
Automatica 46 (2010) 452–459

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Speed regulation in steering-based source seeking✩

Nima Ghods, Miroslav Krstic ∗

Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0411, USA

a r t i c l e i n f o

Article history:

Received 14 July 2009
Received in revised form
23 October 2009
Accepted 16 November 2009
Available online 5 December 2009

Keywords:

Extremum seeking
Adaptive control
Nonholonomic unicycle
Autonomous agents
Averaging

a b s t r a c t

The simplest strategy for extremum seeking-based source localization, for sources with unknown spatial
distributions and nonholonomic unicycle vehicles without position measurement, employs a constant
positive forward speed. Steering of the vehicle in the plane is performed using only the variation of
the angular velocity. While keeping the forward speed constant is a reasonable strategy motivated by
implementation with aerial vehicles, it leads to complexities in the asymptotic behavior of the vehicle,
since the vehicle cannot settle—at best it can converge to a small-size attractor around the source. In
this paper we regulate the forward velocity, with the intent of bringing the vehicle to a stop, or as close
to a stop as possible. The vehicle speed is controlled using simple derivative-like feedback of the sensor
measurement (the derivative is approximated with a washout filter) to which a speed bias parameter Vc

is added. The angular velocity is tuned using standard extremum seeking. We prove two results. For Vc

in a certain range around zero, we show that the vehicle converges to a ring around the source and on
average the limit of the vehicle’s heading is either directly away or towards the source. For other values of
Vc > 0, the vehicle converges to a ring around the source and it revolves around the source. Interestingly,
the average heading of this revolution around the source is more outward than inward—this is possible
because the vehicle’s speed is not constant, it is lower during the outward steering intervals and higher
during the inward steering intervals. The theoretical results are illustrated with simulations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Motivation. In the rapidly growing literature on coordinated
motion control and autonomous agents, ‘‘autonomous’’ never
means deprivation of position information. The vehicles are always
assumed to have global positioning system (GPS) and/or inertial
navigation system (INS) on board. There is, however, interest in
developing vehicles with greater autonomy, free of position mea-
surements. The reasons are two-fold: (1) applications underwater,
under ice, or in buildings and ‘‘urban canyons’’ where GPS is un-
available, and (2) the high cost of INS systems that remain accurate
over extended periods of time.

In previous papers, (Cochran & Krstic, 2007; Zhang, Arnold,
Ghods, Siranosian, & Krstic, 2007), we considered the problem
of seeking the source of a scalar signal using a nonholonomic
vehicle with no position information. We designed two distinct
strategies—keeping the angular velocity constant and tuning the
forward speed by extremum seeking (Zhang et al., 2007); and
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keeping the forward speed constant and tuning the angular ve-
locity by extremum seeking (Cochran & Krstic, 2007). The strat-
egy in Zhang et al. (2007) generates vehicle motions that resemble
triangles, rhombi, or stars (with arc-shaped sides), which drift to-
wards the source, resulting in periodic motions around the source.
The strategy in Cochran and Krstic (2007) generates motions that
sinusoidally converge towards the source and settle into an almost

periodic (in a mathematical sense of the term) motion in a ring
around the source. While the proof of the result (Cochran & Krstic,
2007) is more challenging, the vehicle motion is much more effi-
cient than with the strategy in Zhang et al. (2007), since the simple
tuning of the heading results in trajectories where the distance of
the vehicle from the source decreases monotonically.

Contribution. Neither of the strategies in Cochran and Krstic
(2007) and Zhang et al. (2007) are ideal, since Zhang et al. (2007)
sacrifice the transients, whereas Cochran and Krstic (2007) com-
plexify the asymptotic performance. In this paper we aim for the
best of both worlds, but not by simply combining the strategies
in Cochran and Krstic (2007) and Zhang et al. (2007). We pro-
pose something more elegant, a strategy that partly simplifies the
approach in Cochran and Krstic (2007), while adding a simple
derivative-like feedback to a nominal forward speed Vc . This feed-
back allows the vehicle to slow down as it gets closer to the source
and converge closer to the source without giving up convergence
speed.

0005-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
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Fig. 1. The notation used in the model of vehicle sensor and center dynamics.

We prove two results, for quadratic signal fields that decaywith
the distance from the source. For Vc in a certain range around zero,
we show that the vehicle converges to a ring around the source
and on average the limit of the vehicle’s heading is either directly
away or towards the source. For other values of Vc > 0, the vehi-
cle converges to a ring around the source and it revolves around the
source. Interestingly, the average heading of this revolution around
the source is more outward than inward—this is possible because
the vehicle’s speed is not constant, it is lower during the outward
steering intervals and higher during the inward steering intervals.
The theoretical results are illustrated with simulations. A simula-
tion is also done to consider that case of Rosenbrock function as the
signal field.

Source Seeking and Prior Literature. Multi-agent and GPS-
enabled source seeking problems have been solved in Ogren,
Fiorelli, and Leonard (2004) and Porat and Neohorai (1996). Re-
alistic source seeking formulations require incorporation of non-
holonomic constraints on the vehicle models. Such constraints are
present in the standard unicycle model, which has been the basis
of numerous studies in vehicle formation control, including Justh
and Krishnaprasad (2004), Klein and Morgansen (2006) and Mar-
shall, Broucke, and Francis (2006). The level set tracing work in
Baronov and Baillieul (2008) is also based on the unicycle model.
A hybrid strategy for solving the source seeking problem was de-
veloped in Mayhew, Sanfelice, and Teel (2008). The key tool in the
present work is extremum seeking (Ariyur & Krstic, 2003), which
has been advanced or employed in applications by several other
authors Adetola and Guay (2007), Biyik and Arcak (2008), Centi-
oli et al. (2005), King et al. (2006), Li, Rotea, Chiu, Mongeau, and
Paek (2005), Ou et al. (2007), Peterson and Stefanopoulou (2004),
Popovic, Jankovic, Magner, and Teel (2006), Stegath, Sharma, Gre-
gory, and Dixon (2007), Tan, Nesic, andMareels (2006), Tanelli, As-
tolfi, and Savaresi (2006), Wang, Yeung, and Krstic (1999), Wang
and Krstic (2000) and Zhang, Dawson, Dixon, and Xian (2006).

Organization of the Paper. We start the paper in Section 2 with
a description of the vehicle model and extremum seeking scheme.
We derive the averaged system in Section 3. We prove local ex-
ponential convergence results to ring/annulus-shaped sets around
the source in Sections 4 and 5. Section 4 deals with the case of
small |Vc |, whereas Section 5 deals withmedium and large positive
values of Vc . Simulation results in Sections 4 and 5 illustrate the
distinct behaviors exhibited using different values of Vc . In Sec-
tion 6 we summarize the set of possible motions and attractors
near the source that are achieved for different values of a key de-
sign parameter.

2. Vehicle model and control design

Weconsider amobile agentmodeled as a unicyclewith a sensor
mounted at a distance R away from the center. The diagram in Fig. 1
depicts the position, heading, angular and forward velocities for

Unicycle
Dynamics

Nonlinear Map
f (r)

Fig. 2. Block diagram of source seeking via tuning of angular velocity and forward
velocity using one reading.

the center and sensor. The equations of motion for the vehicle’s
center are

ṙc = vejθ (1)

θ̇ = Ω (2)

where rc is complex variable that represents the center of the
vehicle in 2D, θ is the orientation and v and Ω are the forward
and angular velocity inputs, respectively. The sensor is located at
rs = rc + Re

jθ . Note that this convenient complex representation
of the position would be less useful if extending this work to a 3D
setting.

The task of the vehicle is to seek a source that emits a signal
(for example, the concentration of a chemical, biological agent,
electromagnetic, acoustic, or even thermal signal) which decays
as a function of distance away from the source. We assume this
signal field is distributed according to an unknown nonlinear map
f (r(x, y)) which has an isolated local maximum f

∗ = f (r∗) where
r
∗ is the location of the localmaximum.We design a controller that
achieves local convergence to r

∗ without knowledge of the shape
of f , using only the measurement f (rs).

We employ extremum seeking to tune the angular velocity (Ω)
directly and the forward velocity (v) indirectly. This scheme is
depicted by the block diagram in Fig. 2. The control laws are given
by

Ω = aω cos(ωt) + cξ sin(ωt) (3)
v = Vc + bξ, (4)

where ξ is the output of the washout filter, namely, of the approx-
imate differentiator of f (rs, t). The performance can be influenced
by the parameters a, c, b, R, h, ω and Vc . We tune angular veloc-
ity Ω with the basic extremum seeking tuning law, which has a
perturbation term, aω cos(ωt), to excite the system. The ξ sin(ωt)
term estimates the angular gradient of the map.

The forward velocity v = Vc + bξ is chosen using the following
intuition. When the vehicle is approaching the source, heading
straight towards it, the sensor reading is increasing and hence
ξ > 0. It is reasonable to speed up the vehicle when it is going
towards the source. Conversely, when the vehicle is past the source
and the signal reading is decreasing, i.e., ξ < 0, the vehicle should
be slowed down, which (4) achieves.

We stress that the steering feedback (3) does not employ the
nonlinear damping introduced in Cochran and Krstic (2007). The
damping needed to exponentially stabilize the average equilibria
is provided by the forward speed feedback (4).

3. The average system

We focus on maps which depend on the distance from the
source only. Since our goal is only the establishment of local
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convergence, we assume that the map is quadratic, namely,

f (rs) = f
∗ − qr |rs − r

∗|2 (5)

where r
∗ is the unknown maximizer, f ∗ = f (r∗) is the unknown

maximum and qr is an unknown positive constant.
We define an output error variable

e = h

s + h
[f ] − f

∗, (6)

where h

s+h
[f ] is a low-pass filter applied to the sensor reading f ,

which allows us to express ξ , the output of the washout filter, as
ξ = s

s+h
[f ] = f (rs) − h

s+h
[f ] = f (rs − f

∗ − e), noting also that
ė = hξ .

Consider the system

ṙc = (Vc + bξ)ejθ (7)

θ̇ = aω cos(ωt) + cξ sin(ωt) (8)
ė = hξ (9)

ξ = −(qr |rs − r
∗|2 + e) (10)

rs = rc + Rejθ (11)

shown in Fig. 2. To analyze this system we start by defining the
shifted variables

r̂c = rc − r
∗ (12)

θ̂ = θ − a sin(ωt) (13)

ê = e − qrR
2. (14)

We also introduce the time scale change

τ = ωt, (15)

and introduce a map from the position r̂c to a scalar quantity θ∗,
given by

−r̂c = |r̂c |ejθ
∗

(16)

θ∗ = − j

2
ln

�
− r̂c

¯̂rc

�
= arg(r∗ − rc), (17)

where θ∗ represents the heading angle towards the source located
at r∗ when the vehicle is at rc , and ¯̂rc is the complex conjugate of
r̂c . Using these definitions, the expression for ξ is

ξ = −
�
qr |rc + Rejθ − r

∗|2 + ê − qrR
2�

= −
�
qr

�
|r̂c |2 − 2R|r̂c | cos(θ̂ − θ∗ + a sin(τ ))

�
+ ê

�
. (18)

The dynamics of the shifted system are

dr̂c
dτ

= 1
ω

�
(Vc + bξ)ej(θ̂+a sin(τ ))

�
(19)

dθ̂
dτ

= 1
ω
cξ sin(τ ) (20)

dê
dτ

= 1
ω
hξ . (21)

We next define error variables r̃c and θ̃ (depicted in Fig. 3), which
represent the distance to the source, and the difference between
the vehicle’s heading and the optimal heading, respectively,

r̃c = |r̂c | (22)

θ̃ = θ̂ − θ∗. (23)

The resulting dynamics for the error variables are

Fig. 3. Diagram of the error variables relating the vehicle and the source.

dr̃c
dτ

=
d
�
r̂c

¯̂rc
dτ

= 1
2|r̂c |

�
dr̂c
dτ

¯̂rc + r̂c

d¯̂rc
dτ

�

= −Vc + bξ

ω
cos

�
θ̃ + a sin(τ )

�
(24)

dθ̃
dτ

= dθ̂
dτ

− dθ∗

dτ
= dθ̂

dτ
+ j

2|r̂c |2

�
dr̂c
dτ

¯̂rc − r̂c

d¯̂rc
dτ

�

= 1
ω

�
cξ sin(τ ) + Vc + bξ

r̃c

sin
�
θ̃ + a sin(τ )

��
(25)

dê
dτ

= 1
ω
hξ (26)

ξ = −
�
qr r̃

2
c

+ ê − 2qrRr̃c cos
�
θ̃ + a sin(τ )

��
. (27)

The system of equations is periodic with a period 2π , and the
averaged error system is

dr̃ave
c

dτ
= 1

ω

�
bJ0(a)(qr r̃

ave2
c

+ ê
ave) cos(θ̃ ave) − bqrRr̃

ave
c

× (1 + J0(2a) cos(2θ̃ ave)) − VcJ0(a) cos(θ̃ ave)
�

(28)

dθ̃ ave

dτ
= 1

ω

�
−qr(2cRJ1(a) + bJ0(a))r̃

ave
c

sin(θ̃ ave) + bqrRJ0(2a)

× sin(2θ̃ ave) + VcJ0(a) − bJ0(a)ê
ave

r̃c

sin(θ̃ ave)

�
(29)

dêave

dτ
= −h

ω

�
(qr r̃

ave2
c

+ ê
ave) − 2qrRJ0(a)r̃avec

cos(θ̃ ave)
�
, (30)

where J1(a) and J1(a) are Bessel functions of the first kind. The
averaged error system (28)–(30) has four equilibria defined by





r̃
aveeq1
c

= VcJ0(a)

bqrRρ1

θ̃ aveeq1 = π

ê
aveeq1 = e12,

(31)






r̃
aveeq2
c

= −VcJ0(a)

bqrRρ1

θ̃ aveeq2 = 0
ê
aveeq2 = e12,

(32)






r̃
aveeq3
c

= ρ0

θ̃ aveeq3 = π + µ0

ê
aveeq3 = e34

(33)






r̃
aveeq4
c

= ρ0

θ̃ aveeq4 = π − µ0

ê
aveeq4 = e34,

(34)
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where

ρ0 =
√

γ1√
2cJ1(a)

(35)

µ0 = arctan
√

γ2

b
√
qrR(1 − J0(2a))

(36)

e12 = −2VcJ
2
0 (a)

bρ1
− (VcJ

2
0 (a))

2

qrb
2R2ρ2

1
(37)

e34 = − γ1

2c2RJ21 (a)
(38)

+ bqrRhJ0(a)
√
2γ1(1 − J0(2a))

cJ1(a)
�

γ2 + b2qrR(1 − J0(2a))2
. (39)

and

γ1 = cJ1(a)J0(a)Vc + b
2
qrRρ2

γ2 = 2cJ1(a)J0(a)Vc − b
2
qrRρ3

ρ1 = 1 + J0(2a) − 2J20 (a) ≥ 0

ρ2 = J
2
0 (a) − J0(2a) − J0(2a)J20 (a) + J

2
0 (2a)

ρ3 = −2J20 (a) + 2J0(2a)J20 (a) − J
2
0 (2a) + 1 ≥ 0.

Note that, due to the properties of Bessel functions, 1 − J0(2a) is
positive for all positive a. In addition, ρ1(a) and ρ3(a) = (1 −
J0(2a))ρ1(a) are positive for all positive and sufficiently small
values of a. In fact, both ρ1(a) and ρ3(a) > 0 appear to be positive
for all positive values of a (rather than only for small a > 0), but
this may be difficult to prove.

Due to the transformation (22), the four equilibria (31)–(34) can
only be related back to the original system if r̃ave

c
is real and pos-

itive. It should be noted that r̃aveeq1
c

and r̃
aveeq2
c

cannot simultane-
ously be positive (note that Vc can be either positive or negative),
and also that r̃aveeq3

c
and r̃

aveeq4
c

are real only when γ1 > 0. In the
next two sections we will show stability of the four average equi-
libria (not all of them simultaneously) for different values of the
speed bias parameter Vc , and infer the appropriate convergence
properties for the non-average system (24)–(27).

Each four of the average equilibria (31)–(34) represents a ring
around the source. However, more interesting information is ob-
tainedwhen considering the average values of θ̃ . With equilibrium
1 the vehicle points away from the source, with equilibrium 2 it
points directly towards the source, and with equilibria 3 and 4 the
vehicle points, on the average, outwards relative to the ring, revolv-
ing around the source in the counterclockwise direction for equi-
librium 3 and in the clockwise direction for equilibrium 4.

4. Stability for small positive or negative Vc

In this section we analyze the stability properties of system
shown in Fig. 2 when the parameter Vc is small but not zero.

Theorem 1. Consider the system in Fig. 2with nonlinearmap (5) that
has a maximum (qr > 0). Let the parameters c, b, R, h be chosen as

positive. Let the parameter a be chosen so that J0(a), J0(2a), J1(a), 1+
J0(2a) − 2J20 (a) > 0. Let the parameter Vc be nonzero and such that

either

Vc ∈ (0, V lower
c

), (40)

where V
lower
c

� −bqrR(1 + J0(2a)) + h

2J20 (a)
Rρ1,

or

Vc ∈ (V upper
c

, 0), where V
upper
c

�
b
2
qrRρ3

2cJ1(a)J0(a)
. (41)

There exist constants ω∗ > 0 and δ > 0 such that, for all ω > ω∗
, if

the initial conditions rc(0), θ(0), e(0) are such that

����|rc(0) − r
∗| − |Vc |J0(a)

bqrRρ1

���� < δR (42)

|θ(0) − arg(rc(0) − r
∗) − nπ | < δa, n ∈ N (43)

��e(0) − qrR
2 − e12

�� < δqR2, (44)

then the trajectory of the vehicle center rc(t) locally exponentially

converges to, and remains in, the ring

|Vc |J0(a)
bqrRρ1

− O(1/ω) ≤
��rc − r

∗�� ≤ |Vc |J0(a)
bqrRρ1

+ O(1/ω). (45)

Proof. The Jacobian of the average system (28)–(30) at the equi-
libria (31) and (32) is (at both equilibria) given by

A
eq1 = 1

ω





−2VcJ
2
0 (a)

Rρ1
− bqrR(1 + J0(2a)) 0 −bJ0(a)

0 η 0

−2hJ0(a)
�
qrR + Vc

bRρ1

�
0 −h




(46)

where

η = 2
cJ1(a)J0(a)

bρ1
Vc − bqrRρ3

ρ1
. (47)

By applying a similarity transformation with the matrix

T =
�1 0 0
0 0 1
0 1 0

�

, (48)

we convert the Jacobian (46) into the block diagonal matrix

diag






1
ω





−2VcJ
2
0 (a)

Rρ1
− bqrR(1 + J0(2a)) −bJ0(a)

−2hJ0(a)
�
qrR + Vc

bRρ1

�
−h



 ,
η

ω





.

(49)

The characteristic equation for this Jacobian is the combination of
the characteristic equations of the two blocks, which is

(ωs)2 + ζ (ωs) + hbqrRρ1 = 0 (50)
ωs − η = 0, (51)

where

ζ = 2J20 (a)Vc

Rρ1
+ bqrR(1 + J0(2a)) + h. (52)

According to the Routh–Hurwitz criterion, to guarantee that the
roots of the polynomial have negative real parts, each coefficient
must be greater than zero. Hence, we need η < 0 in (47) and
ζ > 0 in (52). Both of these conditions are satisfied under ei-
ther condition (40) or (41) of Theorem1. By applying Theorem10.4
from Khalil (2002) to this result, we conclude that the error system
(24)–(27) has two distinct, exponentially stable periodic solutions
withinO(1/ω) of the equilibria (31) and (32),which proves that the
vehicle center rc converges to the annulus (45) around the source
r
∗ defined in (45). �

Simulation: Fig. 4 shows the simulation with the map param-
eters r

∗ = (0, 0), qr = 1 and a vehicle initial conditions of
r0 = (1, 1) and θ0 = −π/2. The ES parameters are chosen as
ω = 20, a = 1.8, R = 0.1, c = 80, b = 4, h = 2, and Vc = 0.005,
which satisfies (41). Fig. 4 a, b, and c show that the error vari-
ables converge very near the theoretical equilibrium values. Fig. 4d
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a b

c d

Fig. 4. Simulation results for steering-based unicycle source seeking with forward speed regulation: (a), (b), (c) showing the evolution of the variables r̃c , θ̃ , and Vc + bξ ,
respectively, and (d) showing the trajectory of the vehicle.

Fig. 5. The difference in trajectories for small positive and negative Vc . The two
cases yield convergence to the average equilibria (31) and (32), respectively. For
Vc < 0 the vehicle points towards the source at the end of the transient, whereas
for Vc > 0 the vehicle points away from the source at the end of the transient.

shows the trajectory of the vehicle in the signal field. It appears
from Fig. 4 d as if the vehicle comes to a full stop. This is actually
not the case, as we note from the zoom frame in Fig. 4 c, and as we
further explain in Remark 1.

Fig. 5 shows the main difference between the small positive
and negative Vc with the map parameters, initial conditions, and
ES parameters chosen to be the same as the simulation in Fig. 4
for both vehicles except for the parameter Vc , which was set to
+0.02 for one and −0.02 for the other. While with Vc > 0 the
vehicle heading converges to a value pointing directly away from
the source, as predicted by the average equilibrium for the heading
in (31), with Vc < 0 the vehicle heading converges to a value

Fig. 6. Simulation result of vehicle trajectory using steering-based source seeking
and forward speed regulation on a Rosenbrock function (the white shading
represents the maximum).

pointing directly towards the source, as predicted by the average
equilibrium for the heading in (32).

The abilities of this extremum seeking scheme on a non-
quadratic function can be seen in Fig. 6, where the vehicle can con-
verge to themaximumwith the unknownmap being a Rosenbrock
function. The Rosenbrock function used in Fig. 6 has amaximum at
(1, 1) with the following form

f (rs) = −1
2
(1 − xs)

2 − (ys − x
2
s
)2, (53)

where xs = Re(rs) and ys = Im(rs). The vehicle is given the starting
positions of r0 = (−0.5, −0.5) and θ0 = π .The ES parameters are
chosen as ω = 20, a = 1.8, R = 0.1, c = 80, b = 5, h = 1, and
Vc = −0.005.
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Remark 1. The vehicle does not come to a full stop, as evident from
Fig. 4 c, even though it slows down nearly to a stop due to a very
small Vc = 0.005. However, unlike in Cochran and Krstic (2007),
the vehicle, after entering the annulus, does not revolve around the
source. It points, on the average, towards or away from the source,
depending on the sign of Vc . The vehicle’s angular velocity and
forward speed oscillate but the vehicle does not drift clockwise or
counterclockwise in the annulus.While this fact is evident from the
simulations, unfortunately it cannot be proved. This is because only
the relativeheadingwith respect to the source has an exponentially
stable equilibrium. The absolute heading, after averaging the θ̂-
system (25), has a continuum of equilibria, but none of them are
exponentially stable, which precludes the possibility of proving,
using the averaging method, that no drift occurs.

Similar to Cochran andKrstic (2007), the vehicle converges to an
annulus around the source with a radius proportional to Vc . From
(49) we see that when h is large the decay rate in the radial state
r̃c of the vehicle is a function of two terms, one with Vc and the
other with b, unlike Cochran and Krstic (2007), where the conver-
gence rate depends only on Vc , and where a trade-off between the
annulus size and convergence speed exists (faster convergence im-
plies a larger annulus, because the vehicle has constant speed). In
the present design we can choose Vc � b and achieve fast con-
vergence to a small annulus around the source. With the choice of
small Vc the vehicle comes almost to a stop, as shown in the Fig. 4.

The linearization step fails when Vc = 0, due to the singularity
at r̃c = 0 in (25). For this reason, nothing can be said about the
system behavior even though Vc = 0 verifies the Routh–Hurwitz
criterion. The singularity at r̃c = 0 also manifests itself in the
average equilibria (31) and (32), where r̃c = 0 at both equilibria,
but the heading has a non-unique value (θ̃ = π or θ̃ = 0).

5. Stability for medium and large positive Vc

For medium or large values of Vc the vehicle converges to the
average equilibria 3 and 4, namely to an annulus within which the
vehicle revolves around the source, similar to the vehicle trajecto-
ries produced by the algorithm in Cochran and Krstic (2007). How-
ever, as we shall see, an interesting difference relative to Cochran
and Krstic (2007) arises thanks to the fact that forward speed is not
constant, which allows the vehicle to revolve around the source
with non-tangential average heading.

Theorem 2. Consider the system in Fig. 2with nonlinearmap (5) that
has a maximum (qr > 0). Let the parameters c, b, R, h be chosen as

positive. Let the parameter a be chosen so that J0(a), J0(2a), J1(a), 1+
J0(2a) − 2J20 (a) > 0. Let

Vc > V
upper
c

, (54)

where V
upper
c is defined in (41). There exist constants ω∗ > 0 and δ >

0 such that, for all ω > ω∗
, if the initial conditions rc(0), θ(0), e(0)

are such that

����|rc(0) − r
∗| −

√
γ1√

2cJ1(a)

���� < δR (55)

��θ(0) − arg(rc(0) − r
∗) − (2n + 1)π ± µ0

�� < δa, n ∈ N (56)
��e(0) − qrR

2 − e34
�� < δqR2, (57)

then the trajectory of the vehicle center rc(t) locally exponentially

converges to, and remains in, the annulus

√
γ1√

2cJ1(a)
− O(1/ω) ≤ |rc − r

∗| ≤
√

γ1√
2cJ1(a)

+ O(1/ω). (58)

a

b

Fig. 7. Two trajectories of the same vehicle, with the only difference being the
initial condition in θ . The vehicle converges to two different average equilibria, (33)
and (34). (a) shows the evolution of the relative angle between the vehicle heading
and the source, with µ0 ≈ π/3. (b) shows the trajectory of the vehicles.

Proof. We first note that the condition (54) ensures that γ2 > 0.
We also note that the statement of the theorem relies on γ1 being
positive, since it appears under the square root. To see that γ1 is
indeed positive, we express it as

γ1 = γ2

2
+ b

2
qrR

�ρ3

2
+ ρ2

�
, (59)

where

ρ3

2
+ ρ2 = 1

2
(1 − J0(2a))2 ≥ 0, ∀a. (60)

Since γ2 ≥ 0, it follows that γ1 > 0 and thus it follows that the
average equilibria (33) and (34) are well defined.

As done in the proof of Theorem 1, we can calculate the
Jacobians for equilibria (33) and (34), which happens to be the
samematrix at both equilibria. Due to the complicated form of the
Jacobian matrix, we do not show the matrix and instead just show
its characteristic polynomial:

0 =
�
(ωs)3 +

�
Rbqr(1 + J0(2a)) + b

2
qr J0(a)

cJ1(a)
(1 − J0(2a)) + h

�

× (ωs)2 +
��

2qrR + bqr J0(a)

cJ1(a)

�
γ2 + Rbqrhρ1

�
(ωs)

+ 2Rqrhγ2

�
. (61)

According to the Routh–Hurwitz criterion, to guarantee that the
roots of the polynomial have negative real parts, each coefficient
must be greater than zero and the product of the s

2 and s
1
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b

a

Fig. 8. Three trajectories of the same vehicle, with the only difference being the
value of Vc . The vehicle converges to three different trajectories that encircle the
source. (a) shows the evolution of the relative angle between the vehicle heading
and the source, with µ0 ≈ 0 when Vc is close to V

upper
c and µ0 ≈ π/2 when

Vc � V
upper
c . (b) shows the trajectory of the vehicles.

coefficients must be greater than the s
0 coefficient. The product of

the s
2 and s

1 coefficients minus the s
0 coefficient is

bq
2
r

��
2qrR + bqr J0(a)

cJ1(a)

�
γ2 + Rbqrhρ1

�

×
�
R(1 + J0(2a)) + bJ0(a)

cJ1(a)
(1 − J0(2a))

�

+ qrh

�
bJ0(a)

cJ1(a)
γ2 + Rbρ1

�
. (62)

With the condition (54), the Routh–Hurwitz criterion is satisfied
and therefore the Jacobian for the equilibria (33) and (34) is Hur-
witz. By applying Theorem 10.4 from Khalil (2002) to this result,
we conclude that the error system (24)–(27) has two distinct, ex-
ponentially stable periodic solutions within O(1/ω) of the equilib-
ria (33) and (34), which proves that the vehicle center rc converges
to the annulus (58) around the source r

∗. �

Simulation: On the approach towards the source, the vehicle
trajectory with Vc > V

upper
c is very similar to the trajectory for

Vc ∈ (V lower
c

, V
upper
c ). However, as the vehicle for Vc > V

upper
c

gets close to the source, it begins to encircle the source clockwise
or counterclockwise, depending on the initial conditions. Fig. 7
shows the simulation for Vc > V

upper
c , with two different initial

conditions, one that converges to the average equilibrium (33)
and the other that converges to the average equilibrium (34). The
simulations in Fig. 7 were done with map parameters and the ES
parameters chosen as to be the same as the simulation in Fig. 4
except for Vc = 1, which satisfies (54).

Fig. 8 shows a simulation of three vehicles with three different
values for Vc . The simulations in Fig. 8 were done with map
parameters and the ES parameters chosen to be the same as the
simulation in Fig. 4 except for Vc . The three values of Vc were
chosen as 1.001×V

upper
c , 10×V

upper
c , and 100×V

upper
c to show that

the vehicle’s average heading ranging from directly away from the
source for Vc slightly larger than V

upper
c to almost tangential to the

ring for Vc � V
upper
c . Note this behavior is explained by (36) and

how it relates to V
upper
c .

6. Conclusion

We have proposed a modification of the nonholonomic source
seeking algorithm in Cochran and Krstic (2007), with a regulation
of the vehicle forward speedwhich allows the vehicle to slowdown
as it gets close to the source. We have proved the convergence to a
neighborhood of the source in three cases, identifying three classes
of attractors:

• Vc ∈ (V lower
c

, 0): the vehicle points, on the average, directly
towards the source, and does not drift around the ring. This is
a continuum of attractors, parametrized by the position on the
ring.

• Vc ∈ (0, V upper
c ): the vehicle points, on the average, directly

away from the source, and does not drift around the ring. This is
a continuum of attractors, parametrized by the position on the
ring.

• Vc > V
upper
c : the vehicle revolves around the source in the

clockwise or counterclockwise direction, depending on the
initial condition. The vehicle’s average heading ranges from
slightly outward relative to the ring (for Vc � V

upper
c ) to almost

directly away from the source (for Vc only slightly larger than
V

upper
c ).

While our new strategy is not applicable to fixed-wing aircraft,
it is applicable to mobile robots, marine vehicles, and rotorcraft.
Of the three ranges for the speed bias parameter Vc , namely,
Vc ∈ (V lower

c
, 0), Vc ∈ (0, V upper

c ), and Vc > V
upper
c , from the

point of view of asymptotic performance, the negative range Vc ∈
(V lower

c
, 0) seems preferable, because the vehicle virtually stops

near the source and because it points directly towards the source
on average.
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