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Stochastic Averaging in Continuous Time
and Its Applications to Extremum Seeking

Shu-Jun Liu, Member, IEEE, and Miroslav Krstic, Fellow, IEEE

Abstract—We investigate stochastic averaging theory in contin-
uous time for locally Lipschitz systems and the applications of this
theory to stability analysis of stochastic extremum seeking algo-
rithms. First, we establish a general stochastic averaging principle
and some related stability theorems for a class of continuous-time
nonlinear systems with stochastic perturbations and remove or
weaken several significant restrictions present in existing results:
global Lipschitzness of the nonlinear vector field, equilibrium
preservation under the stochastic perturbation, global exponential
stability of the average system, and compactness of the state space
of the perturbation process. Then, we propose a continuous-time
extremum seeking algorithm with stochastic excitation signals
instead of deterministic periodic signals. We analyze the stability
of stochastic extremum seeking for static maps and for general
nonlinear dynamic systems.

Index Terms—Extremum seeking, stochastic averaging, sto-
chastic nonlinear control.

I. INTRODUCTION

Background—Extremum Seeking:

E XTREMUM seeking is a non-model based real-time op-
timization approach for dynamic problems where only

limited knowledge of a system is available, such as, that the
system has a nonlinear equilibrium map which has a local min-
imum or maximum. Popular in applications around the middle
of the twentieth century, extremum seeking was nearly dormant
for several decades until the emergence of a proof of its sta-
bility [15], with a subsequent resurgence of interest in extremum
seeking for applications [23], [25], [26], [32], including adaptive
fluid flow control in [11], control of a tunable thermoacoustic
cooler in [18], and control of plasmas in fusion reactors [27],
[40], and further theoretical developments [1], [6], [37], [38],
including a proof of non-local stability in [39].

Why Stochastic Extremum Seeking?: In existing perturba-
tion-based extremum seeking algorithms, periodic (sinusoidal)
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excitation signals are primarily used to probe the nonlinearity
and estimate its gradient. Biological systems (such as bacterial
chemotaxis) do not use periodic probing in locating optima. In
man-made source seeking systems, the nearly random motion
of the stochastic seeker has its advantage in applications where
the seeker itself may be pursued by another pursuer. A seeker,
which successfully performs the source finding task but with an
unpredictable, nearly random trajectory, is a more challenging
target, and is hence less vulnerable, than a deterministic seeker.
Furthermore, if the system has high dimensionality, the orthogo-
nality requirements on the elements of the periodic perturbation
vector pose an implementation challenge. Thus there is merit
in investigating the use of stochastic perturbations within the
ES architecture. The first results in that direction were achieved
in the discrete-time case [24], using the existing theory of sto-
chastic averaging in the discrete-time case. Source seeking re-
sults employing deterministic perturbations in the presence of
stochastic noise have been reported in [37], [38], also in dis-
crete time.

Analysis Tools—Stochastic Averaging: With many applica-
tions of extremum seeking involving mechanical systems and
vehicles, which are naturally modeled by nonlinear continuous-
time systems, much need exists for continuous-time extremum
seeking algorithms and stability theory. Unfortunately, existing
stochastic averaging theorems in continuous time are too restric-
tive to be applicable to extremum seeking algorithms. Such al-
gorithms violate the global Lipschitz assumptions, do not pos-
sess an equilibrium at the extremum, the average system is only
locally exponentially stable. In this paper we supply the needed
extensions to the stochastic averaging theory and then present
stochastic continuous-time extremum seeking algorithms and
prove theirs stability.

The basic idea of averaging—be it deterministic or sto-
chastic—is to approximate the original system (periodic, almost
periodic, or randomly perturbed) by a simpler “average” system
(time-invariant and deterministic) or some approximating dif-
fusion system (a stochastic system simpler than the original
one). Starting with applied considerations, averaging principle
has been developed in mechanics/dynamics applications [5],
[29], [30], [34], [41] as well as within a general mathematical
framework [4], [7], [9], [33], for both deterministic dynamics
[5], [9], [30], [31] and stochastic dynamics [4], [7], [8], [33].
Stochastic averaging has been the cornerstone of many control
and optimization methods, such as in stochastic approximation
and adaptive algorithms [3], [17], [22], [35], [36].

Although there exist results on stability analysis based on sto-
chastic averaging for nonlinear systems with stochastic pertur-
bations [4], [12]–[14], all these results are established under
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all or almost all of the following conditions: a) the average
system or approximating diffusion system is globally exponen-
tially stable; b) the nonlinear vector field of the original system
has bounded derivative or is dominated by some forms of Lya-
punov function of the average system; c) the nonlinear vector
field of the original system vanishes at the origin for any value
of perturbation process (equilibrium condition); and d) the state
space of the perturbation process is a compact space. In our re-
cent companion work [21] we weaken some of these conditions
and develop stochastic averaging stability theorems on infinite
time interval for locally Lipschitz systems, which extends the
deterministic general averaging for aperiodic functions to the
stochastic case. However, in [21] a uniform convergence condi-
tion on the perturbation process or equilibrium condition on the
original system is required, which makes those stochastic aver-
aging theorems inapplicable for a stability study of stochastic
extremum seeking algorithms.

Results and Organization of the Paper: In this paper, we
present new stochastic averaging theorems (Section II and Ap-
pendix) that relax the key limiting conditions in the existing sto-
chastic averaging theory. We first introduce the notion of weak
stability under random perturbation for general nonlinear sys-
tems. This stability notion is a stability robustness property for
a deterministic system, relative to perturbations involving a sto-
chastic process, and in the presence of a small parameter. Then
we study some stability like properties of the solution of the
original system by investigating the weak stability under the
random perturbation of the equilibrium of the average system.
We present the proofs for the general theorems in Appendix.
Then, using the averaging theorems we develop in Section II, in
Section III we present stochastic extremum seeking algorithms
for static maps and for general nonlinear dynamic systems and
prove their stability. We offer some concluding remarks in Sec-
tion IV.

Notation: denotes a process that depends on the
parameter , denotes a process dependent on the parameter
, defined by , where is

a given process, and . denotes the iden-
tity matrix; denotes the indicator function of the set , i.e.,

when , otherwise, .

II. GENERAL STOCHASTIC AVERAGING

A. Problem Formulation

Consider the following system:

(1)

where , is a time homogeneous contin-
uous Markov process defined on a complete probability space

, where is the sample space, is the -field, and
is the probability measure. The initial condition is de-
terministic. is a small parameter in with fixed .
Let be the living space of the perturbation process

and note that may be a proper (e.g., compact)
subset of .

The following assumptions will be considered.

Assumption 1: The vector field is a continuous func-
tion of , and for any , it is a bounded function of .
Further it satisfies the locally Lipschitz condition in uni-
formly in , i.e., for any compact subset , there
is a constant such that for all and all ,

.
Assumption 2: The perturbation process is er-

godic with invariant distribution .
Assumption 2 is in contrast to most of the stochastic aver-

aging theory, where, in addition to this assumption, the per-
turbation process is required to satisfy some form of a strong
mixing property. The meaning of ergodicity, in simple terms,
is that the time average of a function of the process along the
trajectories exists almost surely and equals the space average:

, a.s. for any in-
tegrable function . The following are two examples of er-
godic stochastic processes (one is a 1-D process and the other is
a 2-D process):

1) The Ornstein-Uhlenbeck (OU) process

(2)

where is a 1-D standard Brownian motion on
some probability space . It is known that
the OU process is ergodic with invariant distribution

([28]).
2) Brownian motion on the unit circle

(3)

where is the imaginary unit and is a 1-D Brownian
motion which is not necessarily standard in the form

. By Ito’s formula, its coordinates and satisfy

Thus the process is the solution of the
following stochastic differential equations with initial con-
dition and

or in matrix notation

(4)

where . On the other hand, the solution of

(4) with initial value is
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Therefore Brownian motion on the unit circle
is equivalent to the solution of sto-

chastic differential equation

(5)

with initial condition , where
is a 1-D standard Brownian motion with . It is

known that Brownian motion on the unit circle
is exponentially ergodic and its invariant distribution is
the uniform measure on
([2]), i.e., for any set , and
denotes the length (Lebesgue measure) of .

In the extremum seeking applications in this paper, we will use
the ergodic processes (2) and (5) as the excitation signals to
develop stochastic extremum seeking algorithm.

Assumption 3: For any and the perturbation process
, system (1) has a unique (almost surely) continuous

solution on .
Since is a time homogeneous continuous Markov process,

if is globally Lipschitz in , then the solution of
system (1) exists with probability 1 for any and it is de-
fined uniquely for all (see Section 2 of Chapter 7 of [7]).
In this paper, we don’t emphasize how to guarantee or prove
the existence of the solution of system (1) but just assume that
system (1) has a unique (almost surely) continuous solution on

. In fact, by Assumption 1, we know that for any trajec-
tory of the perturbing process and for any ,
system (1) has a unique solution up to a possible explosion time.
Assumption 3 implies that there is no finite explosion time for
system (1), so that (1) has a continuous solution defined on the
whole time interval .

Under Assumption 2, we obtain the average system of system
(1) as follows:

(6)

where

(7)

By Assumption 1, is bounded with respect to , thus
is -integrable. So is well defined. For the average

system (6), we consider the following assumption.
Assumption 4: The average system (6) has a solution on

.
For the original system (1) and the average system (6), we

introduce the following definitions.
Definition 1: A solution of system (1) is said to satisfy

the property of
1) weak boundedness if there exists a constant such

that , a.s.
2) weak attractivity if there exists a point such that

for any , there exists a constant such that
, a.s.

By convention, .
Since it is not assumed that system (1) has an equilibrium,

we cannot necessarily study the stability of an equilibrium so-

lution of system (1). However, the average system (6) may have
stable equilibria. We consider system (1) as a perturbation of the
average system (6) and analyze suitably defined stability prop-
erties by studying equilibrium stability of (6). To this end, we
rewrite system (1) as

(8)

where , and consider
system (8) as a random perturbation of the average system (6).
We assume that , and is a stable (respectively,
asymptotically stable, exponentially stable) solution of system
(6).

Definition 2: The solution of system (6) is called
1) weakly stable under random perturbation , if for

any , there exists a constant such that for any
initial condition , the solution of
system (1) satisfies ,
a.s.

2) weakly asymptotically stable under random perturbation
, if it is weakly stable under random perturbation
and there exists such that for any initial

condition , the solution of
system (1) is weakly attracted to the point 0.

3) weakly exponentially stable under random perturbation
, if there exist constants , and

such that for any initial condition
and any , the solution of system (1) satisfies

, a.s.
In Definitions 1 and 2, we use the term “weakly” because

the properties in question involve and are defined through
the first exit time from a set. In [10], stability concepts that are
similarly defined under random perturbations are introduced for
a nonlinear system perturbed by a stochastic process. In this
paper, the system perturbation also comes from a small param-
eter .

B. Statements of General Results on Stochastic Averaging

Lemma 1: Consider system (1) under Assumptions 1, 2, 3
and 4. Then for any

(9)

This result extends the stochastic averaging for globally Lip-
schitz systems [20] to locally Lipschitz systems. The result (9)
means that converges to 0 almost surely as

, and thus it converges to 0 in probability as , i.e., for
any , , which
is a stochastic averaging result on finite time in [7] for globally
Lipschitz systems. Here we obtain a stronger result (9) for lo-
cally Lipschitz systems by using ergodic perturbation process
but assuming the existence and uniqueness of the solution.

Let be the metric in the space of all the
continuous vector functions , defined as

. Sup-
pose that the conditions of Lemma 1 hold, and denote

, . Then by (9) we have
, a.s., i.e., converges almost surely
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to as . By [16], also converges weakly to as
.

Next, we extend the finite-time approximation result in
Lemma 1 to arbitrarily long time intervals.

Theorem 1: Consider system (1) under Assumptions 1, 2, 3
and 4. Then (i) for any

(10)

(ii) there exists a function such that for any

(11)

where

(12)

This is our “approximation theorem” of stochastic averaging
for locally Lipschitz systems: as tends to zero, the solutions
to the original and average systems will remain -close for ar-
bitrarily long time in the sense of both almost surely (10) and
in probability (11). Based on this result, we investigate the so-
lution property of the original system (1) under the stability of
the average system (6).

Theorem 2: Consider system (1) under Assumptions 1, 2, 3
and 4. Then

i) (Boundedness) if the solution of the average system (6)
with initial condition is bounded, then the solu-
tion of system (1) with is weakly bounded, more
precisely, for any

(13)

where .

ii) (Attractivity) if the solution of the average system (6) with
initial condition converges to , i.e.,

, then for the system (1) with ,
whose solution is , the point is weakly attractive,
i.e., for any , there exists a constant such
that the solution of system (1) satisfies

(14)

iii) (Stability) if the equilibrium of the average
system (6) is stable, then it is weakly stable under random
perturbation , i.e., for any , there exists
a constant such that for any initial condition

, the solution of system (1)
satisfies

(15)

iv) (Asymptotic stability) if the equilibrium of the
average system (6) is asymptotically stable, then it is

weakly asymptotically stable under random perturbation,
i.e., for any , there exists a constant , such
that for any initial condition ,
the solution of system (1) satisfies

(16)

and moreover, for any , there exists a constant
such that

(17)

v) (Exponential stability) if the equilibrium of
the average system (6) is exponentially stable, then
it is weakly exponentially stable under random per-
turbation , i.e., there exist constants ,

and such that for any initial condition
, and any , the solution of

system (1) satisfies

(18)

Moreover, there exists a function
such that under the conditions of of (i)–(v), the respective
results (13)–(18) can be replaced by i) the boundedness
result

(19)

ii) the attractivity result

(20)

iii) the stability result

(21)

iv) the asymptotic stability result

(22)

and v) the exponential stability result

(23)

Furthermore, (23) is equivalent to

According to the approximation result (10), we obtain the al-
most sure stabilities: i)–v) in Theorem 2, while by the approx-
imation result (11), we obtain the stabilities in probabilities:
(19)–(23) in Theorem 2. It should be pointed out that the two ap-
proximation results (10), (11) together with the corresponding
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two kinds of stability results in Theorem 2 are independent, but
to make the paper more compact, we combine them in one the-
orem.

The stability results in Theorem 2 are weaker than the sta-
bility in probability results in our recent companion work [21],
where stronger conditions, not satisfied in stochastic extremum
seeking applications, are imposed. Compared with other results
on stochastic averaging on infinite time interval [4], [12], [14],
we remove or weaken the following restrictions: global Lips-
chitzness of the nonlinear vector field, equilibrium condition,
global exponential stability of the average system, and compact-
ness of the state space of the perturbation process, but impose
the assumption of the existence and uniqueness of the solution
of the original system.

III. STOCHASTIC EXTREMUM SEEKING

A. Extremum Seeking for a Static Map

Consider the quadratic function

(24)

where , , and are unknown. Any function with
an extremum at and with can be locally ap-
proximated by (24). Without loss of generality, we assume that

. In this subsection, we design an algorithm to make
as small as possible, so that the output is driven

to its minimum .
Denote as the estimate of the unknown optimal input .

Let

(25)

denote the estimation error. Instead of the deterministic peri-
odic perturbation [1], here we use a stochastic perturbation to
develop a gradient estimate. Let

(26)

where and is a stochastic process satisfying

where , , is a 1-D standard Brownian mo-
tion defined on some complete probability space and

denotes a time domain signal obtained as
the output of the transfer function when the input
is . Thus, by (25) and (26), we have

(27)

Substituting (27) into (24), we have the output

Now, similar to the deterministic case [1], we design the param-
eter update law as follows:

(28)

(29)

(30)

where are scalar design parameters.
From (30), we have

. Thus it holds that

. Define and
. Then we have ,

where is a 1-D standard Brownian motion.
Define the output error variable .

Then we have the following error dynamics:

(31)

(32)

Now we calculate the average system. It is known that the sto-
chastic process is ergodic and has invariant distri-
bution . Notice that is
an even function and
( are parameters). Thus we have

,

(33)

Therefore, by (7), we obtain that the average system of (31),
(32) is

By simple calculation, we get the following equilibrium of the
above average system

with the corresponding Jacobian matrix

Noticing that , , , and , we
know that the above Jacobian is Hurwitz, i.e., the equilibrium

of the average system is exponentially
stable.

According to Theorem 2, for the stochastic extremum seeking
algorithm in Fig. 1, we have the following result.

Theorem 3: Consider the static map (24) under the parameter
update law (28)–(30). Suppose system (31), (32) has a unique
(almost surely) continuous solution on . Then there exist
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Fig. 1. Stochastic extremum seeking scheme for a static map.

constants and a function
such that for any initial condition and any

(34)
and

(35)

where .
These two results imply that the norm of the error vector

exponentially converges, both almost surely and in prob-
ability, to below an arbitrarily small residual value , over an
arbitrarily long time interval, which tends to infinity as goes
to zero. In particular, the -component of the error vector
converges to below . To quantify the output convergence to the
extremum, for any , define a stopping time

Then by (34) and the definition of , we know that
, a.s. and

(36)

Since and , we
have

Thus by (36), it holds that

(37)
for some positive constant . Similarly, by (35)

(38)

where is a deterministic function with .

Fig. 2. Stochastic extremum seeking with an OU process perturbation.
Top: output and extremum values. Bottom: solutions of the error system
and average system.

Inequalities (37) and (38) characterize the asymptotic perfor-
mance of extremum seeking in Fig. 1 and explain why it is not
only important that the perturbation parameter be small but
also that the perturbation gain be small.

In the gradient-based estimator (28), stochastic excitation
is chosen in the form of . The use of the sinusoidal
nonlinearity should not be confused with the use of sinusoidal
perturbation signals in deterministic extremum seeking [1].
In the present stochastic design, the sinusoidal nonlinearity
is simply used as a bounded function whose role is to guar-
antee that the vector field of the error system (31), (32) is a
bounded function of the perturbation process. We can choose
other bounded odd functions to replace sinusoidal functions,
such as, . Corresponding to (33) in calcu-
lating the average system, the following integral is computed:

.
Fig. 2 displays the simulation results with , ,

in the static map (24) and , ,
in the parameter update law (28)–(30) and initial

condition , , ,
. The simulation result is robust to design parameters,

and similar results are obtained for values on this order of
magnitude.

The only requirements on the perturbation process in our
averaging theorems are ergodicity and the bounded depen-
dence of the vector field on the perturbation. The OU process
satisfies these requirements. Brownian motion on the unit
circle can also be used as the excitation signal. In the ex-
tremum seeking algorithm, we replace the bounded signal

with the signal , where
is Brownian motion on the

unit circle and is a constant vector. By a
similar analysis, we obtain results as in (34) and (35), where

.
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Fig. 3. Stochastic extremum seeking with perturbation based on the Brownian
motion on the unit circle. Top: output and extremum values. Bottom: solutions
of the error system and average system.

For Brownian motion on the unit circle as the stochastic per-
turbation, Fig. 3 shows the simulation results with ,

, in the static map (24), ,
, in the parameter update law (28)–(30)

and initial condition , , ,
. The simulation is made under the time scale

.
By comparing Figs. 2 and 3, we observe that faster conver-

gence is obtained with the Brownian motion on the unit circle
as compared to the convergence rate of the average system,
whereas with the OU process the actual convergence is poorer
than predicted with the average system (this observation is
generic and independent of the fact that different parameters
were used for the two perturbation processes). The difference
between the effects of the two perturbation processes may be
due to the “exponentially decaying form” of the invariant distri-
bution of the OU process, in contrast to the uniform distribution
of Brownian motion on the unit circle.

B. Stability of Stochastic Extremum Seeking Feedback for
General Nonlinear Dynamic Systems

Consider a general SISO nonlinear model

where is the state, is the input, is the
output, and and are smooth.
Suppose that we know a smooth control law

parameterized by a scalar parameter . Then the closed-loop
system

(39)

Fig. 4. Stochastic extremum seeking scheme for nonlinear dynamics.

has equilibria parameterized by . As the deterministic case
[1], we make the following assumptions about the closed-loop
system.

Assumption 5: There exists a smooth function
such that

Assumption 6: For each , the equilibrium
of system (39) is exponentially stable with decay and overshoot
constant uniform in .

Assumption 7: There exists such that

Thus, we assume that the output equilibrium map
has a local maximum at .

Our objective is to develop a feedback mechanism which
makes the output equilibrium map as close as pos-
sible to the maximum but without requiring the
knowledge of either or the functions and .

We use a stochastic rather than deterministic perturbation
signal and choose the parameter update law as (Fig. 4)

(40)

(41)

where , , , , and are design pa-
rameters and is a 1-D standard Brownian motion
on some probability space .

Remark 3.1: As in the deterministic case [1], the parameters
need to be chosen as , where . This

yields a decomposition into three time scales (in contrast to two
time scales encountered with the static map in Section III-A).
The fastest of the three time scales, the time scale associated
with the plant , requires the employment of
a singular perturbation argument, whereas averaging analysis is
applied to the two lower time scales. Since we do not have a suit-
able infinite-time stochastic singular perturbation theorem at our
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disposal, we apply the singular perturbation reduction without
invoking a formal theorem, though the reduced and boundary
layer systems do satisfy the usual local exponential stability as-
sumptions. In addition, the low-pass filter (40), together with the
high-pass filter (29) in Section III-A, is introduced for improved
asymptotic performance but is not essential for achieving sta-
bility [39].

We define

with and obtain the closed-loop system as

Define and . Then with the
error variables

the closed-loop system is rewritten as

(42)

(43)

where
, and

.
As indicated in Remark 3.1, we employ a singular perturba-

tion reduction, freeze in (42) at its quasi-steady state value as

and substitute it into (43), and then get the reduced system

where
, and

.
With Assumption 7, we have

(44)

(45)

(46)

Now we use our stochastic averaging theorems to analyze
system (44). According to (7), we obtain that the average
system of (44) is

(47)

where

.
First, we determine the average equilibrium

which satisfies

Assume that has the form

(48)

and by (44), (45), define

(49)

Then substituting (48) and (49) into (48), we have

(50)

where the following facts are used:



LIU AND KRSTIC: STOCHASTIC AVERAGING IN CONTINUOUS TIME 2243

Comparing the coefficients of the powers of on the right-hand
and left-hand sides of (50), we have

and thus by (48), we have

From this equation, together with (48), we have

Thus the equilibrium of the average system (47) is

The Jacobian matrix of the average system (47) at the equilib-
rium is

(51)

where
, and

.

Since is block-lower triangular we see that it will be
Hurwitz if and only if

With Taylor expansion and by calculating the integral, we get

(52)

By substituting (52) into (51) we get

which proves that is Hurwitz for sufficiently small . This
implies that the equilibrium of the average system is exponen-
tially stable for sufficiently small . Then according to Theorem
2, we have the following result for stochastic extremum seeking
algorithm in Fig. 4.

Theorem 4: Consider system (44) under Assumption 7. Sup-
pose system (44) has a unique continuous solution on .
Then there exists a constant such that for any

there exist constants and a
function such that for any initial condi-
tion , and any

(53)
and

(54)

where

These results imply that the norm of the error vector
exponentially converges, both almost surely and in probability,
to below an arbitrarily small residual value over an arbitrary
large time interval, which tends to infinity as the perturbation
parameter goes to zero. In particular, the -component of
the error vector converges to below . To quantify the output
convergence to the extremum, we define a stopping time
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Then by (53) and the definition of , we know that
, a.s. and

,
, which implies that

(55)

Since and ,
we have

Thus by (55), it holds that

for some positive constant . Similarly, by (54)

where is a deterministic function with .

IV. CONCLUSION

In this paper, we proposed continuous-time extremum
seeking algorithms that employ stochastic excitation signals
instead of deterministic periodic signals. Since there are no ex-
isting stochastic averaging theorems applicable for the analysis
of stability of the extremum seeking algorithms, we developed a
set of general stochastic averaging theorems for a class of non-
linear systems with stochastic perturbations. These theorems
characterize the behavior of the original system by investigating
the weak stability under random perturbation of the equilib-
rium of the average system. They guarantee both almost sure
stability and stability in probability. Our stochastic averaging
theorems represent the stochastic analogs to the deterministic
general averaging theorems for systems with aperiodic vector
fields. Compared with our companion work [21], the present
paper provides weaker but more practically usable stability
results, under much weaker conditions. With them we prove
the stability of stochastic extremum seeking algorithms for
a static maps and for general nonlinear dynamic systems. In
future work, we will explore more specific applications of
general stochastic averaging theorems established in this paper,
including stochastic source seeking for nonholonomic vehicle.

APPENDIX

A. Proof of Lemma 1

Fix , and denote

(A1)

Since is continuous and is a compact set, we
have that . Denote . For any ,
define a stopping time by

By the definition of (noting that ) and
the continuity of the sample path of , we know that

, and if , then

(A2)

From (1) and (6), we have that for any

(A3)

By Assumption 1, we obtain that for any

(A4)

where is the Lipschitz constant of with respect to
the compact subset of .

Thus by (A3) and (A4), we have that if , then

(A5)

Define

(A6)

Then by (A5) and Gronwall’s inequality, we have

(A7)

Since is a deterministic continuous function, by
Assumption 1 and Birkhoff ergodic theorem (see e.g. Liptser
and Shiryaev [19]), we have that

(A8)
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For the reader’s convenience, we give the detailed proof of (A8)
in Appendix F.

It follows from (A6), (A7) and (A8) that

(A9)

Thus by (A1) and (A9), we have

(A10)

By (A2) and (A10), we obtain that for almost every , there
exists an such that for any

(A11)

Thus by (A9) and (A11), we obtain that
, a.s. Hence

(9) holds. The proof is completed.

B. Proof of Approximation Result (10) of Theorem 1

Define

(A12)
Then by Lemma 1, we have

(A13)

Let . For , define a stopping time by

(A14)

By the fact that , and the continuity of the sample
paths of and , we know that

, and if , then

(A15)

For any , by (A12) and (A15), we get that for any
, there exists such that for any

which implies that

(A16)

Thus it follows from (A13) and (A16) that ,
a.s. The proof is completed.

C. Preliminary Lemmas for the Proof of Approximation Result
(11) of Theorem 1

Lemma 2: Consider system (1) under Assumptions 1, 2, 3
and 4. Then for any , , there exists a decreasing
sequence of positive real numbers satisfying
as , such that

(A17)

or equivalently

Proof: Let be defined by (A14). Since

by Theorem 1, we have

(A18)

We show that the set is measurable. Let
denote the set of all rational numbers. Then by the definition of

, and the continuity of and with respect to and , we
have

which is measurable. Since the set
is increasing relative to , we have

, and hence the set
is also measurable. Thus by

(A18), we obtain that for any

which implies that for any
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and thus there exists (without loss of generality,
we assume that decreases to 0, as ) such that

(A19)

Define . Then by (A19), we
have , and thus , where

. By the definition of , we have

Hence (A17) holds. The proof is completed.
Lemma 3: Consider system (1) under Assumptions 1, 2, and

3. Then for any , there exists a function
such that

(A20)

and

(A21)

Proof: For , we use instead
of in Lemma 2. Now fix . For any , by
Lemma 2 we obtain a decreasing sequence
of positive real numbers, as , such that

(A22)

By the proof of Lemma 2, we assume that for any ,
is a nonincreasing function of , and thus for any

(A23)

It follows from (A23) and that:

(A24)

Now we define the desired function as follows:

if ,

if . (A25)

Then for any , by (A22) and (A25), we get that

(A26)

and for , we have

(A27)

By (A24), (A26) and (A27), we get that for any

which implies (A20). By (A24) and (A25), we obtain (A21).
The proof is completed.

D. Proof of Approximation Result (11) of Theorem 1

For , by Lemma 3 there exists a function
such that

(A28)

and . Without loss of generality, we as-
sume that for any , we have

(A29)

In fact, we can replace the function by
. Let . For , de-

fine

(A30)

Now we define the desired function as
follows:

if ,

if
.

(A31)
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Since , the function is defined on

. By (A30) and the definition of stated
in the proof of Lemma 3 ( is increasing when decreases
to 0), we have that for any , , and
thus (12) holds.

Next, we prove (11). For any , take such that
. Then for , by (A29) and

(A31), we get that

(A32)

and thus for any

(A33)

where in the second inequality of (A33), we use the fact that
for any . Hence by

(A32), (A33) and the fact that , we obtain

that for

(A34)

By the fact that , (A28) and (A34), we
obtain that for any

The proof is completed.

E. Proof of Theorem 2

i) We prove the boundedness. Notice that
and

Then by the continuity of the sample path of
(we don’t mention this fact in the following proofs again),
we have

Thus by Theorem 1, (13) holds.
ii) We prove the attractivity. Since , we have

, and thus for any , there exists
a constant such that

by which, we obtain that for any

and thus

which together with Theorem 1 implies (14).
iii) We prove the stability. If is a stable equilib-

rium of the average system (6), then for any , there
exists a constant such that

which together with Theorem 1, implies that for

Hence (15) holds.
iv) For asymptotic stability, the proof follows directly from

ii) and iii) above.
v) We prove the exponential stability. Since the equilibrium

of the average system is exponentially stable,
there exist constants such that for
any
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Thus for any , we have

which together with Theorem 1 implies that

Hence (18) holds.
Let the function be defined in Theorem 1. Thus

. For the stabilities (19)–(23) with respect to
the approximation result (11), we only prove (23). The proofs
for (19)–(22) are similar.

Since the equilibrium of the average system is expo-
nentially stable, there exist constants such
that for any

Thus for any , we have that for any

which together with result (11) of Theorem 1 gives that

Hence (23) holds. The whole proof is completed.

F. Proof of (A8)

We give a detailed proof of (A8), i.e.

Proof: We follow the proof of Theorem 5 of Chapter 3 of
[34] for the globally Lipschitz case. Notice that

and is the Lipschitz constant of with respect to the
compact subset of , i.e., for
any and any (see Assumption 1)

(A35)

Then by (7) and (A35), we have that for any

For any , define a function , , by

Then for any , we have

(A36)

By (A35), (A36), we obtain that

(A37)

Next, we focus on the second term on the right-hand side of
(A37). We have
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(A38)

where is the largest integer not greater than . For fixed and
with , we have

(A39)

Then by Birkhoff ergodic theorem and [20, Problem 5.3.2], we
obtain that

which together with (A38) and (A39) gives that for any

(A40)
Thus by (A37), (A40), and

we obtain that

The proof is completed.
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[1] K. B. Ariyur and M. Krstić, Real-Time Optimization by Extremum
Seeking Control. Hoboken, NJ: Wiley-Interscience, 2003.

[2] J. R. Baxter and G. A. Brosamler, “Energy and the law of the iterated
logarithm,” Math. Scandinavica, vol. 38, pp. 115–136, 1976.

[3] A. Benveniste, M. Métivier, and P. Priouret, Adaptive Algorithms and
Stochastic Approximations. New York: Springer-Verlag, 1990.

[4] G. Blankenship and G. C. Papanicolaou, “Stability and control of sto-
chastic systems with wide-band noise disturbances. I,” SIAM J. Appl.
Math., vol. 34, no. 3, pp. 437–476, 1978.

[5] N. N. Bogoliubov and Y. A. Mitropolsky, Asymptotic Methods in the
Theory of Nonlinear Oscillation. New York: Gordon and Breach Sci-
ence Publishers, Inc., 1961.
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