−1�q�, q � �0,1�
− coth−1�q�, q � 1

� �46�

hich is shown in Fig. 5. For q� �0,1�, the function ��x , t� satis-
es Eqs. (38)–(40) if and only if the function ��x , t� satisfies

�tt�x,t� + 2��t�x,t� + �2��x,t� = �xx�x,t� �47�

��0,t� = 0 �48�

�x�1,t� = 0 �49�

or q�1, the function ��x , t� satisfies Eqs. (38)–(40) if and only if
he function ��x , t� satisfies

2

0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

q

λ

Fig. 5 The graph of the function �„q…
�tt�x,t� + 2��t�x,t� + � ��x,t� = �xx�x,t� �50�
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��0,t� = 0 �51�

�t�1,t� + ���1,t� = 0 �52�
Proof. By deriving and using the fact that the transformation
u�w yields

�x�x,t� = cosh��x��x�x,t� + sinh��x��t�x,t� �53�

�t�x,t� + ���x,t� = sinh��x��x�x,t� + cosh��x��t�x,t� �54�

and that the transformation w�u yields

�x�x,t� = cosh��x��x�x,t� − sinh��x���t�x,t� + ���x,t�� �55�

�t�x,t� = − sinh��x��x�x,t� + cosh��x���t�x,t� + ���x,t��
�56�

The reader should note that the relationship between q and a,
which is given by Eq. �46�, yields

sinh��x� =
1

2
��1 − q

1 + q
�x/2

− �1 + q

1 − q
�x/2
 �57�

cosh��x� =
1

2
��1 − q

1 + q
�x/2

+ �1 + q

1 − q
�x/2
 �58�

To make the �-system easily solvable, we introduce another
transformation, given in the next lemma. This lemma completely
eliminates the in-domain antidamping but using time-dependent
scaling of the state variable.

LEMMA 3. Let ��x , t�=e�t��x , t�, i.e.,

��x,t� = �1 + q

1 − q
� t/2

��x,t� �59�

For q� �0,1�, the function ��x , t� satisfies Eqs. (47)–(49) if and
only if the function ��x , t� satisfies

�tt�x,t� = �xx�x,t� �60�

��0,t� = 0 �61�

�x�1,t� = 0 �62�

For q�1, the function ��x , t� satisfies Eqs. (50)–(52) if and only
if the function ��x , t� satisfies

�tt�x,t� = �xx�x,t� �63�

��0,t� = 0 �64�

�t�1,t� = 0 �65�
Furthermore, if the initial conditions of systems (38)–(40) are
given by Eqs. (41) and (42), then the initial conditions
�0�x����x ,0� and �1�x���t�x ,0� for the � -system are given
by

�0�x� = −
q + c

1 + qc
�66�

�1�x� = 0 �67�

The �-systems are now readily solvable in explicit form. Their
solutions, for arbitrary initial conditions, are stated in the next two
lemmas.

LEMMA 4. For q� �0,1�, the solution of systems (60)–(62) with

arbitrary initial conditions is
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��x,t� = 2�
n=0

�

sin��2n + 1�
�

2
x
�	

0

1

sin��2n

+ 1�
�

2
y
�0�y�dy cos��2n + 1�

�

2
t


+
2

�2n + 1��	0

1

sin��2n + 1�
�

2
y
�1�y�dy sin��2n

+ 1�
�

2
t
� �68�

or q�1, the solution of systems (63)–(65) with arbitrary initial
onditions is

��x,t� = 2�
n=1

�

sin�n�x��	
0

1

sin�n�y��0�y�dy cos�n�t�

+
1

n�
	

0

1

sin�n�y��1�y�dy sin�n�t�� �69�

For the initial condition Eqs. �66� and �67�, we obtain the ex-
licit solutions ��x , t� as follows.

LEMMA 5. For q� �0,1�, the solution of systems (60)–(62) with
nitial conditions given by Eqs. (66) and (67) is

�x,t� = −
q + c

1 + qc
2�

n=0

� sin��2n + 1�
�

2
x
cos��2n + 1�

�

2
t


�2n + 1�
�

2

=

−
q + c

1 + qc�n=0

� sin��2n + 1�
�

2
�x + t�
 − sin��2n + 1�

�

2
�t − x�

�2n + 1�
�

2

�70�

or q�1, the solution of systems (63)–(65) with initial conditions
iven by Eqs. (66) and (67) is

��x,t� = −
q + c

1 + qc
2�

m=1

�
sin�2m�x�cos�2m�t�

m�

= −
q + c

1 + qc�m=1

�
sin�2m��x + t�� − sin�2m��t − x��

m�

�71�
Now, we return to the gain formula �43� and, using Lemmas

–5, obtain the following explicit expression for the gain kernel
�x ,y�, as well as for the functions �x�1+D ,y� and �y�t−� ,1�,
hich are used in the control law Eq. �37�.
PROPOSITION 6. The solution of systems (18)–(22) is given by

��x,y� = e−��x−1��cosh���1 − y����1 − y,x − 1� −	
0

1−y

sinh��s�

���t�s,x − 1� + a��s,x − 1��ds� �72�

here for q� �0,1�, the function ��· , ·� is given by Eq. (70) and
or q�1, the function ��· , ·� is given by Eq. (71). Furthermore,

he partial derivatives of Eq. (72) are
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�x�x,y� = − ���x,y� + e−��x−1��cosh���1 − y���t�1 − y,x − 1�

−	
0

1−y

sinh��s���tt�s,x − 1� + a�t�s,x − 1��ds�
�73�

�y�x,y� = e−��x−1��− � sinh���1 − y����1 − y,x − 1� − cosh���1

− y���x�1 − y,x − 1� − sinh���1 − y����t�1 − y,x − 1�

+ a��1 − y,x − 1��� �74�

where, for q� �0,1� , the functions �x�x , t� ,�t�x , t� ,�tt�x , t� are
given by

�x�x,t� = −
q + c

1 + qc
2�

n=0

�

cos��2n + 1�
�

2
x
cos��2n + 1�

�

2
t


�75�

�t�x,t� =
q + c

1 + qc
2�

n=0

�

sin��2n + 1�
�

2
x
sin��2n + 1�

�

2
t
 �76�

�tt�x,t� =
q + c

1 + qc
2�

n=0

�

�2n + 1�
�

2
sin��2n + 1�

�

2
x
cos��2n + 1�

�

2
t


�77�

and for q�1, the functions �x�x , t� ,�t�x , t� ,�tt�x , t� are given by

�x�x,t� = −
q + c

1 + qc
2�

m=1

�

cos�2m�x�cos�2m�t� �78�

�t�x,t� =
q + c

1 + qc
2�

m=1

�

sin�2m�x�sin�2m�t� �79�

�tt�x,t� =
q + c

1 + qc
2�

m=1

�

m� sin�2m�x�cos�2m�t� �80�

4 Stability of the Target System „w ,z…
Having completed the derivation of explicit expressions for the

control gains in Sec. 3, we now turn our attention to the exponen-
tial stability analysis of the target system

wtt�x,t� = wxx�x,t�, x � �0,1� �81�

wx�0,t� = cwt�0,t� �82�

w�1,t� = z�1,t� �83�

zt�x,t� = zx�x,t�, x � �1,1 + D� �84�

z�1 + D,t� = 0 �85�
The analysis employs two new transformations, whose role is de-
picted and explained in Fig. 6.

We first denote

a�c� = 
tanh−1�c�, c � �0,1�
coth−1�c�, c � 1

� �86�

and then introduce the transformations

�x�x,t� = cosh�a�1 − x��wx�x,t� − sinh�a�1 − x��wt�x,t� �87�

�t�x,t� + a��x,t� = − sinh�a�1 − x��wx�x,t� + cosh�a�1 − x��wt�x,t�

�88�
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��1,t� = z�1,t� �89�
nd

wx�x,t� = cosh�a�1 − x���x�x,t� + sinh�a�1 − x����t�x,t� + a��x,t��
�90�

wt�x,t� = sinh�a�1 − x���x�x,t� + cosh�a�1 − x����t�x,t� + a��x,t��
�91�

w�1,t� = z�1,t� �92�

y integrating in x, these transformations are also written as

��x,t� = cosh�a�1 − x��w�x,t� +	
x

1

sinh�a�1 − y���wt�y,t�

− aw�y,t��dy �93�

w�x,t� = cosh�a�1 − x����x,t� −	
x

1

sinh�a�1 − y����t�y,t�

+ 2a��y,t��dy �94�

For c� �0,1�, the transformation converts the w-system into

�tt�x,t� + 2a�t�x,t� + a2��x,t� = �xx�x,t� �95�

z w

v u
boundary

interconnectionU(t)

boundary
interconnection

unstable

damping at x = 0

z
boundary

interconnection

domain-wide
damping

ψ

φ

z
in-domain

interconnection

domain-wide
damping

ig. 6 A sequence of system transformations employed in the
nalysis. The original plant is „v ,u…, whereas the backstepping
ransformation converts the closed-loop system into the au-
onomous, exponentially stable system „z ,w…. Due to the
oundary interconnection and the boundary damping at x=0,

he stability of the system „z ,w… is hard to analyze. The damp-
ng is moved from the boundary to the domain using the trans-
ormation „z ,w…¾ „z ,�…. Finally, the boundary interconnection,
n which an unbounded operator arises, is converted into an
asier-to-analyze in-domain interconnection using the transfor-
ation „z ,�…¾ „z ,�…. The transformations between the four

epresentations are indicated in Fig. 7. The stability analysis of
he „z ,�…-system is outlined in Fig. 8. Stability of the
z ,�…-system is studied in Lemmas 7–10, using the Lyapunov
unction Ω„t…. Then, stability of the „z ,�…-system is shown in
emma 11 and Proposition 12.
�x�0,t� = 0 �96�
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��1,t� = z�1,t� �97�

For c�1, the transformation converts the w-system into

�tt�x,t� + 2a�t�x,t� + a2��x,t� = �xx�x,t� �98�

�t�0,t� + a��0,t� = 0 �99�

��1,t� = z�1,t� �100�

Even though the z-system is the exponentially stable transport
equation zt�x , t�=zx�x , t�, z�1, t�=0, the stability analysis for the
�-system cannot proceed in this form because of z�1, t� entering
the �-system through a boundary condition, which makes the re-
sulting input operator unbounded, and the resulting gain from
z�1, t� to ��x , t� �in any suitable norm� unbounded.

We first perform a transformation that shifts z�1, t� into the
interior of the domain �0,1�. The next lemma introduces this trans-
formation and presents a Lyapunov function for the resulting sys-
tem �see Fig. 7 for a summary of transformations used in the
paper�.

LEMMA 7. Consider the change of variable

��x,t� = ��x,t� − x2z�1,t� �101�

and the resulting system, which, for c� �0,1�, is

�tt�x,t� + 2a�t�x,t� + a2��x,t� = �xx�x,t� + g�x,t� �102�

�x�0,t� = 0 �103�

��1,t� = 0 �104�

and for c�1 is

�tt�x,t� + 2a�t�x,t� + a2��x,t� = �xx�x,t� + g�x,t� �105�

�t�0,t� + a��0,t� = 0 �106�

��1,t� = 0 �107�
and where

g�x,t� = 2z�1,t� − x2�zxx�1,t� + 2azx�1,t� + a2z�1,t�� �108�
Then, for the Lyapunov functional

V�t� =
1

2	
0

1

���t�x,t� + a��x,t��2 + �x
2�x,t��dx �109�

the following holds:

V̇�t� = − 2aV�t� +	
0

1

��t�x,t� + a��x,t��g�x,t�dx �110�

for all t
0.
Proof. Most of this lemma is obtained by direct verification.

The expression

g�x,t� = �tt�x,t� + 2a�t�x,t� + a2��x,t� − �xx�x,t� = �tt�x,t�

+ 2a�t�x,t� + a2��x,t� − �xx�x,t� + 2z�1,t� − x2�zxx�1,t�

+ 2azx�1,t� + a2z�1,t�� = 2z�1,t� − x2�zxx�1,t� + 2azx�1,t�

+ a2z�1,t�� �111�

(v,u) (10), (11)−−−−−−−→ (z,w)
(93)
−−−→ (z,ϕ)

(101)
−−−−→ (z,ψ)

Fig. 7 The transformations among the four system represen-
tations in Fig. 6. Only the transformation „v ,u…¾ „z ,w… is of
backstepping type, whereas the other two have the role of mov-
ing the damping and moving the transport-wave interconnec-
tion from a boundary into the domain, which is a form that
facilitates the analysis.
involves zx�1, t� and zxx�1, t�. These quantities are obtained as fol-
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ows. By setting x=1 in zt=zx, one obtains zt�1, t�=zx�1, t�. By
ifferentiating zt=zx with respect to t, one obtains ztt=zxt=zxx.
etting x=1 yields ztt�1, t�=zxx�1, t�. Substituting zt�1, t�=zx�1, t�
nd ztt�1, t�=zxx�1, t� into Eq. �111�, one obtains Eq. �108�. The
erivative of the Lyapunov function is obtained as

V̇�t� =	
0

1

���t�x,t� + a��x,t����tt�x,t� + a�t�x,t��

+ �x�x,t��xt�x,t��dx =	
0

1

���t�x,t� + a��x,t���− a�t�x,t�

− a2��x,t� + �xx�x,t� + g�x,t�� + �x�x,t��xt�x,t��dx =

− a	
0

1

��t�x,t� + a��x,t��2dx +	
0

1

���t�x,t� + a��x,t��

���xx�x,t� + g�x,t�� + �x�x,t��xt�x,t��dx = − a	
0

1

��t�x,t�

+ a��x,t��2dx +	
0

1

�− ��xt�x,t� + a�x�x,t���x�x,t�

+ �x�x,t��xt�x,t��dx + ��t�x,t� + a��x,t���x�x,t��0
1

+	
0

1

��t�x,t� + a��x,t��g�x,t�dx = − 2aV�t� + ��t�x,t�

+ a��x,t���x�x,t��0
1 +	

0

1

��t�x,t� + a��x,t��g�x,t�dx

�112�

here integration by parts is used in the second to last steps.
quation �110� is obtained by substituting either of the boundary
onditions Eq. �103� or Eq. �106� into Eq. �112�.

The following lemma is readily verifiable with several applica-
ions of Young’s inequality.

LEMMA 8. If functions V�t� and g�x , t� satisfy Eqs. (108)–(110),
hen they satisfy the following bounds:

V̇�t� � − aV�t� +
1

2a
+

1

4a
�g�t��2 �113�

�g�t��2 � 3��5 + a2�z2�1,t� + a2zx
2�1,t� +

1

5
zxx

2 �1,t�
 �114�

Next, we turn our attention to the z-systems �84� and �85� and
tate the following directly verifiable result.

LEMMA 9. For systems (84) and (85), the following are true:

d

dt	1

1+D

eb�x−1�z2�x,t�dx = − z�1,t�2 − b	
1

1+D

eb�x−1�z2�x,t�dx

�115�

d

dt	1

1+D

eb�x−1�zx
2�x,t�dx = − zx�1,t�2 − b	

1

1+D

eb�x−1�zx
2�x,t�dx

�116�

d

dt	1

1+D

eb�x−1�zxx
2 �x,t�dx = − zxx�1,t�2 − b	

1

1+D

eb�x−1�zxx
2 �x,t�dx

�117�

or any b�0.
With Lemmas 8 and 9, we obtain the following result, as dis-
layed in Fig. 8.
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LEMMA 10. For systems (84), (85), and (102)–(108), the follow-
ing holds:

��t� � �0e−min�a,b�t, ∀ t 
 0 �118�

for all b�0, where

��t� = V�t� +
3�5 + a2�

4a 	
1

1+D

eb�x−1��z2�x,t� + zx
2�x,t� + zxx

2 �x,t��dx

�119�
Proof. With Lemmas 8 and 9, we obtain

�̇�t� � − aV�t� +
3

4a
��5 + a2�z2�1,t� + a2zx

2�1,t� +
1

5
zxx

2 �1,t�

−

3�5 + a2�
4a

�z2�1,t� + zx
2�1,t� + zxx

2 �1,t��

−
3�5 + a2�

4a
b	

1

1+D

eb�x−1��z2�x,t� + zx
2�x,t� + zxx

2 �x,t��dx �

− aV�t� −
3�5 + a2�

4a
b	

1

1+D

eb�x−1��z2�x,t� + zx
2�x,t�

+ zxx
2 �x,t��dx �120�

which yields

�̇�t� � − min�a,b���t� �121�
and leads to the result of the lemma.

Even though we have obtained exponential stability in the �� ,z�
variables, we have yet to establish exponential stability in the
�w ,z� variables. We have to consider the chain of transformations

�w,z� � ��,z� � ��,z� �122�

as well as their inverses, to establish stability of the �w ,z�-system.
The following lemma, which establishes the equivalence be-

tween the Lyapunov function ��t� and the appropriate norm of the
�w ,z�-system, is the key to establishing exponential stability in the
�w ,z� variables.

LEMMA 11. Consider the transformation Eqs. (93), (94), and
(101), along with the energy function ��t� defined in Eq. (119).
The following holds:

�1��t� � ��t� � �2��t� �123�
where

��t� =	
0

1

�wx
2�x,t� + wt

2�x,t��dx +	
1

1+D

�z2�x,t� + zx
2�x,t�

+ zxx
2 �x,t��dx �124�

and

�1 = min
3�5 + a2�
,

1 � �125�

z-system:
Lemma 9

Lemma 8
−−−−−−−→

ψ-system:
Lemma 7

︸ ︷︷ ︸

Lemma 10

Fig. 8 The outline of the proof of exponential stability of the
cascade system „z ,�…. The Lyapunov functional for the autono-
mous z-system is constructed in Lemma 9. The Lyapunov func-
tional for the �-system is constructed in Lemma 7. The input-
to-state stability „ISS… of the �-system with respect to the
z-system is shown in Lemma 8. The Lyapunov stability of the
overall „z ,�…-system is shown in Lemma 10.
4a 8 cosh�2a�max�1,2a�
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�2 = max
2 cosh�2a�,
8

5
�1 + a2� +

3�5 + a2�
4a

ebD� �126�

roof. To save on notation, in this proof, we use the symbol � · � to
ean both � · �L2�0,1� and � · �L2�1,1+D�. We first consider the transfor-
ations w�� and ��w. Squaring up Eq. �87�, we get

wx
2�x,t� � 2 cosh2�a�1 − x���x

2�x,t� + 2 sinh2�a�1 − x����t�x,t�

+ a��x,t��2 �127�

oing the same with Eqs. �88�, �90�, and �91�, integrating from 0
o 1, and majorizing cosh2�a�1−x�� and sinh2�a�1−x�� over �0,1�
nder the integrals, we get

�wx�t��2 + �wt�t��2 � 2�cosh2�a� + sinh2�a�����x�t��2 + ��t�t�

+ a��t��2� �128�

nd

��x�t��2 + ��t�t� + a��t��2 � 2�cosh2�a� + sinh2�a����wx�t��2

+ �wt�t��2� �129�

rom Eq. �101�, we get

�t�x,t� + a��x,t� = �t�x,t� + a��x,t� + x2�zx�1,t� + az�1,t��
�130�

�x�x,t� = �x�x,t� + 2xz�1,t� �131�

here we have used the fact that zt�1, t�=zx�1, t�. Taking the L2
orm of both sides of both equations, we obtain

��t�t� + a��t��2 � 2��t�t� + a��t��2 +
2

5
�zx�1,t� + az�1,t��2

�132�

��x�t��2 � 2��x�t��2 +
2

3
z2�1,t� �133�

s well as

��t�t� + a��t��2 � 2��t�t� + a��t��2 +
2

5
�zx�1,t� + az�1,t��2

�134�

��x�t��2 � 2��x�t��2 +
2

3
z2�1,t� �135�

sing the fact that z�1, t��0 and zx�1, t��0, where the latter
ollows from the fact that zt�1, t��0, with Agmon’s inequality, we
et that

��t�t� + a��t��2 + ��x�t��2 � 2���t�t� + a��t��2 + ��x�t��2�

+
16

5
�zxx�t��2 + 4�4

5
a2 +

2

3

�zx�t��2

�136�

��t�t� + a��t��2 + ��x�t��2 � 2���t�t� + a��t��2 + ��x�t��2�

+
16

5
�zxx�t��2 + 4�4

5
a2 +

2

3

�zx�t��2

�137�

ith further majorizations, we achieve simplifications of expres-
ions

��t�t� + a��t��2 + ��x�t��2 � 4V�t� +
16

5
�1 + a2���z�t��2 + �zx�t��2

2
+ �zxx�t�� � �138�
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V�t� � ��t�t� + a��t��2 + ��x�t��2 +
8

5
�1 + a2���z�t��2 + �zx�t��2

+ �zxx�t��2� �139�

Now, we first focus on Eq. �138�

��t�t� + a��t��2 + ��x�t��2 � 4�V�t� +
4

5
�1 + a2���z�t��2 + �zx�t��2

+ �zxx�t��2�
 � 4�V�t� +
4

5
�1

+ a2�	
1

1+D

eb�x−1��z2�x,t� + zx
2�x,t�

+ zxx
2 �x,t��dx
 �140�

Invoking Eq. �119�, we get

��t�t� + a��t��2 + ��x�t��2 � 4 max�1,

4

5
�1 + a2�

3�5 + a2�
4a

���t�

�141�

With a few steps of majorization, it is easy to see that

4

5
�1 + a2�

3�5 + a2�
4a

�
16a

15
� 2a �142�

Hence

��t�t� + a��t��2 + ��x�t��2 � 4 max�1,2a���t� �143�

Recalling Eq. �128�, we get

�wx�t��2 + �wt�t��2 � 8�cosh2�a� + sinh2�a��max�1,2a���t�

= 8 cosh�2a�max�1,2a���t� �144�

where we have used the fact that cosh2�a�+sinh2�a�=cosh�2a�.
Furthermore, from Eq. �119�, we get

�z�t��2 + �zx�t��2 + �zxx�t��2 �
4a

3�5 + a2�
��t� �145�

With Eqs. �144� and �145�, we obtain the left side of inequality
�123� with �1 given by Eq. �125�. Now, we turn our attention to
Eq. �139� and to proving the right-hand-side of inequality �123�.
From Eqs. �129� and �139�, we get

V�t� � 2�cosh2�a� + sinh2�a����wx�t��2 + �wt�t��2� +
8

5
�1 + a2�

���z�t��2 + �zx�t��2 + �zxx�t��2� = 2 cosh�2a���wx�t��2

+ �wt�t��2� +
8

5
�1 + a2���z�t��2 + �zx�t��2 + �zxx�t��2�

�146�

Then, with Eqs. �119� and �146�, we obtain

��t� � 2 cosh�2a���wx�t��2 + �wt�t��2� +
8

5
�1 + a2���z�t��2

+ �zx�t��2 + �zxx�t��2� +
3�5 + a2�

4a 	
1

1+D

eb�x−1��z2�x,t�

+ z2�x,t� + z2 �x,t��dx � 2 cosh�2a���wx�t��2 + �wt�t��2�
x xx
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+ �8

5
�1 + a2� +

3�5 + a2�
4a

ebD
��z�t��2 + �zx�t��2 + �zxx�t��2�

�147�

his completes the proof of the right side of inequality �123� with
2 given by Eq. �126�.
With Lemmas 10 and 11, we prove the following result on

xponential stability of the target system �w ,z�.
PROPOSITION 12. For systems (81)–(85), the following inequality

olds for the norm Eq. (124) for all b�0:

��t� �
�2

�1
�0e−min�a,b�t, ∀ t 
 0 �148�

Stability in the Original Plant Variables „u ,v…
We now return to the backstepping transformations

u ,v�� �w ,z� and �w ,z�� �u ,v� in Sec. 2. After the substitution
f the gain kernels expressed in terms of ��x ,y� and ��x ,y�, the
ackstepping transformation is written as

w�x,t� = u�x,t� −
q�q + c�
1 + qc

u�0,t� +
q + c

1 + qc	0

x

ut�y,t�dy

�149�

z�x,t� = v�x,t� +	
1

x

�y�1 + x − y,1�v�y,t�dy + q��x,0�u�0,t�

−	
0

1

�x�x,y�u�y,t�dy −	
0

1

��x,y�ut�y,t�dy �150�

nd the inverse backstepping transformation is written as

u�x,t� = w�x,t� −
c�q + c�
1 + qc

w�0,t� −
q + c

1 + qc	0

x

wt�y,t�dy

�151�

v�x,t� = z�x,t� +	
1

x

�y�1 + x − y,1�z�y,t�dy − c��x,0�w�0,t�

−	
0

1

�x�x,y�w�y,t�dy −	
0

1

��x,y�wt�y,t�dy �152�

Since the stability result in Proposition 12 is given in terms of

��t� = �wx�t��2 + �wt�t��2 + �z�t��2 + �zx�t��2 + �zxx�t��2

�153�

nd we want to establish stability in terms of

��t� = �ux�t��2 + �ut�t��2 + �v�t��2 + �vx�t��2 + �vxx�t��2

�154�

e need to derive the expressions for all of the five normed quan-
ities appearing in ��t� and all of the five normed quantities ap-
earing in ��t�.

The normed quantities appearing in ��t� are given by

wx�x,t� = ux�x,t� +
q + c

1 + qc
ut�x,t� �155�

wt�x,t� =
q + c

zux�x,t� + ut�x,t� �156�

1 + qc
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z�x,t� = v�x,t� +	
1

x

�y�1 + x − y,1�v�y,t�dy + q��x,0�u�0,t�

−	
0

1

�x�x,y�u�y,t�dy −	
0

1

��x,y�ut�y,t�dy �157�

zx�x,t� = vx�x,t� + �y�1,1�v�x,t� +	
1

x

�xy�1 + x − y,1�v�y,t�dy

+ q�x�x,0�u�0,t� −	
0

1

�xx�x,y�u�y,t�dy

−	
0

1

�x�x,y�ut�y,t�dy �158�

zxx�x,t� = vxx�x,t� + �y�1,1�vx�x,t� + �xy�1,1�v�x,t� +	
1

x

�xxy�1 + x

− y,1�v�y,t�dy + q�xx�x,0�u�0,t� −	
0

1

�xxx�x,y�u�y,t�dy

−	
0

1

�xx�x,y�ut�y,t�dy �159�

The normed quantities appearing in ��t� are given by

ux�x,t� = wx�x,t� −
q + c

1 + qc
wt�x,t� �160�

ut�x,t� = −
q + c

1 + qc
wx�x,t� + wt�x,t� �161�

v�x,t� = z�x,t� +	
1

x

�y�1 + x − y,1�z�y,t�dy − c��x,0�w�0,t�

−	
0

1

�x�x,y�w�y,t�dy −	
0

1

��x,y�wt�y,t�dy �162�

vx�x,t� = zx�x,t� + �y�1,1�z�x,t� +	
1

x

�xy�1 + x − y,1�z�y,t�dy

− c�x�x,0�w�0,t� −	
0

1

�xx�x,y�w�y,t�dy

−	
0

1

�x�x,y�wt�y,t�dy �163�

vxx�x,t� = zxx�x,t� + �y�1,1�zx�x,t� + �xy�1,1�z�x,t� +	
1

x

�xxy�1

+ x − y,1�z�y,t�dy − c�xx�x,0�w�0,t�

−	
0

1

�xxx�x,y�w�y,t�dy −	
0

1

�xx�x,y�wt�y,t�dy �164�

In establishing a relation between ��t� and ��t�, first we estab-
lish a relation between �ux�t��2+ �ut�t��2 and �wx�t��2+ �wt�t��2.

LEMMA 13. Consider the transformation Eqs. (149) and (151),
along with the norm Eqs. (153) and (154). The following are true:

�ux�t��2 + �ut�t��2 � 2�1 + 	2���wx�t��2 + �wt�t��2� � 2�1 + 	2���t�

�165�
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�wx�t��2 + �wt�t��2 � 2�1 + 	2���ux�t��2 + �ut�t��2� � 2�1 + 	2���t�
�166�

here

	 =
q + c

1 + qc
�167�

Next, we focus on relating �v�t��2+ �vx�t��2+ �vxx�t��2 to ��t�
nd �z�t��2+ �zx�t��2+ �vxx�t��2 to ��t�.

LEMMA 14. For the transformation Eq. (152) along with the
orm Eq. (153), the following are true:

�v�t��2 � �0��t� �168�

�vx�t��2 � �1��t� �169�

�vxx�t��2 � �2��t� �170�
here

�0 = 5 max
1 + D	
1

1+D

�y
2�x,1�dx,4�c	

1

1+D

�2�x,0�dx

+	
1

1+D	
0

1

�x
2�x,y�dydx
,	

1

1+D	
0

1

�2�x,y�dydx�
�171�

�1 = 6 max
1,�y
2�1,1� + D	

1

1+D

�xy
2 �x,1�dx,4�c	

1

1+D

�x
2�x,0�dx

+	
1

1+D	
0

1

�xx
2 �x,y�dydx
,	

1

1+D	
0

1

�x
2�x,y�dydx� �172�

�2 = 7 max
1,�y
2�1,1�,�xy

2 �1,1�

+ D	
1

1+D

�xxy
2 �x,1�dx,4�c	

1

1+D

�xx
2 �x,0�dx

+	
1

1+D	
0

1

�xxx
2 �x,y�dydx
,	

1

1+D	
0

1

�xx
2 �x,y�dydx�

�173�
or the transformation Eq. (150) along with the norm Eq. (154),

he following are true:

�z�t��2 � 
0��t� �174�

�zx�t��2 � 
1��t� �175�

�zxx�t��2 � 
2��t� �176�
here


0 = 5 max
1 + D	
1

1+D

�y
2�x,1�dx,4�q	

1

1+D

�2�x,0�dx

+	
1

1+D	
0

1

�x
2�x,y�dydx
,	

1

1+D	
0

1

�2�x,y�dydx�

�177�
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1 = 6 max
1,�y
2�1,1� + D	

1

1+D

�xy
2 �x,1�dx,4�q	

1

1+D

�x
2�x,0�dx

+	
1

1+D	
0

1

�xx
2 �x,y�dydx
,	

1

1+D	
0

1

�x
2�x,y�dydx� �178�


2 = 7 max
1,�y
2�1,1�,�xy

2 �1,1�

+ D	
1

1+D

�xxy
2 �x,1�dx,4�q	

1

1+D

�xx
2 �x,0�dx

+	
1

1+D	
0

1

�xxx
2 �x,y�dydx
,	

1

1+D	
0

1

�xx
2 �x,y�dydx�

�179�
Proof. We only prove inequality �170�. All of the other inequali-
ties are easier to prove. Starting from Eq. �164�, we get

�vxx�t��2 � 7��zxx�t��2 + �y
2�1,1��zx�t��2 + �xy

2 �1,1��z�t��2

+ D	
1

1+D

�xxy
2 �x,1�dx�z�t��2

+ c	
1

1+D

�xx
2 �x,0�dxw2�0,t�

+	
1

1+D	
0

1

�xxx
2 �x,y�dydx�w�t��2

+	
1

1+D	
0

1

�xx
2 �x,y�dydx�wt�t��2
 �180�

where we have used the fact that

	
1

1+D	
0

x−1

�xxy
2 �1 + s,1�dsdx =	

1

1+D

�1 + D − x��xxy
2 �x,1�dx

� D	
1

1+D

�xxy
2 �x,1�dx �181�

Employing Agmon’s inequality, we get

�vxx�t��2 � 7��zxx�t��2 + �y
2�1,1��zx�t��2 + ��xy

2 �1,1�

+ D	
1

1+D

�xxy
2 �x,1�dx
�z�t��2 + 4�c	

1

1+D

�xx
2 �x,0�dx

+	
1

1+D	
0

1

�xxx
2 �x,y�dydx
�w�t��2

+	
1

1+D	
0

1

�xx
2 �x,y�dydx�wt�t��2� �182�

from which Eq. �170� follows with Eq. �173�.
With Lemmas 13 and 14, we get the following relation between

��t� and ��t�.
LEMMA 15. The following relation holds between the norm Eqs.

(153) and (154):

�3��t� � ��t� � �4��t� �183�

where
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�3 = 1/�2�1 + 	2� + �0 + �1 + �3� �184�

�4 = 2�1 + 	2� + 
0 + 
1 + 
3 �185�
Finally, we obtain our main result on exponential stability of

he �u ,v�-system with the help of the lemmas, as indicated in Fig.
.

THEOREM 16. Consider the closed-loop system consisting of the
lant Eqs. (5)–(9) and the control law Eq. (37). The following
olds for all b�0:

��t� �
�2�4

�1�3
�0e−min�a,b�t, ∀ t 
 0 �186�

here the system norm ��t� is defined in Eq. (154) and a is
efined in Eq. (86).

Since the coefficient b is arbitrary, we can choose it as b=a.
hen, we obtain the following corollary.

COROLLARY 17. Consider the closed-loop system consisting of
he plant Eqs. (5)–(9) and the control law Eq. (37). The following
olds:

��t� �
�2�4

�1�3
�0�1 − c

1 + c
� t/2

, ∀ t 
 0 �187�

It should be noted that all of the coefficients �1 ,�2 ,�3 ,�4 de-
end on a�c�. In addition, �3 and �4 depend on q. Finally, it is
mportant to observe that �2, as well as �3 and �4, are nondecreas-
ng functions of D.

Conclusions
The result of this paper offers an alternative approach to ad-

ressing the problem of input delays in control of wave PDEs,
rought up by the Datko challenge. Stabilization in the presence
f arbitrarily long delay is achieved for a wave equation plant
ith antidamping, which has all of its infinitely many open-loop

igenvalues arbitrarily far to the right of the imaginary axis.
Some interesting open problems arise from the considerations

n this paper. First, one would want to consider the problem of
obustness to small errors in D that is employed in the predictor
eedback. While we were successful in establishing robustness to
elay error for an ODE with predictor feedback �24�, we are not
ery hopeful that such a robustness result would hold for a wave
DE plant.
Second, the foremost problem would be to consider adaptive

tabilization of the antistable wave equation with unknown delay,
amely, of the systems

utt�x,t� = uxx�x,t�, x � �0,1� �188�

ux�0,t� = − qut�0,t� �189�

u�1,t� = v�1,t� �190�

ϒ(v,u)

Le
mm

as
13
–1
5

⇐⇒ Ξ(z,w)

Le
mm

a1
1

⇐⇒ Ω(z,ψ)

ig. 9 The norms used in the stability analysis of the closed-
oop system. Their equivalence is established in the lemmas
ndicated in the figure.
Dvt�x,t� = vx�x,t�, x � �1,2� �191�
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v�2,t� = U�t� �192�

where D and q are unknown. An adaptive design for this system
would indirectly address the Datko �44� question but in a more
challenging setting, where D is not small but it is large and has a
large uncertainty and where the wave equation plant is not neu-
trally stable but antistable. The q-adaptive problem for the anti-
stable wave equation with D=0 was solved in Ref. �60�. The
delay-adaptive control problem for ODE plants was recently
solved in Ref. �67�.

It is worth mentioning that, even though we have considered
only a state feedback case in this paper, there is no problem to
extend the results to output feedback. For example, the observers
�Ref. �58�, Eqs. �110�–�112��

ûtt�x,t� = ûxx�x,t� −
q + c̃

1 + qc̃
�uxt�1,t� − ûxt�1,t�� �193�

ûx�0,t� = − qût�0,t� −
q�q + c̃�
1 + qc̃

�ux�1,t� − ûx�1,t�� �194�

û�1,t� = U�t − D� �195�

where c̃�0 is an observer gain, can be combined with the predic-
tor feedback law

U�t� = − q��1 + D,0�û�0,t� +	
0

1

�x�1 + D,y�û�y,t�dy +	
0

1

��1

+ D,y�ût�y,t�dy −	
t−D

t

�y�t − �,1�U���d� �196�

to achieve output feedback stabilization using the measurement
ux�1, t�, which is collocated with the control u�1, t�=U�t−D�, as
in Fig. 2. The proof of this fact is more complicated than in the
present paper due to the need to incorporate the observer error
system in the analysis. Furthermore, a predictor feedback can be
designed for the architecture, where the control and measurement
are switched, namely, where ux�1, t�=U�t−D� is a Neumann input
and u�1, t� is a Dirichlet output, as in Ref. �58�, Eqs. �63�–�65� and
�76�.

Another example of a wave system with antidamping is that of
electrically amplified stringed instruments �for example, electric
guitar�. Such instruments employ an electromagnetic pickup,
shown in Fig. 10, where the voltage on the terminals of the pickup
is proportional, according to Faraday’s law of induction, to the
velocity of the string above it. The pickup’s voltage is then am-

Fig. 10 A pickup on an electric guitar. Based on Faraday’s law
of induction, it converts the string velocity into voltage. Con-
nected into a high-gain amplifier, this system results in „do-
mainwide… antidamping, which manifests itself as a swell in vol-
ume, up to a saturation of the amplifier, which guitarists refer
to, simply, as feedback.
plified using an electric amplifier. The loudspeaker of a high-gain
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mplifier, when played at high volume, is capable of producing an
coustic excitation of such intensity that its force acts to mechani-
ally excite the string. This is a positive feedback loop, where the
tring velocity is converted to voltage, multiplied by high-gain,
nd then applied back as a force on the string. The phenomenon is
ot the same as our antidamping at the boundary but it appears in
he form utt�x , t�=uxx�x , t�+gut�p , t�, where g is the gain and p

�0,1� is the location of the pickup along the length of the string.
he instability described here manifests itself as a loud, sustain-

ng, tone, even when the string is not being “plucked,” although,
hen used in a control manner, it can be employed musically

leading to “swells” of sound that the musician can induce on
hosen notes�. Among electric guitarists, this phenomenon is re-
erred to, simply, as feedback �68,69�.
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