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Abstract. Adaptive control of PDEs is a problem of nonlinear dynamic feedback design for an infinite-
dimensional system. The problem is nonlinear even when the PDE is linear. Past papers on adaptive
control of unstable PDEs with unmatched parametric uncertainties have considered only parabolic PDEs
and first-order hyperbolic PDEs. In this paper we introduce several tools for approaching adaptive control
problems of second-order-in-time PDEs. We present these tools through a benchmark example of an
unstable wave equation with an unmatched (non-collocated) anti-damping term, which serves both as a
source of instability and of parametric uncertainty. This plant has infinitely many eigenvalues arbitrarily
far to the right of the imaginary axis and they reside on a vertical line whose position is completely
unknown. The key effort in the design is to avoid the appearance of the second time derivative of the
parameter estimate in the error system.
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1 Introduction

Background. Adaptive control of infinite-dimensional systems is a challenging
topic to which several researchers have contributed over the last two decades [4, 5,
8, 12, 13, 14, 16, 17, 18, 19, 20, 21, 27, 28, 34, 36]. The results have either allowed
plant instability but required distributed actuation, or allowed boundary control but
required that the plant be at least neutrally stable.

Recently we introduced several designs for non-adaptive [30] and adaptive [26,
31, 32] boundary control of unstable parabolic PDEs. Subsequently, in [6] we
also tackled systems with unknown input delay, i.e., an important class of infinite-
dimensional systems with first-order hyperbolic PDE dynamics. The remaining
major class of PDEs for which adaptive boundary control results have not been de-
veloped yet, at least not in the case where the plant is unstable, are second-order
hyperbolic PDEs, namely wave equations. Wave (and beam) equations have been
tackled in [5, 8, 12, 18, 20, 21, 28, 34, 36], however, not unstable ones.

Contributions of the Paper. In this paper we present the first adaptive control
design for an unstable wave equation controlled from a boundary, and where the
source of instability is not collocated (matched) with control. We focus on the (no-
tationally) simplest problem, but a problem that, among all basic wave equation
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problems with constant coefficients, is the most challenging. We introduce tools
for dealing with boundary control of second-order-in-time PDEs, which require
parameter estimate-dependent state transformations, and which, if approached in
the same way as parabolic or first-order hyperbolic PDEs, would give rise to per-
turbation terms involving the second derivative (in time) of the parameter estimate.
With standard update law choices such perturbations would not be a priori bounded,
whereas alternative choices that would make those perturbations bounded would re-
quire overparametrization.

The wave equation example that we focus on is with an ‘anti-damping’ type of
boundary condition in the boundary opposite from the controlled boundary. This
PDE has all of its infinitely many eigenvalues in the right half plane, with arbitrary
positive real parts. It is exponentially stable in negative time, thus we refer to it
as ‘anti-stable.’ Even in the non-adaptive case, this PDE has been an open prob-
lem until a recent breakthrough by A. Smyshlyaev [33] who constructed a novel
‘backstepping transformation’ for boundary control of this PDE. The phenomenon
of anti-damping in wave equations occurs in combustion instabilities where heat re-
lease is modeled as proportional to the pressure rate, or in the case of electrically
amplified stringed instruments where an electromagnetic pickup measures the string
velocity and a high-gain amplifier provides forcing on the string which is propor-
tional to the velocity.

Our adaptive control approach employs parameter projection. Projection is not
used in this paper as a standard robustness tool for non-parametric uncertainties, but
for enabling a certainty equivalence controller design in combination with a normal-
ized Lyapunov update law. The rate of variation of the parameter estimate acts as a
perturbation on the error system. The size of this perturbation can be made small by
choosing the adaptation gain to be small. However, the restriction on the adaptation
gains depends on the size of the transients of the parameter estimates. Parameter
projection is used to make it possible to predict bounds on the size of the transients
of the parameter estimate, and hence, to choose a sufficiently small adaptation gain
for achieving stability. However, parameter projection has a somewhat undesirable
property that the right-hand side of the projection operator is discontinuous. This
does not result in discontinuous evolution of the state of the parameter estimate in
time, but it does raise concerns regarding existence and uniqueness of solutions.
While the bulk of our paper employs the standard discontinuous projection oper-
ator, to alleviate the concerns regarding the discontinuity, in Section 7 we present
an alternative, Lipschitz continuous version of projection, and establish its proper-
ties and the properties of the closed-loop system with an update law employing the
Lipschitz projector.

Physical Motivation for the Wave Equation with Anti-Damping. The 1D wave
equation is a good model for acoustic dynamics in ducts and vibration of strings.
The phenomenon of anti-damping that we include in our study of wave dynamics
represents injection of energy in proportion to the velocity field, akin to a damper
with a negative damping coefficient. Such a process arises in combustion dynam-
ics, where the pressure field is disturbed in proportion to varying heat release rate,
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Figure 1: Control of a thermoacoustic instability in a Rijke tube [1] (a duct-type
combustion chamber).

which, in turn, is proportional to the rate of change of pressure. Figure 1 shows
the classical Rijke tube control experiment [1]. For the sake of our study, we as-
sume that the system is controlled using a loudspeaker, with a pressure sensor (mi-
crophone) near the speaker. Both the actuator and the sensor are placed as far as
possible from the flame front, for their thermal protection. Alternatively, instead of
the loudspeaker actuation depicted in Figure 1, the combustion instability can be
controlled using modulation of the fuel injection rate [2, 22, 25].

The process of anti-damping is located mostly at the flame front. In a Rijke tube
the flame front may not be at the end of the tube, however, the leaner the fuel/air
mixture, the longer it takes for the mixture to ignite, and the further the flame is
from the injection point. In the limit, for the leanest mixture for which combustion
is sustained, the flame is near the exit of the tube, which corresponds to a situation
with boundary anti-damping.

Organization of the Paper. We begin with a problem statement in Section 2, fol-
lowed by the presentation of the adaptive control law and a stability statement in
Section 3. The main stability theorem is proved through a series of lemmas estab-
lished in Sections 4, 5, and 6. In Section 7 we address the question of discontinuity
in the parameter projection operator employed in the design and present a Lipschitz
alternative to the projection operator. In Section 8 we present conclusions.

2 Problem Statement

Consider the system

utt(x, t) = uxx(x, t) (1)
ux(0, t) = −qut(0, t) (2)
ux(1, t) = U(t) , (3)
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where U(t) is the input and (u,ut) ∈ H1(0,1)× L2(0,1) is the system state. Our
goal is to design a feedback law for the input U(t), employing the measurement
of the variables u(0, t),u(1, t),u(x, t),x ∈ (0,1), as well as their time derivatives, if
needed, to stabilize the anti-stable wave equation system. The key challenge is the
large uncertainty in the antidamping coefficient q ≥ 0, which will be dealt with by
employing an estimate q̂(t) in the adaptive controller, and by designing an update
law for q̂(t).

Assumption 2.1 Non-negative constants q and q̄ are known such that q∈ [q, q̄] and
either q̄ < 1 or q > 1.

This is simply a stabilizability assumption. When q = 1, the real part of all the
plant eigenvalues is +∞, requiring infinite control gains for stabilization.

While in this paper we approach the control problem for the system (1), (2) using
Neumann actuation (3), the problem can also be solved using Dirichlet actuation,
u(1, t) = U(t).

What is the significance of the adaptive boundary control problem for the system
(1), (2)? We highlight the following five aspects of the problem:

1. Infinitely many unstable eigenvalues. The significance of the non-adaptive
boundary control problem is that the uncontrolled system (1), (2) has in-
finitely many unstable eigenvalues, with arbitrarily large positive real parts.
For q ∈ [0,1) the eigenvalues are

{0}∪
�

1
2

ln
����
1+q
1−q

����+ jπn , n ∈ Z\{0}
�

and for q > 1 the eigenvalues are

{0}∪
�

1
2

ln
����
1+q
1−q

����+ jπ
�

n+
1
2

�
, n ∈ Z

�
. (4)

Figures 2 and 3 show graphically the distribution of the eigenvalues and their
dependence on q and n. As q grows from 0 to +1, the eigenvalues move
rightward, all the way to +∞. As q further grows from +1 to +∞, the eigen-
values move leftward from +∞ towards the imaginary axis, whereas their
imaginary parts drop down by π/2. For a fixed q, the eigenvalues are always
distributed on a vertical line. They depend linearly on n, namely, they are
equidistant along the vertical line. The system is not well posed when q = 1.
Hence, we assume that

q ∈ (0,1)∪ (1,∞) . (5)

The key challenge is that the source of instability, the anti-damping term in
(2), is on the opposite boundary from the boundary that is controlled. To deal
with this challenge, we employ a transformation invented by A. Smyshlyaev [33]
(for known q).



Adaptive Control of an Anti-Stable Wave PDE 857























Figure 2: Eigenvalues of the wave PDE with boundary anti-damping. As q grows
from 0 to +1, the eigenvalues move rightward, all the way to +∞. As q further
grows from +1 to +∞, the eigenvalues move leftward from +∞ towards the imagi-
nary axis, whereas their imaginary parts drop down by π/2.

2. Nonlinear dependence of the feedback law on the parameter estimate. The
adaptive boundary control law for (1), (2) depends in a non-trivial (non-linear)
manner on the estimate of the uncertain parameter q (this would not be the
case if we dealt with a simpler problem where the unknown parameter is the
propagation speed coefficient and the wave equation is of the standard kind,
with eigenvalues on the real axis). So, this problem is a good non-routine
example of adaptive control for second-order hyperbolic PDEs.

3. Second-order-in-time character of the wave PDE requires different handling
of the perturbation effect of the parameter estimation rate than for parabolic
PDEs. If we proceed to differentiate (11) twice with respect to time, to get
wtt(x, t), a second derivative of the parameter estimate ¨̂q(t) would arise, as
opposed to only the first derivative as in the parabolic PDE case [26]. This
requires a particular choice of a backstepping transformation, one for the dis-
placement variable and the other for the velocity variable, such that the second
derivative does not arise.

4. Arbitrarily high uncertainty affecting infinitely many unstable eigenvalues.
The most striking aspect of the problem is that the plant at hand not only has
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Figure 3: Eigenvalues of the wave PDE with boundary anti-damping, continued
from Figure 2. For a fixed q, the eigenvalues are always distributed on a vertical
line. They depend linearly on n, namely, they are equidistant along the vertical line.

infinitely many unstable eigenvalues in the right-half plane, which are arbi-
trarily to the right of the imaginary axis, but the location of the eigenvalues
is unknown (the eigenvalues could be on any vertical line in the right half-
plane). We are not aware of any other work on control of linear dynamic
systems of any kind that contains simultaneously this level of instability and
uncertainty.

5. The unmatched, anti-collocated unknown parameter. The control input U(t)
and the unknown parameter q appear on the opposite boundaries of the PDE
domain. This introduces a challenge for the design of the parameter estima-
tor. If the objective is to estimate the unknown q using an estimator whose
dynamic order is one, namely, without adding filters or observers (whose
order would have to be infinite), the parameter estimator design needs to
be Lyapunov-based. However, a Lyapunov design involves a complicated
infinite-dimensional (albeit non-dynamic) transformation into an error sys-
tem based on which the update law can be selected. This transformation
depends on the parameter estimate, which is time varying. As a result, the
error system is perturbed not only by the parameter estimation error, but also
by the parameter estimation rate (the time derivative of the parameter esti-
mate). The update law is chosen in such a way as to cancel the effect of the
parameter estimation error in the Lyapunov analysis, however, the effect of
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the parameter estimation rate remains uncompensated. Robustness with re-
spect to the parameter estimation rate perturbation is achieved by making the
adaptation gain sufficiently small. However, the bound on the gain requires
the knowledge of the bound on the parameter estimate transients. To make
such a bound available, parameter projection is employed, assuming an a pri-
ori known interval for the unknown parameter q. However, the parameter
projection operator is discontinuous. To alleviate possible concerns regarding
regularity of solutions, it is desirable to develop a projection operator which is
Lipschitz and which achieves stability and regulation of the closed-loop adap-
tive system. The main development in the paper is conducted for the standard,
discontinuous projection operator, however, in Section 7 a Lipschitz projector
is introduced and its properties, and the properties of the resulting closed-loop
system, are established.

3 Control Design and Stability Statement

We propose the following adaptive control law

U(t) =c1q̂(t)
q̂(t)+ c

1+ q̂(t)c
u(0, t)− c1u(1, t)

− q̂(t)+ c
1+ q̂(t)c

ut(1, t)− c1
q̂(t)+ c

1+ q̂(t)c

� 1

0
ut(y, t)dy (6)

and parameter update law

˙̂q(t) = γProj
�

(1− c2)ω(0, t)+ c1(q̂(t)+ c)w(1, t)
(1+ q̂(t)c)(1+E(t))

ut(0, t)
�

, (7)

where Proj is the standard projection operator

Proj[q,q̄]{τ} = τ






0, q̂≤ q and τ < 0
0, q̂≥ q̄ and τ > 0
1, else ,

(8)

the initial condition for the parameter estimate is restricted to

q̂(0) ∈
�
q, q̄

�
, (9)

the normalization function is given by

E(t) =
1
2

�� 1

0
ω2(x, t)dx+

� 1

0
w2

x(x, t)dx+ c1w2(1, t)
�

+δ
� 1

0
(−2+ x)ω(x, t)wx(x, t)dx . (10)
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and the variables (w,ω), namely, the transformed displacement and velocity, are
defined as

w(x, t) �u(x, t)+
q̂(t)+ c
1+ q̂(t)c

�
−q̂(t)u(0, t)+

� x

0
ut(y, t)dy

�
(11)

ω(x, t) �ut(x, t)+
q̂(t)+ c
1+ q̂(t)c

ux(x, t) . (12)

For implementation of the update law (7), we point out that ω(0, t) and w(1, t)
are given by

ω(0, t) =ut(0, t)+
q̂(t)+ c

1+ q̂(t)c
ux(0, t) (13)

w(1, t) =u(1, t)+
q̂(t)+ c
1+ q̂(t)c

�
−q̂(t)u(0, t)+

� 1

0
ut(y, t)dy

�
. (14)

The main stability result under the adaptive controller (6), (7) is stated next.

Theorem 1 Consider the closed-loop system consisting of the plant (1)–(3), the
control law (6), and the parameter update law (7). Let Assumption 2.1 hold and
pick any control gains c1 > 0 and c ∈ (0,c∗), where

c∗ =
1

q̄−q

�
q2−1 , q > 1
1− q̄2 , q̄ < 1 (15)

There exists γ∗ > 0 such that for any γ ∈ (0,γ∗) and any δ ∈ (0,1/2), the zero
solution of the system (u,v, q̂− q) is globally stable in the sense that there exist
positive constants R and ρ (independent of the initial conditions) such that for all
initial conditions satisfying (u0,v0, q̂0) ∈ H1(0,1)×L2(0,1)× [q, q̄], the following
holds:

ϒ(t)≤ R
�

eρϒ(0)−1
�

, ∀t ≥ 0 , (16)

where
ϒ(t) = Ω(t)+(q− q̂(t))2 (17)

and

Ω(t) =
� 1

0
v2(x, t)dx+

� 1

0
u2

x(x, t)dx+u2(1, t) . (18)

Furthermore, � ∞

0
Ω(t)dt ≤ ∞ , (19)

i.e., regulation is achieved in the sense that ess limt→∞ Ω(t) = 0.

Though Lyapunov- and LaSalle-like stability theorems exist for infinite-dimensional
systems [35], they are not nearly as useful as the theorems for finite-dimensional
systems in [15] since satisfying the conditions of those theorems is immensely more
challenging than proving such general theorems. For this reason, Lyapunov stability
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results for infinite-dimensional systems, particularly nonlinear ones, are best devel-
oped in a fashion customized to the specific PDE system that the designer is dealing
with. We pursue such an approach here. Theorem 1 is proved through a series of
lemmas established in Sections 4, 5, and 6.

We emphasize the global stability result in (16). This is a class K∞ estimate
in the spirit of stability definitions in [15]. Stability studies in adaptive control
very rarely provide specific stability estimates as (16). Instead, due to the complex-
ity of the stability analysis (for systems with unmatched parametric uncertainties,
and particularly for controllers relying on the certainty equivalence approach), only
boundedness is typically established, rather than Lyapunov stability. Here we work
out an explicit bound on the norm of the overall system, in terms of its initial con-
dition. The class K∞ functional bound, R(eρr−1) , r ≥ 0, is exponential and zero
at zero. The norm of the overall infinite-dimensional system includes the kinetic
and potential energies of the wave/string system and the parameter estimation error.
Since no persistency of excitation assumption is being imposed in the present work,
as it would not be a priori verifiable, the parameter estimate q̂(t) is not guaranteed
to converge to the true parameter value q, however, the PDE state is guaranteed to
be regulated to zero, in an appropriate weak sense.

4 System Transformation and Adaptive Target Sys-

tem

In this section we discuss the backstepping transformation (11), (12) and derive the
target system based on this transformation. We start by rewriting the wave equation
model (1)–(3) as a first-order-in-time evolution equation,

ut(x, t) = v(x, t) (20)
vt(x, t) = uxx(x, t) (21)
ux(0, t) = −qv(0, t) (22)
ux(1, t) = U(t) , (23)

where the variable v(x, t) is the velocity. The state of this model is (u,v). Since (20),
(21) is a second order PDE system, a backstepping transformation of the first-order
form u �→ w, as (11) may appear to be, does not suffice. We need a transformation
of the form (u,v) �→ (w,ω), namely one that involves both the displacement state
and the velocity state. This transformation consists of (11) and of (12).

From (11) we obtain

wx(x, t) =ux(x, t)+
q̂(t)+ c

1+ q̂(t)c
v(x, t) (24)

w(1, t) =
1− q̂2(t)
1+ q̂(t)c

u(1, t)+
q̂(t)+ c
1+ q̂(t)c

� 1

0
(v(x, t)+ q̂(t)ux(x, t))dx . (25)

The transformation (u,v) �→ (w,ω) can be viewed either in the form (11), (12) or in
the form (12), (24), (25).
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The transformation (12) follows from (11) and from the PDE model (1), (2)
when q̂(t) ≡ q = const but not otherwise. Unlike the non-adaptive case [33], in
introducing (12) we do not simply differentiate (11) with respect to t, as the time
derivative of the transformed position state, wt(x, t), would include ˙̂q. The exclusion
of the ˙̂q term from the transformation (12) is crucial, because ˙̂q is a parameter update
law that is yet to be designed, and its inclusion would result in the appearance of ¨̂q in
the expression for wtt(x, t), namely, in the wave equation for the transformed system.
The appearance of ¨̂q in the transformed wave equation would be fatal because we
are not designing ¨̂q but only ˙̂q, so we would not be able to bound ¨̂q. In summary, as
we shall see, the transformation (12) is the key to the feasibility of adaptive design.

It can be observed that the transformations (11), (12), (24), (25) are linear in
the PDE state (u,v) and nonlinear only in q̂(t). Hence, the transformations can
be viewed as a redefinition of the underlying inner product, as was done with
parameter-dependent Lyapunov functions in [9].

The inverse of the transformation (12), (24), (25), namely (w,ω) �→ (u,v), is
given by

v(x, t) =
(1+ q̂(t)c)2

(1− q̂2(t))(1− c2)

�
ω(x, t)− q̂(t)+ c

1+ q̂(t)c
wx(x, t)

�
(26)

ux(x, t) =
(1+ q̂(t)c)2

(1− q̂2(t))(1− c2)

�
wx(x, t)−

q̂(t)+ c
1+ q̂(t)c

ω(x, t)
�

(27)

u(1, t) =
1+ q̂(t)c
1− q̂2(t)

w(1, t)

+
(q̂(t)+ c)(1+ q̂(t)c)
(1− q̂2(t))(1− c2)

� 1

0
(−ω(x, t)+ cwx(x, t))dx . (28)

In the non-adaptive case, namely, when q̂(t)≡ q, the transformation (11) would
convert the plant (1), (2) into the ‘target system’ wtt = wxx,wx(0, t) = cwt(0, t),
which has a damping boundary condition at x = 0. In the adaptive case, where
the time-dependent q̂(t) appears in both (11) and (12), the derivation of the target
system is rather more complicated. It is presented in the next lemma.

Lemma 1 Suppose that the functions u,v,w,ω : [0,1]×R+ → R and q̂ : R+ → R
satisfy the transformation (12), (24), (25). Then they satisfy the system (20)–(22) if
and only if they satisfy the system

wt(x, t) =ω(x, t)+ q̃(t)
q̂(t)+ c

1+ q̂(t)c
v(0, t)+θ(x, t) ˙̂q(t) (29)

ωt(x, t) =wxx(x, t)+β (x, t) ˙̂q(t) (30)

wx(0, t) =cω(0, t)− q̃(t)
1− c2

1+ q̂(t)c
v(0, t) , (31)

where
q̃(t) = q− q̂(t) (32)
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is the parameter estimation error and

θ(x, t) =
1

1− q̂2(t)

�� 1

0
(ω(y, t)+ q̂(t)wx(y, t))dy

−2q̂(t)+ c+ cq̂2(t)
1+ q̂(t)c

w(1, t)
�
−

� 1

x
α(y, t)dy (33)

α(x, t) =
1

1− q̂2(t)

�
ω(x, t)− q̂(t)+ c

1+ q̂(t)c
wx(x, t)

�
(34)

β (x, t) =
1

1− q̂2(t)

�
wx(x, t)−

q̂(t)+ c
1+ q̂(t)c

ω(x, t)
�

. (35)

Proof First we derive (31) by setting x = 0 in (12) and (24), obtaining

ω(0, t) =v(0, t)+
q̂(t)+ c
1+ q̂(t)c

ux(0, t) (36)

wx(0, t) =ux(0, t)+
q̂(t)+ c

1+ q̂(t)c
v(0, t) (37)

by substituting (22) into (36), (37), which yields

ω(0, t) =v(0, t)−q
q̂(t)+ c

1+ q̂(t)c
v(0, t) (38)

wx(0, t) =−qv(0, t)+
q̂(t)+ c

1+ q̂(t)c
v(0, t) , (39)

by multiplying (38) with c, and by subtracting the result from (39). Next, we derive
(30). We start by differentiating (12) with respect to t and (24) with respect to x,
obtaining

ωt =utt +
q̂+ c
1+ q̂c

uxt +
1− c2

(1+ q̂c)2 ux ˙̂q (40)

wxx =uxx +
q̂+ c
1+ q̂c

uxt . (41)

Subtracting these two equations and substituting ux from (27) we obtain (30) and
(35). Finally, we derive (29). Differentiating (11) with respect to t we get

wt =v− q̂(q̂+ c)
1+ q̂c

v0 +
q̂+ c
1+ q̂c

� x

0
vt(ξ )dξ + µ ˙̂q , (42)

where v0(t) = ut(0, t), u0(t) = u(0, t), and

µ(x) =−2q̂+ cq̂2 + c
(1+ q̂c)2 u0 +

1− c2

(1+ q̂c)2

� x

0
v(ξ )dξ . (43)

Substituting (22), integrating by parts, and then substituting (23), we get

wt =v− q̂(q̂+ c)
1+ q̂c

v0 +
q̂+ c

1+ q̂c
(ux +qv0)+ µ ˙̂q , (44)
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Employing (12), we obtain

wt =ω + q̃
q̂+ c
1+ q̂c

v0 + µ ˙̂q . (45)

To establish (29), it remains to show that µ = θ . From (26) and (34) we note that

v =
(1+ q̂c)2

1− c2 α . (46)

Substituting (46) into (43), we get

µ(x) =−2q̂+ cq̂2 + c
(1+ q̂c)2 u0 +

� x

0
α(ξ )dξ . (47)

Setting x = 0 in (11) we get that

u0 =
1+ q̂c
1− q̂2 w0 . (48)

With the elementary observation that w0 = w1−
� 1

0 wx(y)dy. where w0(t) = w(0, t),
we get

u0 =
1+ q̂c
1− q̂2

�
w1−

� 1

0
wx(y)dy

�
. (49)

Substituting (49) into (47) we get

µ(x) =− 2q̂+ cq̂2 + c
(1+ q̂c)(1− q̂2)

�
w1−

� 1

0
wx(y)dy

�
+

� x

0
α(ξ )dξ . (50)

Noting that
� x

0 α =
� 1

0 α−
� 1

x α , we get

µ(x) =
� 1

0

�
2q̂+ cq̂2 + c

(1+ q̂c)(1− q̂2)
wx(y)+α(y)

�
dy

− 2q̂+ cq̂2 + c
(1+ q̂c)(1− q̂2)

w1−
� 1

x
α(ξ )dξ (51)

With (46) and (26), a simple calculation shows that

2q̂+ cq̂2 + c
(1+ q̂c)(1− q̂2)

wx +α =
1

1− q̂2 (ω + q̂wx) (52)

Hence, from (51), (52), and (33), it follows that µ = θ .

Note that only the first derivative ˙̂q appears in the target system (29), (30) and
not the second derivative ¨̂q.

In the non-adaptive case, the ‘target system’ wtt = wxx,wx(0, t) = cwt(0, t) com-
bined with an appropriate boundary condition at x = 1, is exponentially stable. Our
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task is to prove stability of the target system (29)–(31) in the adaptive case, namely,
when q̃(t) �= 0 and ˙̂q(t) �= 0 are acting as perturbations to the system.

Before we proceed with further analysis, in the remainder of this section we give
several more relations that are satisfied by the transformed state variables. They will
come in handy in the design and in the stability proof. The first of these relations is

wxt(x, t) = ωx(x, t)+α(x, t) ˙̂q(t) (53)

and the second one is

ut(0, t) =
1+ q̂(t)c

1+ q̂(t)c−q(q̂(t)+ c)
ω(0, t) , (54)

which, along with (31), gives a damper-like boundary condition at x = 0, but with
time-varying damping:

wx(0, t) =
c− q̃(t) 1+q̂(t)c

1−q̂2(t)

1− q̃(t) q̂(t)+c
1−q̂2(t)

ω(0, t) (55)

=
c+ q̃(t)

qq̂(t)−1

1+ c q̃(t)
qq̂(t)−1

ω(0, t) (56)

=
q̂(t)+ c−q(1+ q̂(t)c)
1+ q̂(t)c−q(q̂(t)+ c)

ω(0, t) . (57)

Each of the three forms of the damping coefficient (multiplying ω(0, t) on the right-
hand side) will be useful in the subsequent analysis. We will have to restrict the size
of the gain c to prevent the denominator of this time-varying damping coefficient
from going through zero as our estimate q̂(t) undergoes possibly broad transients.
Note however that none of the three forms (55)–(57) of the damping boundary con-
dition at x = 0, which are not linear in q̃(t), will be used for update law design. The
form (31), which is linear in q̃(t), will be used for update law design.

The target system (17)–(19) can be represented completely in terms of the target
system variables, by substituting (25) and (27) into (17) and (19), respectively. This
representation is

wt(x, t) =ω(x, t)+ q̃(t)
q̂(t)+ c

1+ q̂(t)c−q(q̂(t)+ c)
ω(0, t)+θ(x, t) ˙̂q(t) (58)

ωt(x, t) =wxx(x, t)+β (x, t) ˙̂q(t) (59)

wx(0, t) =
c+

q̃(t)
qq̂(t)−1

1+ c
q̃(t)

qq̂(t)−1

ω(0, t) . (60)

This is an equally valid representation as (29)–(31), however (60) cannot be used
for update law design because it is not linearly parameterized in q̃(t).
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Ω(t) the system norm of the nonadaptive system (18)
ϒ(t) the system norm of the adaptive system (17)
E (t) the total energy of the nonadaptive target system (62)
E(t) the Lyapunov function of the nonadaptive target system (68)
V (t) the Lyapunov function of the adaptive target system (75)
Σ(t) the system norm of the nonadaptive target system (61)

Table 1: System norms and Lyapunov-like functions used in the paper.

5 Proof of Theorem 1—Step I: Lyapunov Calcula-

tions

The proof of Theorem 1 is rather complicated, since the closed-loop adaptive sys-
tem is a nonlinear infinite-dimensional system. This system is globally stable and
achieves global regulation of the PDE state, however, it is not globally asymptoti-
cally stable, since, as is normally the case in adaptive control, the parameter estima-
tion error does not converge to zero.

Our analysis will employ several Lyapunov functions and system norms of in-
creasing complexity. We list them in Table 1 for the reader’s convenience. The
norms Ω(t) and

Σ(t) =
� 1

0
ω2(x, t)dx+

� 1

0
w2

x(x, t)dx+w2(1, t) (61)

are on the space H1(0,1)×L2(0,1), for the states, respectively, (u,v) and (w,ω),
whereas the norm ϒ(t) is on the space H1(0,1)×L2(0,1)×R for the state (u,v, q̃).

We prove Theorem 1 through a series of lemmas, starting with a lemma that em-
ploys a simple “total energy” functional as the Lyapunov functional for the system
and provides the justification for the selection of the control law (65).

Lemma 2 Consider the Lyapunov function candidate

E (t) =
1
2

�� 1

0
ω2(x, t)dx+

� 1

0
w2

x(x, t)dx+ c1w2(1, t)
�

, (62)

where c1 > 0. The control law (65) guarantees that

Ė (t) =
� 1

0
(wx(x, t)α(x, t)+ω(x, t)β (x, t))dx ˙̂q(t)

+ c1w(1, t)θ(1, t) ˙̂q(t)− cω2(0, t)

+ q̃(t)
(1− c2)ω(0, t)+ c1(q̂(t)+ c)w(1, t)

1+ q̂(t)c
ut(0, t) . (63)
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Proof The derivative of the energy function (62), after an integration by parts and
substitution of (30) and (53), is obtained in the form

Ė (t) =
� 1

0
(ω(x, t)wxx(x, t)+wx(x, t)ωx(x, t))dx

+
� 1

0
(wx(x, t)α(x, t)+ω(x, t)β (x, t))dx ˙̂q(t)

+ c1w(1, t)wt(1, t)

=
� 1

0
(wx(x, t)α(x, t)+ω(x, t)β (x, t))dx ˙̂q(t)

+ω(1, t)wx(1, t)−ω(0, t)wx(0, t)+ c1w(1, t)wt(1, t) , (64)

and, after the substitution of (31) and of (29) for x = 1, it becomes

Ė (t) =
� 1

0
(wx(x, t)α(x, t)+ω(x, t)β (x, t))dx ˙̂q(t)

+ c1w(1, t)θ(1, t) ˙̂q(t)− cω2(0, t)

+ q̃(t)
(1− c2)ω(0, t)+ c1(q̂(t)+ c)w(1, t)

1+ q̂(t)c
ut(0, t)

+ω(1, t)wx(1, t)+ c1w(1, t)ω(1, t) . (65)

The basis of the controller selection (6) is dealing with the cross-terms in the last
line of (65). The control law (6) yields a simple Robin boundary condition

wx(1, t) =−c1w(1, t) , (66)

which, by substitution into (65), gives (63).

Remark 1 The boundary condition (66), which introduces a stiffness/spring-like
term in the closed-loop PDE system, helps explain the control law (6). When c1 is
small, the control law (6) uses mainly velocity feedback, whereas larger values of c1
allow the introduction of position feedback, which is essential for the regulation of
the entire (position and velocity) state to zero. Figures 4 and 5 show graphically the
distribution of the closed-loop eigenvalues of the PDE system wtt = wxx,wx(0, t) =
cwt(0, t),wx(1, t) =−c1w(1, t) for c1 � 1 and the dependence of the eigenvalues on
c and n. The eigenvalues are given by

λn = ε− 1
2

ln
����
1+ c
1− c

����+ jπ
�

n+1/2 , 0≤ c≤ 1
n , c > 1 (67)

for n ∈ Z, where ε ∈ C, |ε| = O(1/c1), and Reε ≤ 0. As gain c grows from 0 to
+1, the eigenvalues move leftward, all the way to −∞. As c further grows from
+1 to +∞, the eigenvalues move rightward from −∞ towards the imaginary axis,
whereas their imaginary parts drop down by π/2. For a fixed c, the eigenvalues are
always distributed on a vertical line. They depend linearly on n, namely, they are
equi-distant along the vertical line.
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Figure 4: Eigenvalues of the wave PDE with boundary damping for c1 � 1. As
c grows from 0 to +1, the eigenvalues move leftward, all the way to −∞. As c
further grows from +1 to +∞, the eigenvalues move rightward from −∞ towards
the imaginary axis, whereas their imaginary parts drop down by π/2.

Figure 5: Eigenvalues of the wave PDE with boundary damping for c1 � 1, contin-
ued from Figure 4. For a fixed c, the eigenvalues are always distributed on a vertical
line. They depend linearly on n, namely, they are equidistant along the vertical line.

Even in the nonadaptive case, the result of Lemma 2 is insufficient for proving
stability because, when q̃(t)≡ ˙̂q(t)≡ 0, we only have Ė (t) =−cω2(0, t), which is
only negative semidefinite relative to the Lyapunov function (62).
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Lemma 3 Consider the Lyapunov function candidate

E(t) = E (t)+δ
� 1

0
(−2+ x)ω(x, t)wx(x, t)dx . (68)

For all δ ∈ (0,1/2) the following holds

(1−2δ )E (t)≤ E(t)≤ (1+2δ )E (t) . (69)

Furthermore,

Ė(t) =−δ
� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx

− δ
2

�
ω2(1, t)+ c2

1w2(1, t)
�

− (c−δ (1+n(t)))ω2(0, t)+η(t) ˙̂q(t)

+ q̃(t)
(1− c2)ω(0, t)+ c1(q̂(t)+ c)w(1, t)

1+ q̂(t)c
ut(0, t) , (70)

where

n(t) =




c+ q̃(t)

qq̂(t)−1

1+ c q̃(t)
qq̂(t)−1




2

=
�

q̂(t)+ c−q(1+ q̂(t)c)
1+ q̂(t)c−q(q̂(t)+ c)

�2
(71)

and where

η(t) =
� 1

0
(wx(x, t)α(x, t)+ω(x, t)β (x, t))dx

+δ
� 1

0
(−2+ x)(wx(x, t)β (x, t)+ω(x, t)α(x, t))dx

+ c1w(1, t)θ(1, t) . (72)

Proof Such augmentation is common in the stability theory for wave equations.
To our knowledge, it has been used for the first time in the context of adaptive
estimation in [9]. It is easy to see, with the help of Young’s inequality, that

−2δE (t)≤ δ
� 1

0
(−2+ x)ω(x, t)wx(x, t)dx≤ 2δE (t) , (73)

which implies (69). With a lengthy calculation we now obtain

Ė(t) =−δ
� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx

− δ
2

�
ω2(1, t)+w2

x(1, t)
�
+δ

�
ω2(0, t)+w2

x(0, t)
�

− cω2(0, t)+η(t) ˙̂q(t)

+ q̃(t)
(1− c2)ω(0, t)+ c1(q̂(t)+ c)w(1, t)

1+ q̂(t)c
ut(0, t) . (74)

Substituting (56) and (66), we obtain (70).
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In the next lemma, we further augment the Lyapunov function, bringing it into
its final, complete form. This lemma provides a justification for the choice of the
update law.

Lemma 4 Consider the Lyapunov function candidate

V (t) = ln(1+E(t))+
1
2γ q̃2(t) , (75)

where γ > 0. The derivative of the Lyapunov function is bounded by

V̇ (t)≤ 1
1+E(t)

�
−δ

� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx

−δ
2

�
ω2(1, t)+ c2

1w2(1, t)
�

−(c−δ (1+n(t)))ω2(0, t)+η(t) ˙̂q(t)
�

. (76)

Proof Taking a derivative of (75), with the help of (70), we obtain

V̇ (t) =
1

1+E(t)

�
−δ

� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx

−δ
2

�
ω2(1, t)+ c2

1w2(1, t)
�

−(c−δ (1+n(t)))ω2(0, t)+η(t) ˙̂q(t)
�

+ q̃(t)
(1− c2)ω(0, t)+ c1(q̂(t)+ c)w(1, t)

(1+ q̂(t)c)(1+E(t))
ut(0, t)

− 1
γ q̃(t) ˙̂q(t) , (77)

The update law (7) is chosen to achieve cancellation of the last two terms in (77). To
see how the cancellation of the last two terms in (77) occurs, even in the presence
of parameter projection, we first introduce a more compact notation for the update
law by substituting (54) into (7), thus getting

˙̂q(t) =γ Proj{ξ (t)}
1+E(t)

(78)

ξ (t) =
(1− c2)ω(0, t)+ c1(q̂(t)+ c)w(1, t)

1+ q̂(t)c−q(q̂(t)+ c)
ω(0, t) . (79)

Hence, the last two terms in (77) are

q̃(t)
ξ (t)−Proj{ξ (t)}

1+E(t)
. (80)

By (8), Proj{ξ (t)}= 0 whenever (ξ , q̂)∈G =
�

q̂≤ q and ξ < 0
�
∪{q̂≥ q̄ and ξ > 0}

and Proj{ξ (t)} = ξ (t) otherwise. Since G ∈ {q̃(t)ξ (t)≤ 0}, we get that

q̃(t)
ξ (t)−Proj{ξ (t)}

1+E(t)
≤ 0 , (81)
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thus obtaining (76).

In the next lemma we deal with the possibly detrimental effect of n(t), defined
in (71), in the Lyapunov inequality (76).

Lemma 5 For all c ∈ (0,c∗), there exists a finite n∗ ≥ 0 such that

V̇ (t)≤ 1
1+E(t)

�
−δ

� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx

−δ
2

�
ω2(1, t)+ c2

1w2(1, t)
�
− (c−δ (1+n∗))ω2(0, t)

+γ η(t)Proj{ξ (t)}
1+E(t)

�
. (82)

Proof Substituting (78) and (79) into (76) we get

V̇ (t)≤ 1
1+E(t)

�
−δ

� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx

−δ
2

�
ω2(1, t)+ c2

1w2(1, t)
�
− (c−δ (1+n(t)))ω2(0, t)

+γ η(t)Proj{ξ (t)}
1+E(t)

�
. (83)

Due to standard properties of the projection operator, we obtain that, with the update
law (7), the following is satisfied

q̂(t) ∈
�
q, q̄

�
, ∀t ≥ 0 . (84)

Then, due to (84), choosing c such that 0 < c < c∗, guarantees that

1+ q̂(t)c−q(q̂(t)+ c) �= 0 (85)

for all time. For a given c ∈ (0,c∗), let us denote

n∗ = max
q̂∈[q,q̄]

�
q̂+ c−q(1+ q̂c)
1+ q̂c−q(q̂+ c)

�2
< ∞ . (86)

Hence, we get (87).

With the standard property of the projection operator that |Proj{ξ}| ≤ |ξ |, we
get

V̇ (t)≤ 1
1+E(t)

�
−δ

� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx

−δ
2

�
ω2(1, t)+ c2

1w2(1, t)
�
− (c−δ (1+n∗))ω2(0, t)

+γ |η(t)||ξ (t)|
1+E(t)

�
. (87)

We need to bound the non-negative term |η(t)||ξ (t)|, which we do in the next two
lemmas.
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Lemma 6 There exists a positive constant m1 such that

|η(t)|≤ m1E (t) . (88)

Proof From (72), with the help of the Cauchy-Schwartz and Young’s inequalities
we get

|η |≤�wx��α�+�ω��β�+2δ (�wx��β�+�ω��α�)

+
c1

2
�
w2

1 +θ 2
1
�

≤
�

1
2

+δ
��
�wx�2 +�ω�2 +�α�2 +�β�2�

+
c1

2
�
w2

1 +θ 2
1
�

, (89)

where θ1(t) � θ(1, t). Then, from (33)–(35) we get

�α�2 ≤2

�
�ω�2

(1− q̂2)2 +
�

q̂+ c
(1− q̂2)(1+ q̂c)

�2
�wx�2

�
(90)

�β�2 ≤2

�
�wx�2

(1− q̂2)2 +
�

q̂+ c
(1− q̂2)(1+ q̂c)

�2
�ω�2

�
(91)

θ 2
1 ≤

3
(1− q̂2)2

�
�ω�2 + q̂2�wx�2 +

�
2q̂+ c+ cq̂2

1+ q̂c

�2

w2
1

�
(92)

Substituting (90)–(92) into (89), noting from (62) that E =
�
�wx�2 +�ω�2 +w2

1
�
/2,

with the help of (84) and a few simple majorizations we get

m1 = max
0≤q≤q̂≤q̄

max

�
1+3

�
2q̂+ c+ cq̂2

(1− q̂2)(1+ q̂c)

�2

,

(1+2δ )

�
1+2

�
1

(1− q̂2)2

+
�

q̂+ c
(1− q̂2)(1+ q̂c)

�2
��

+3c1
1+ q̂2

(1− q̂2)2

�
. (93)

With the next lemma, we complete our Lyapunov calculation, showing that V̇ is
negative semidefinite.

Lemma 7 There exist positive constants δ ∗ and γ∗ such that, for any δ ∈ (0,δ ∗)
and any γ ∈ (0,γ∗), there exists a positive constant µ such that

V̇ (t)≤− µ
1+E(t)

�� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx

+ω2(1, t)+w2(1, t)+ω2(0, t)
�

. (94)



Adaptive Control of an Anti-Stable Wave PDE 873

Proof With the help of Lemma 6 and (69), we get

V̇ (t)≤ 1
1+E(t)

�
−δ

� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx

−δ
2

�
ω2(1, t)+ c2

1w2(1, t)
�

−(c−δ (1+n∗))ω2(0, t)

+γ m1

1−2δ |ξ (t)|
�

. (95)

Finally, with c ∈ (0,c∗), (84), and Young’s inequality, it follows that there exist
positive constants m2 and m3 such that

m1

1−2δ |ξ (t)|≤ m2ω(0, t)2 +m3w(1, t)2 . (96)

Consequently,

V̇ (t)≤ 1
1+E(t)

�
−δ

� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx

−δ
2

ω2(1, t)−
�

δc2
1

2
− γm3

�
w2(1, t)

−(c− γm2−δ (1+n∗))ω2(0, t)
�

. (97)

To finish the Lyapunov analysis, we first chose γ sufficiently small (as a function of
δ ) to make

δc2
1

2
− γm3 > 0 (98)

and then δ sufficiently small to make

c− γm2−δ (1+n∗) > 0 . (99)

Indeed, there exist constants

δ ∗(q, q̄,c,c1) =
2c

c2
1m2
m3

+4(1+n∗)
(100)

γ∗(q, q̄,c,c1) =
c2

1δ ∗
4m3

, (101)

which are found (conservatively) as explicit functions of their arguments, so that
(94) holds.

6 Proof of Theorem 1—Step II: Global Stability Bound

From the negative semi-definiteness of (94) it is clear that global stability follows
since

V (t)≤V (0) , ∀t ≥ 0 , (102)
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however, we want to derive a specific stability estimate in terms of the system norm
ϒ(t). In the next two lemmas we give some norm estimates that allow us to derive a
stability bound.

Lemma 8 There exist positive constants s1 and s2 such that

s1Σ(t)≤Ω(t)≤ s2Σ(t) . (103)

Proof From (12), (24), (25), (26)–(28), (18), and (61), with the help of (84) and the
Cauchy-Schwartz inequality, one obtains

s1 =

�
max

0≤q≤q̂≤q̄
max

�
3
�

1− q̂2

1+ q̂c

�2

,3
�

q̂+ c
1+ q̂c

�2
,

3
�

q̂
q̂+ c

1+ q̂c

�2
,2+2

�
q̂+ c
1+ q̂c

�2
��−1

(104)

s2 = max
0≤q≤q̂≤q̄

max

�
3
�

1+ q̂c
1− q̂2

�2
,

3
�

(1+ q̂c)(q̂+ c)
(1− q̂2)(1− c2)

�2
, 3c2

�
(1+ q̂c)(q̂+ c)
(1− q̂2)(1− c2)

�2
,

2

�
(1+ q̂c)2

(1− q̂2)(1− c2)

�2

+2
�

(1+ q̂c)(q̂+ c)
(1− q̂2)(1− c2)

�2



 . (105)

Lemma 9

2s1

(1+2δ )max{1,c1}
E(t)≤Ω(t)≤ 2s2

(1−2δ )min{1,c1}
E(t) . (106)

Proof Consider the norm (61) and note that

min{1,c1}
2

Σ(t)≤ E (t)≤ max{1,c1}
2

Σ(t) . (107)

The result of the lemma follows from Lemma 8, (69), and (107).

Now we are ready to establish a stability bound in terms of the system norm
ϒ(t).

Lemma 10 The global stability estimate (16) holds with

R = 2
�

s2

(1−2δ )min{1,c1}
+ γ

�
(108)

ρ =
1
2

�
(1+2δ )max{1,c1}

s1
+

1
γ

�
. (109)
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Proof From (75) it follows that

q̃2(t) ≤ 2γV (t)≤ 2γ
�

eV (t)−1
�

(110)

E(t) ≤ eV (t)−1 . (111)

With Lemma 9, (110), (111), and (102), we obtain

ϒ(t)≤ 2
�

s2

(1−2δ )min{1,c1}
+ γ

��
eV (0)−1

�
. (112)

Finally, with (75) and Lemma 9, we get

V (0) ≤ E(0)+
1
2γ q̃2(0)

≤ 1
2

�
(1+2δ )max{1,c1}

s1
+

1
γ

�
ϒ(0) . (113)

With the constants (108) and (109), we obtain a global stability estimate (16).

It still remains to establish the regulation result. This result is proved in the
following lemma.

Lemma 11
� ∞

0 Ω(t)dt < ∞.

Proof By integrating (94) in time, we get that
� ∞

0

Σ(t)+ω2(0, t)+ω2(1, t)
1+E(t)

dt ≤ V (0)
µ . (114)

Next, we note that
� ∞

0

�
Σ(t)+ω2(0, t)+ω2(1, t)

�
dt

=
� ∞

0

Σ(t)+ω2(0, t)+ω2(1, t)
1+E(t)

(1+E(t))dt

≤
�

1+ sup
τ≥0

E(τ)
�� ∞

0

Σ(t)+ω2(0, t)+ω2(1, t)
1+E(t)

dt . (115)

From (102) and (111) we get that E(t)≤ eV (0)−1, and hence
� ∞

0

�
Σ(t)+ω2(0, t)

�
dt ≤ V (0)

µ

�
eV (0)−1

�
. (116)

By (103), from the integrability of Σ(t), it follows that
� ∞

0
Ω(t)dt ≤ s2V (0)

µ

�
eV (0)−1

�
< ∞ , (117)

which completes the proof.
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Remark 2 Though
� ∞

0 Ω(t)dt < ∞ guarantees that Ω(t) is regulated to below any
arbitrarily small positive constant for all times except possibly for a measure zero
subset of the time axis, it is also desirable to have that limt→∞ Ω(t) = 0, namely
regulation in a strong sense. One would pursue this by proving that limt→∞ E (t) = 0
and infer the same result for Ω(t) from the fact that Ω(t) ≤ 2s2

min{1,c1}E (t). Since
E (t) is integrable, to satisfy the conditions of Barbalat’s lemma one would have
to show that Ė (t) in (63) is bounded. For this, one has to show that ω(0, t) is
bounded, using the already established boundedness of the signals Σ(t) and wx(1, t),
as well as the square integrability of ω(0, t) and absolute integrability of ˙̂q(t). The
additional analysis would have to be performed in higher order norms, with the
aid of non-standard changes of variables for achieving homogenization of boundary
conditions. Such analysis is beyond the scope of this paper since the challenges
come exclusively from the fact that the parametric uncertainty in (2) arises in a
boundary condition and multiplies a trace term ut(0, t) which is not a part of the
natural norm of the system Ω(t). Note that the issue of strong convergence is not
that of using more suitable PDE-oriented Barbalat’s type lemmas, which have been
provided in [3, 27] but of deriving an estimate on the regressor (in terms or a higher
order norm) such that the conditions of such lemmas are satisfied.

7 A Lipschitz Alternative to Standard Projection

Parameter projection has been in common use in adaptive control of PDEs since the
paper of Demetriou and Rosen [11]. However, a perennial criticism of the standard
projection operator is that the discontinuity in the projection operator creates a chal-
lenge for establishing uniqueness of solutions. This issue is further aggravated in
the area of adaptive control of PDEs because a general theory of Filippov solutions
does not exist for PDEs. For this reason, we present in this section a version of the
projection operator which is locally Lipschitz and removes the concerns regarding
uniqueness of solutions created by the discontinuity of the standard projection oper-
ator. However, we point out that this concern is purely theoretical—in simulations,
despite the discontinuity in the standard projection operator, due to the uniform
boundedness of the right-hand side in (7), the evolution of q̂(t) would remain con-
tinuous, as is always the case in simulations of adaptive systems with projection,
including those in adaptive control of PDEs [6, 26, 31, 32].

To make the projection operator Lipschitz, we introduce a boundary layer around
the boundary of the parameter set, in which the projection ramps up linearly. Out-
side of the parameter set the projection operator’s value is zero, whereas inside
the parameter set, or on the boundary of the parameter set and when the update
law points inward, the projection operator’s value is equal to the nominal update
law. This idea was introduced in [29] and specialized to scalar parameter problems
in [24].

We replace the discontinuous update law (78) by the update law

˙̂q(t) =γ ProjL {ξ (t)}
1+E(t)

, q̂(0) ∈
�
q, q̄

�
, (118)
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where ξ is defined in (79) and where ProjL is the Lipschitz (in ξ and q̂) projection
operator

ProjL[q,q̄]{ξ} = ξ






max
�

0,1+ 1
ε
�
q̂−q

��
, q̂≤ q and ξ < 0

max
�

0,1− 1
ε (q̂− q̄)

�
, q̂≥ q̄ and ξ > 0

1 , else
(119)

which has a linear (in q̂) boundary layer of thickness ε around the projection set
[q, q̄]. The parameter ε is chosen as ε ∈ (0,ε∗), where

ε∗ = min
���1−q

�� , |1− q̄|
�

. (120)

The addition of the boundary layer is trivial. What is not trivial however, is
that all the desirable properties of the standard projection operator still hold in the
presence of the boundary layer, which is established in the following lemma.

Lemma 12 The following properties hold for the projection operator (119):

1. The projection operator (119) is locally Lipschitz in (ξ , q̂).

2. For all (ξ , q̂) ∈ R2, the following holds:

���ProjL[q,q̄]{ξ}
���≤ |ξ | . (121)

3. With q̂(0) ∈
�
q, q̄

�
, the update law (118) with the projection operator (119)

guarantees that the parameter estimate is maintained in the expanded projec-
tion set, namely,

q̂(t) ∈
�
q− ε, q̄+ ε

�
, ∀t ≥ 0 . (122)

4. For all (ξ , q̂) ∈ R2, the following holds:

(q− q̂)
�
ξ −ProjL{ξ}

�
≤ 0 . (123)

Proof Points 1, 2, and 3 are immediate. To establish Point 4, first we note from
(119) that

ξ −ProjL{ξ} = ξ






min
�

1,− 1
ε
�
q̂−q

��
, q̂≤ q and ξ < 0

min
�

1, 1
ε (q̂− q̄)

�
, q̂≥ q̄ and ξ > 0

0 , else
(124)
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and then that

q̃
�
ξ −ProjL{ξ}

�
= (q− q̂)ξ






min
�

1,+ 1
ε
�
q− q̂

��
, q̂≤ q and ξ < 0

min
�

1, 1
ε (q̂− q̄)

�
, q̂≥ q̄ and ξ > 0

0 , else

=






(q− q̂)ξ min
�

1,+ 1
ε
�
q− q̂

��
, q̂≤ q and ξ < 0

(q− q̂)ξ min
�

1, 1
ε (q̂− q̄)

�
, q̂≥ q̄ and ξ > 0

0 , else

=






|q− q̂|ξ min
�

1,+ 1
ε
��q− q̂

��� , q̂≤ q and ξ < 0
− |q− q̂|ξ min

�
1, 1

ε |q̂− q̄|
�

, q̂≥ q̄ and ξ > 0
0 , else

≤ 0 , (125)

which completes the proof of Point 4.

Though the projection operator is locally Lipschitz, it is not globally Lips-
chitz, due to the bilinear dependence 1

ε ξ q̂ in the set
��

q− ε ≤ q̂≤ q
�
∩{ξ < 0}

�
∪

{{q̄≤ q̂≤ q̄+ ε}∩{ξ > 0}}.
To see that the update law with projection ProjL{·} with a boundary layer ε

has the same desirable effect on V̇ as the update law with standard discontinuous
projection, we return to (77),

V̇ (t) =
1

1+E(t)

�
−δ

� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx− δ
2

�
ω2(1, t)+ c2

1w2(1, t)
�

−(c−δ (1+n(t)))ω2(0, t)+η(t) ˙̂q(t)
�

+ q̃(t)
ξ (t)−ProjL {ξ (t)}

1+E(t)
, (126)

and focus on the last term. From (123) it follows that

V̇ (t)≤ 1
1+E(t)

�
−δ

� 1

0

�
ω2(x, t)+w2

x(x, t)
�

dx− δ
2

�
ω2(1, t)+ c2

1w2(1, t)
�

−(c−δ (1+n(t)))ω2(0, t)+η(t) ˙̂q(t)
�

, (127)

as was the case in (76) with projection without the boundary layer ε .
With (127) we obtain the following stability result.

Theorem 2 Consider the closed-loop system consisting of the plant (1)–(3), the
control law (6), and the parameter update law (118) with the Lipschitz projection
operator (119). Let Assumption 2.1 hold and pick any control gain c1 > 0 and
any boundary layer thickness ε ∈ (0,ε∗) in the projection operator. There exist
c∗∗(ε) ∈ (0,c∗) and γ∗ > 0 such that for all c ∈ (0,c∗∗), all γ ∈ (0,γ∗), and all
δ ∈ (0,1/2), the zero solution of the system (u,v, q̂−q) is globally stable in the sense
that there exist positive constants R and ρ (independent of the initial conditions)
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such that for all initial conditions satisfying (u0,v0, q̂0)∈H1(0,1)×L2(0,1)× [q, q̄],
the following holds:

ϒ(t)≤ R
�

eρϒ(0)−1
�

, ∀t ≥ 0 , (128)

where
ϒ(t) = Ω(t)+(q− q̂(t))2 (129)

and

Ω(t) =
� 1

0
v2(x, t)dx+

� 1

0
u2

x(x, t)dx+u2(1, t) . (130)

Furthermore, � ∞

0
Ω(t)dt ≤ ∞ , (131)

i.e., regulation is achieved in the sense that ess limt→∞ Ω(t) = 0.

The only difference between the results in Theorems 1 and 2 is that the gain c in
Theorem 2 has to be restricted to lower values, 0 < c < c∗∗(ε) < c∗, to accommodate
the fact that the Lipschitz projection operator no longer keeps the parameter estimate
q̂(t) restricted to the set

�
q, q̄

�
but to the larger set

�
q− ε, q̄+ ε

�
. The only difference

in the proof of Theorem 2 is in a slightly different proof of Lemma 5, notably in a
slightly different expression in (86).

It is also worth noting that, not only can the projection operator be made Lips-
chitz, and still preserve all of the desirable properties of the discontinuous projection
operator, but it can be made arbitrarily many times differentiable. This extension of
the results in [24, 29] is provided in [7]. This approach can be used in the present
paper to further smoothen the right-hand side of the closed-loop system, although
it is not necessary to go beyond the Lipschitz projection operator in our case. The
smooth projector in [7] was proposed for a usage in recursive overparametrization-
based backstepping designs for ODEs, where the update law needs to be differenti-
ated a certain number of times relative to the plant state and the parameter estimate.

8 Conclusions

We presented an adaptive feedback law for boundary control of an unstable wave
equation with an unmatched parametric uncertainty. The basic idea introduced here
for how to approach second-order-in-time PDE problems is potentially usable in
other similar PDEs, from variations on the wave equation to beam equations.

For example, if we consider the wave equation, but with the anti-damping bound-
ary condition (2) replaced by an anti-stiffness boundary condition given as ux(0, t) =
−qu(0, t), such as studied in [23], we would introduce the transformation

w(x, t) =u(x, t)+(c+ q̂(t))
� x

0
eq̂(t)(x−y)u(y, t)dy (132)

ω(x, t) =ut(x, t)+(c+ q̂(t))
� x

0
eq̂(t)(x−y)ut(y, t)dy , (133)
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and then proceed with adaptive control design as in this paper. The update law
would be obtained as

˙̂q(t) =γProj
�

ζ (t)u(0, t)
1+E(t)

�
(134)

ζ (t) =ω(0, t)+(c+ q̂(t))
� 1

0
eq̂(t)xω(x, t)dx (135)

E(t) =
1
2

�� 1

0
ω2(x, t)dx+

� 1

0
w2

x(x, t)dx+ cw2(0, t)
�

+δ
� 1

0
(1+ x)ω(x, t)wx(x, t)dx . (136)

For the PDE system considered in this paper, an output-feedback adaptive de-
sign can be pursued using a combination of tools from [33] and [32].
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