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D
elays are among the most common 
dynamic phenomena arising in con -
trol engineering practice. Interest 
in delay systems is driven by ap-
plications such as chemical process 

control, machining, combustion systems, 
 teleoperation, and  networked systems. 

Delay systems belong to the class of 
distributed para meter systems but have a 
special structure, not possessed by partial 
differential equations, that can be exploited 
in analysis and design to arrive at compact 
or even explicit solutions. 

An enormous wealth of results exists for 
controlling systems with state, input, and 
output delays. Control problems with input 
delays are among the earliest challenges to 
be tackled, for example, in Otto J.M. Smith’s 
1959 article [1], which presents the compen-
sator known as the Smith predictor. The 
50th anniversary of this popular engineer-
ing tool is a fitting occasion to consider new 
control problems with input delays and 
other infinite-dimensional input dynamics. 
Many problems have become tractable with 
the maturing of tools for controlling distrib-
uted parameter systems. 

When the input delay is short relative to 
the plant’s time scales, finite-dimensional 
feedback laws can be used to optimize the 
robustness margin to small input delays. 
However, when the input delay is long, the 
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controller must account for the delay state. The resulting 
design is an infinite-dimensional controller, such as the 
Smith predictor. The Smith predictor approach can also be 
used to compensate a long output delay. Input and output 
delays are collectively referred to as dead time. 

The Smith predictor, which is a modification of a 
nominal controller designed for a system without a delay, 
addresses dead time in setpoint regulation and constant 
disturbance rejection problems. However, when the plant 
is unstable, the Smith predictor may fail to achieve 
closed-loop stability, even though the nominal controller 
is designed to stabilize the system without delay. 

A modification of the Smith predictor that removes 
its limitation to stable plants is given by the finite spec-

trum assignment (FSA) approach [2]–[6]. The basic idea 
of the Smith predictor, and its relation to FSA, is dis-
cussed in “Smith Predictor and Its Relation with Predic-
tion-Based Feedback.” 

BASICS OF PREDICTOR FEEDBACK
FSA, also known as predictor feedback, addresses the state-
space model 

 X
#
( t ) 5AX ( t ) 1 BU ( t2D ) ,  (1) 

where X  is the state vector, U  is the control input (scalar 
in the present consideration), D  is the delay, and (A, B )  is 
a controllable pair. The primary problem being studied is 

For the system 

 X
#
( t ) 5AX( t ) 1BU( t2D) ,  (S1) 

 Y( t ) 5CX( t ) ,  (S2) 

the Smith controller [1] is given by 

 U(s ) 52c (s ) 5Y(s ) 2R(s ) 1P(s ) (12 e2sD)U(s ) 6,  (S3) 

where P(s) 5C(sI2A)21B  is the plant transfer function, R(s) 
is the reference input, and c (s )  is an arbitrary compensator. 
In particular, the designer may choose an observer-based con-
troller whose transfer function is 

 c (s ) 52K(sI2A2BK1 LC)21L,  (S4) 

where L is the observer gain vector. 
The motivation for the Smith controller (S4) is to compen-

sate for the input delay in tracking setpoints for stable plants. 
The reference-to-output closed-loop transfer function is ob-
tained as 

 Y(s ) 5 e2sD c (s)P(s)
11c (s)P(s)

R(s) .  (S5)

Hence, the reference-following performance recovers the 
performance of the nominal, undelayed system, except for a 
delay of D. However, the input-output formula (S5) does not 
reveal the fundamental problem of the Smith predictor, namely, 
a potential closed-loop instability when the plant is unstable. 
This instability is unobservable in the representation (S5), but 
it can be observed when an input disturbance is introduced 
and when the closed-loop transfer function is computed from 
that disturbance to the output, as shown in [7]. Section 6.2.2 of 
[7] also presents a useful discussion regarding three “myths” 
associated with tuning, disturbance rejection, and sensitivity to 
model errors for the Smith predictor. 

The FAS control laws [2]–[4] are often mentioned in the 
literature as advanced or generalized forms of the Smith 

predictor [1]. These control laws are quite different from the 
Smith predictor and the similarity is more in the use of the term 
predictor and in the employment of delayed feedback than in 
motivation or what is being achieved. 

For comparison between [1] and [2]–[4], consider the ob-
server-based version of the FSA predictor feedback, which is 
given by 

 X̂
#
( t ) 5AX̂( t ) 1BU( t2D) 1 L (Y( t )2CX̂( t )) ,  (S6)

 U( t ) 5K ceADX̂( t ) 1 3
t

t2D
eA(t2u)BU(u )d u d .  (S7)

The transfer function of this compensator is 

  U(s ) 52cD(s ) 5Y(s ) 1 (PD(s ) 2P(s )e2sD)U(s ) 6,  (S8) 

where the transfer function PD(s )  is given by 

 PD(s ) 5C(sI2A)21BD,  (S9)

the delay-adjusted compensator cD(s )  is given by

 cD(s ) 52KD(sI2A2BDKD1 LC)21L,  (S10)

and the vectors BD  and KD  are given by

 BD5 e2ADB,  (S11) 
 KD5KeAD.  (S12) 

For the sake of comparison between the original Smith 
controller (S3)–(S4) and the observer-based FSA feedback 
(S8)–(S10), we set R(s) 5 0 in (S3). We then observe sub-
tle but significant differences in how the input delay is being 
compensated, though the structure is the same, particularly, 
in how the infinite-dimensional element e2sD  appears in the 
control laws. 

While the Smith controller (S3)–(S4) offers no stability 
guarantees when the plant is unstable, the closed-loop sta-
bility under the full-state FSA feedback (3) is established in 
Theorem 1 and under the observer-based feedback (S6), 
(S7) in [12]. 

Smith Predictor and Its Relation with Predictor-Based Feedback
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stabilization when A  is not Hurwitz. However, whether 
or not A  is Hurwitz, the goal is to compensate for the 
effect of the input delay on a nominal control design. 
Assuming D5 0,  a nominal design is a finite-dimensional 
full-state feedback controller of the form 

 U ( t ) 5KX ( t ) ,  (2) 

where K  is chosen such that A1 BK  is Hurwitz. In prac-
tice, K  can be chosen either to place the nominal closed-
loop poles at desired locations or to solve an optimal 
control problem. To compensate for the fact that D . 0, 
FSA [2]–[4] employs the infinite-dimensional predictor 
feedback 

 U ( t ) 5K ceADX ( t ) 1 3
t

t2D
eA(t2u)BU (u )du d ,  (3) 

where K  is the nominal control gain. The feedback is infi-
nite dimensional because the integral involves the control 
history over the interval 3t2D, t 4.  The delay is  compensated 
through both the integral term and the finite-dimensional 
term KeADX ( t ) ,  where the compensation scales the nomi-
nal gain K  by the predictor matrix eAD.  Unstable eigenval-
ues of A  tend to increase the gains in K,  whereas stable 
eigenvalues of A  tend to decrease them, which is evident 
in the case of a scalar plant, where |KeAD| . |K| if 
A . 0, and |KeAD| , |K| if A , 0. Hence, the controller 
is more aggressive for unstable plants and more cautious 
for stable ones. 

The idea of the predictor feedback (3) is to compensate 
for the delay by feeding back the future state X ( t1D ) .  
Applying the variation of constants formula to (1), we can 
express the future state as 

  X ( t1D ) 5 eADX ( t ) 1 3
t1D

t
eA(t1D2h)BU (h2D )dh,  (4)

where the current state X ( t )  is the initial condition. Shift-
ing the time variable under the integral in (4), we obtain 

 X ( t1D ) 5 eADX ( t ) 1 3
t

t2D
eA(t2u)BU (u )du,  (5) 

which gives the future state X ( t1D )  in terms of the con-
trol signal U (u )  from the past time window 3t2D, t 4.  
Hence, with (5), the feedback law (3) is 

 U ( t ) 5KX ( t1D ) ,  for all t $ 0, (6) 

assuming no disturbances or modeling errors. The robust-
ness of the feedback (3) to uncertainties, both parametric 
and dynamic, is of interest in practice. The developments in 
[8] make it possible to address these concerns due to the 
availability of Lyapunov functions for predictor feedback. 
Related issues in [9] include the robustness of the feedback 
law (3) to digital implementation of the distributed delay 

term given by the integral. This issue is resolved with 
appropriate discretization schemes [10], [11]. 

The feedback law (3) appears to be implicit since U  is 
present on both sides. However, the input memory U (u ) ,  
where u [ 3t2D, t 4,  is part of the state of an infinite- 
dimensional system, and thus the control law is effectively 
a full-state-feedback controller. 

DELAYS MODELED AS PARTIAL 
DIFFERENTIAL EQUATIONS
Delay is a dynamic phenomenon that can be represented 
as a partial differential equation (PDE) of transport type, 
which evolves in one spatial dimension, with one derivative 
in space and one derivative in time. For example, in the case 
of an input delay, the signal U ( t2D )  can be represented as 
the output of the transport PDE system ut(x, t ) 5 ux (x, t ) ,  
where x [ 30, D )  is a time-like spatial coordinate along 
which the state variable u  is convected at unity speed, the 
control U ( t )  enters through the boundary condition 
u(D, t ) 5U ( t ) ,  and the output map is given by Y ( t ) 5  
u(0, t ) .  In this example, the state of the dynamic system at 
time t  is u( # , t ) , whereas the state equation, which is infi-
nite dimensional, consists of the PDE ut(x, t ) 5 ux (x, t )  and 
the boundary condition u(D, t ) 5U ( t ) .  

In the PDE model of a delay, the input and output 
 variables of the PDE system are both boundary values of 
the state u(x, t ) .  For this reason, the input operator and 
output operator of the state-space model of the PDE are 
both given by kernels that are d-functions in x,  namely, 
Y ( t ) 5 eD

0 d (x )u(x, t )dx  and eD
0 d (x2D )u(x, t )dx5U ( t ) .  

Input and output operators that include d-function ker-
nels are unbounded linear operators on the state space of 
square integrable functions of x.  Because of this unbounded 
character, PDE systems with boundary inputs and outputs, 
including systems with delays, introduce greater chal-
lenges for control and observer design than PDE models 
whose input and output operators are bounded. 

In PDE control systems, the control signal can enter the 
PDE model in two different ways. In in-domain control, the 
control signal enters the PDE, such as in a chemical tubular 
reactor with thermal actuation distributed along the entire 
length of the reactor, whereas in boundary control, the con-
trol signal enters through the boundary condition, such as 
in wall-actuated flow control, as well as in the case of a 
transport PDE modeling a delay. 

Ordinary differential equations (ODEs) with delays, 
also known as delay differential equations (DDEs), are 
interconnected systems of ODEs and transport PDEs. A 
control system whose plant is an ODE and whose input is 
subject to a delay thus has a cascade PDE-ODE structure, 
where the control signal enters through a boundary condi-
tion of the PDE. Since a system with input delay is a PDE-
ODE cascade with the control signal U ( t )  entering through 
a boundary condition of the PDE, a system with an input 
delay is a boundary control system. 
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The challenges in boundary control and observer design 
manifest themselves differently depending on whether the 
design approach is based on optimality or spectrum assign-
ment, though the root of the challenge is always that the 
input or output operator is unbounded. Among various 
methods that have been developed since the late 1960s for 
boundary control, methods based on backstepping for PDEs 
[12], [13] distinguish themselves by providing explicit for-
mulas for the feedback laws. This quality makes these 
methods accessible to engineers and also usable within the 
context of adaptive control, where the parameters of the 
PDE model are unknown. The predictor feedback (3), which 
represents a particular form of boundary control, can be 
obtained by following the backstepping approach [12]. 

DESIGN TOOLS FOR STABILIZATION OF SYSTEMS 
WITH DELAY AND PDE DYNAMICS AT THE INPUT
In this article, we describe several extensions to predictor 
feedback design, including predictor feedback for  nonlinear 
systems and PDEs with input delays, robustness and 
inverse optimality results, a delay-adaptive design, and a 
design for systems with time-varying delays. Proofs and 
solutions to additional control problems with delays and 
PDEs are given in [8]. 

In addition to systems with input delays, we also pres-
ent predictor-like feedback for ODE systems with input 
dynamics given by PDEs. Finally, we complement the treat-
ment of infinite-dimensional input dynamics with a treat-
ment of infinite-dimensional sensor dynamics, presenting 
an observer design for ODE systems with sensor delays as 
well as for sensor dynamics given by a PDE. Actuator and 
sensor dynamics modeled by PDEs are motivated by physi-
cal applications. For example, combustion systems involve 
fuel transport (convection), diffusion, reaction, turbulent 
mixing, and acoustics, all of which are modeled by PDEs. 
This article is thus a tutorial introduction to design tools 
for PDE-ODE and PDE-PDE cascade systems. 

The remainder of the article is organized into ten sec-
tions. The first seven sections are dedicated to delay-ODE 
systems, the following section considers delay-PDE sys-
tems, and the remaining two sections focus on PDE-ODE 
systems. We conclude with a brief review of some open 
problems and research opportunities. 

This article deals with both delays and PDEs. The PDEs 
play various roles in the article, and these roles need to be 
clarified. We use PDEs to model delays, which allows us to 
develop delay-adaptive designs, as well as to model more 
general PDE actuator dynamics. In addition, in parts of the 
article a PDE assumes the role of the plant, and we consider 
delay-PDE cascades. From the PDE-ODE and PDE-PDE 
 cascade problems for which design results are available [8], 
we present examples to highlight the key issues. 

We proceed next with delay problems, where we con-
sider four scenarios. In each scenario, the delay is allowed 
to be arbitrarily large. In the first scenario, the delay is 

constant and known, in which case we consider both 
linear and nonlinear plants. In the second scenario, the 
delay is constant and slightly uncertain; in this case we 
study robustness for linear plants. In the third scenario, 
the delay is time varying but known and the plant is 
linear. Finally, in the last scenario, the delay is constant 
and unknown. To handle uncertainty in the delay that is 
of the same order of magnitude as the delay itself, we 
employ adaptive control. 

The article includes nonlinear systems with input delay. 
In the area of nonlinear control, several types of uncertain-
ties are considered: unmeasurable disturbances, static 
nonlinear functional perturbations, dynamic perturba-
tions on the state, and dynamic perturbations on the input. 
Among these uncertainties, unmodeled input dynamics 
present a significant challenge in robust nonlinear control, 
with long delays at the input of nonlinear systems remain-
ing a difficult problem. Advances have been made in con-
trol of nonlinear systems with state delay [14]–[17] as well 
as on robustness to input delays of arbitrary length [18], 
however, systematic compensation of input delays of arbi-
trary length has not been considered. In this article, we 
present a control design for compensating input delays of 
arbitrary length in nonlinear control systems. We consider 
first the broad class of nonlinear control systems whose 
solutions remain bounded over any finite time interval, 
which are also referred to as the forward complete sys-
tems. For forward complete systems, the predictor feed-
back law is given implicitly but it is globally asymptotically 
stabilizing. Then we consider strict-feedforward systems, 
a subset of forward complete systems, for which the con-
trol law is given explicitly. 

THE BACKSTEPPING TRANSFORMATION
While U ( t )  is the value of the control signal at time t,  the 
function U ( # )  on the sliding window 3t2D, t 4  is the infi-
nite-dimensional actuator state. This state is infinite dimen-
sional. The key to extending the predictor feedback (3) to 
systems more general than (1) is to construct an invertible 
infinite-dimensional backstepping transformation of the 
actuator state U (u ) , u [ 3t2D, t 4,  that converts the closed-
loop system into a cascade form, called the target system. 
The target system facilitates Lyapunov analysis of the 
closed-loop system. 

The idea of the backstepping transformation is to con-
vert the infinite-dimensional system (1), (3), which is in 
feedback configuration, into a cascade configuration. In 
“Finite-Dimensional Backstepping,” we review the idea of 
a backstepping transformation for a single integrator. While 
in the finite-dimensional case the backstepping transfor-
mation is a change of only one scalar variable, in the case of 
input delay the backstepping transformation is infinite 
dimensional. This transformation amounts to constructing 
a linear operator for the infinite-dimensional delay state. 
While in the finite-dimensional case the addition of more 
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than one integrator leads to a recursive procedure for con-
structing a vector backstepping transformation, in the infi-
nite-dimensional case the transformation is performed in 
one step, with a single infinite-dimensional transforma-
tion. The infinite-dimensional transformation employs an 
integral operator, which we construct in this section. 

For the delay problem (1), (3) we transform the actuator 
state U (u ) , u [ 3t2D, t 4 , by defining 

 W (u ) ! U (u ) 2KX (u 1D ) ,  (7) 

where u [ 3t2D, t 4  and t $ 0. From (7) with u 5 t  and (6), 
it follows that 

 W ( t ) 5 0,  for all t $ 0. (8) 

However, for u [ 32D, 0 4,  the function W (u )  may be non-
zero. We write U A W.  

Since the transformation (7) involves the noncausal com-
ponent X (u 1D ) ,  we develop an alternative  representation 
of W (u ) .  Toward that end, similar to (5), using the varia-
tion of constants formula with initial time t2D,  initial 
state X ( t ) ,  and current time u,  from (1) we obtain 

  X (u 1D ) 5 eA(u1D2t)X ( t ) 1 3
u

t2D
eA(u2s)BU (s)ds,  (9) 

for all u [ 3t2D, t 4  and all t $ 0. By substituting (9) into 
(7), we arrive at 

 W (u ) 5U (u ) 2K c3u
t2D

eA(u2s)BU (s)ds1 eA(u1D2t)X ( t ) d ,
 (10) 

where u [ 3t2D, t 4  and t $ 0. In the transformation (10), it 
is not helpful to view W (u )  as the value of a function but 
rather as a transformation of the function U (u ) ,  where 
u [ 3t2D, t 4,  into another function W (u ) ,  where u [  3t2D, t 4. A more detailed explanation for the construction 
of the transformation (10) is provided in the next section 
using a transport PDE representation of the actuator state. 

Next we replace U  by W  in the closed-loop system. Set-
ting u 5 t2D  in (10), solving the resulting equation as 
U ( t2D ) 5KX ( t ) 1W ( t2D ) ,  and substituting this 
expression into (1), we arrive at the target system 

 X
#
( t ) 5 (A1 BK )X ( t ) 1 BW ( t2D ) ,  (11) 

 W ( t ) 5 0,   t $ 0, (12) 

where 

 W (u ) 5U (u ) 2K c3u
D

eA(u2s)BU (s)ds1 eA(u1D)X (0) d ,
  for u [ 3 2D, 0 4.  (13) 

Using (12), it follows from (11) that X
#

( t ) 5 (A1 BK )X ( t )  
for all t $ D,  which means that the delay is perfectly com-
pensated after t5D,  namely, the system evolves as if the 
delay were absent after t5D.  In the target system (11), (12), 
the signal W ( t )  is neither a new control nor an exogenous 
disturbance but the output of a dynamical system. This 
dynamical system is a delay line of length D  with zero 
input, the initial condition (13), and the state W (u ) ,  where 
u [ 3t2D, t 4.  The dynamical system that generates the 
signal W ( t )  has a finite-time convergence property since 
the state W  becomes zero at t5D  and, in the absence of 
disturbances, remaining zero for t $ D.  

By comparing the original system (1), (3) with the target 
system (11), (12), we see that the backstepping transforma-
tion has accomplished two things. First, while the open-
loop system X

#
5AX  is possibly unstable, the closed-loop 

system (11) is stable. Second, while the original control 
signal U ( t )  given by (3) depends on X ( t ) ,  the transformed 
control signal W ( t )  given by (8) and (10) is the output of a 
delay line with zero input, namely, an autonomous system, 
which establishes a cascade configuration. 

Having introduced the backstepping transformation 
and the target system, we now turn to examine the stability 
of the target system (11), (12). Since W ( # )  is nonzero only on 

Finite-Dimensional Backstepping

We use the fi nite-dimensional case to motivate the de-
velopment of an infi nite-dimensional backstepping 

transformation for systems with input delay. We consider 
the system 

 X
#
( t ) 5AX( t ) 1Bj ( t ) ,  (S13) 

 j
# ( t ) 5U( t ) ,  (S14)

which has actuator dynamics modeled by a single integra-
tor (S14) at the input. The backstepping transformation of 
the scalar actuator state j  is given by 

 z ( t ) ! j ( t ) 2KX( t ) ,  (S15)

and the backstepping control law is given by 

 U( t ) 5KX
#
( t ) 2 cz ( t )   

 5K 3AX(t ) 1Bj (t ) 4 2 c (j (t ) 2KX(t ))  
 5K(A1 cI )X( t ) 1 (KB2 c )j ( t ) ,  (S16)

where c . 0. With (S15) and (S16) the system (S13), (S14) 
is converted into the target system 

 X
#
( t ) 5 (A1BK)X( t ) 1Bz ( t ) ,  (S17) 

 z
#
( t ) 5 2 cz ( t ) .  (S18) 

The cascade system (S17), (S18) is exponentially stable 
since each of the component subsystems in the cascade is 
exponentially stable. If the actuator dynamics include more 
integrators than in (S13), (S14), the backstepping design 
proceeds one integrator at a time. 
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32D, 0 4  and the system X
#
5AX  is exponentially stable, the 

target system (11), (12) is exponentially stable. This fact is 
established in Theorem 1 but can be seen intuitively by 
noting that (11) is autonomous after t5D.  For exponential 
stability to hold not only for the target system (11), (12) but 
also for the original feedback system (1), (3), whose state is 
X ( t ) , U (u ) , u [ 3t2D, t 4,  it is necessary that the transfor-
mation (10) be invertible. If the transformation were not 
invertible, then the closed-loop instability would be unob-
servable. In fact, the inverse of (10) is given explicitly by 

 U (u ) 5W (u ) 1K c3u
t2D

e(A1BK)(u2s)BW (s)ds

 1e(A1BK)(u1D2t)X ( t )R ,  (14) 

where u [ 3t2D, t 4  and t $ 0. Hence, since the target 
system (11), (12) is exponentially stable, the actuator state 
(14) converges exponentially to zero, which means that the 
entire state of the closed-loop system in the original vari-
ables (X, U )  converges exponentially to zero. 

To prove that the equilibrium X ( t ) 5 0, W (u ) ; 0,
u [ 3t2D, t 4  of (11), (12), and, hence, the equilibrium 
X ( t ) 5 0, U (u ) ; 0, u [ 3t2D, t 4  of the original system 
(1), (3), is exponentially stable, we use a Lyapunov-Kras-
ovskii functional. In particular, the Lyapunov functional 
for the target system (11), (12) has the form 

 V (X(t), W ( # ) 3t2D,t4)5XT (t)PX (t)

 1 a 3
t

t2D
(11u1D2 t )W2 (u)du,  (15)

where a  is a positive constant. The Lyapunov functional 
(15) depends on the state variables (X, W ) ,  where X  is a 
vector and W ( # )  is a function defined on the infinite-di-
mensional space of square-integrable functions whose 
argument belongs to the interval 3t2D, t 4.  

The stability analysis for the closed-loop system (1), (3) 
consists of two steps. The first step is the construction of 
the backstepping transformation (10), while the second 
step is the construction of the Lyapunov functional (15). To 
obtain the Lyapunov functional for the original system (1), 
(3) involving X ( t ) , U (u ) , u [ 3t2D, t 4,  we substitute (10) 
into (15), which yields 

 V̂ (X ( t ), U ( # ) 3t2D,t4 )
 5X ( t )TPX ( t ) 1 a3

t

t2D
(11 u 1D2 t )U2 (u )du

 1 aXT ( t ) a3 t

t2D
(11 u 1D2 t )eAT(u1D2t)

 3 KTKeA(u1D2t)dubX ( t )

 1 a3
t

t2D
(11 u 1D2 t ) aK3

u

t2D
eA(u2s)BU (s)dsb2

du

 2 2a3
t

t2D
(11u1D2t )U (u )K3

u

t2D
eA(u2s)BU (s)dsdu

 2 2aa3 t

t2D
(11 u 1D2 t )U (u )KeA(u1D2t)dubX ( t )

 1 2aa3 t

t2D
(11 u 1D2 t )K3

u

t2D
eA(u2s)

 3 BU (s)dsKeA(u1D2t)dubX ( t ) ,  (16) 

where V̂ (X ( t ), U ( # ) 3t2D,t4 ) 5V (X ( t ), W ( # ) 3t2D,t4 ) .  The Ly -
apunov functional (16) contains cross terms involving X  
and several nested integrals of U  and thus is substantially 
more complex than (15). The simpler form (15) is the benefit 
of using backstepping. With the Lyapunov functional (15) it 
is shown in [8] that there exist positive constants a1, a2, a3 
such that 

 V
#
( t ) # 2a1V ( t )  (17) 

and 

 a2 c iX ( t ) i 21 3
D

t2D
U2 (u )du d # V ( t )

 # a3 c iX ( t ) i 21 3
D

t2D
U2 (u )du d ,  (18) 

which implies exponential stability of the equilibrium 
X ( t ) 5 0, U (u ) ; 0, u [ 3t2D, t 4.  
BACKSTEPPING IN THE TRANSPORT 
PDE SETTING AND CLOSED-LOOP STABILITY
As discussed above, we model the input delay in the system 
(1) as the transport PDE 

 ut(x, t ) 5 ux (x, t ),  x [ 30, D 4,  (19)

 u(D, t ) 5U ( t ) .  (20) 

Both t  and x  have dimension of time. The PDE (19) has 
transport speed ut/ux  of unity in nondimensional units. In 
the transport PDE model (19), (20) of the input delay, the 
undelayed control signal U ( t )  enters the boundary condi-
tion (20). The initial condition of the system (19), (20) is 
u(x, 0) ! u0 (x ) ! U (x2D ) ,  namely, the control history 
over the time interval 32D, 0 4.  The input signal U ( # )  thus 
acts both as an input and as an initial condition. The trans-
port PDE (19), (20) has the explicit solution 

 u(x, t ) 5U ( t1 x2D).  (21) 

The output 

 u(0, t ) 5U ( t2D )  (22) 

is the D-second delayed input. For this reason, with (22) 
system (1) is written as 

 X
#

( t ) 5AX ( t ) 1 Bu(0, t ) .  (23) 
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Equations (23), (20), and (19) form a PDE-ODE cascade, 
which, as illustrated in Figure 1, is driven by the input U  
from the boundary of the PDE. 

We now introduce the backstepping transformation of 
the actuator state and the inverse of this transformation. 
These transformations are given, respectively, by

 w (x, t )5u(x, t )23
x

0
KeA(x2y)Bu(y, t )dy2KeAxX ( t ) ,  (24) 

 u(x, t)5w (x, t)13
x

0
Ke(A1BK)(x2y)Bw (y, t)  dy1Ke(A1BK)xX (t ),

 (25) 

where w (x, t )  is the transformed actuator state. Similar to 
(21), the transformed actuator state w (x, t )  can be written 
as w (x, t ) 5W ( t1 x2D ) .  The transformations (10) and 
(24) can be obtained from each other by using u 5 x1 t2D  
and s5 y1 t2D.  The inverse transformations (14) and 
(25) can be related in a similar manner. 

With the transport PDE representation of the input 
delay, the closed-loop system (1), (3) is alternatively repre-
sented as 

 X
#
( t ) 5AX ( t ) 1 Bu(0, t ) ,  (26) 

 ut(x, t ) 5 ux (x, t ),  x [ 30, D ) ,  (27) 

 u(D, t ) 5 3
D

0
KeA(D2y)Bu(y, t )dy1KeADX ( t ).  (28) 

The direct backstepping transformation (24) converts 
the system (26)–(28) into the target system 

 X
#
( t ) 5 (A1 BK )X ( t ) 1 Bw (0, t ) ,  (29)

 wt(x, t ) 5wx (x, t ),  x [ 30, D ) ,  (30)
 w (D, t ) 5 0, (31) 

which is the cascade of the undriven transport PDE w-sub-
system (30), (31) and the exponentially stable system 
X
#
5 (A1 BK )X  in (29). The motivation for the construction 

(24) and its derivation are given in “Predictor Feedback 
from Infinite-Dimensional Backstepping Design.” 

Since the undriven transport PDE (30), (31) is exponen-
tially stable [8], the overall cascade (29), (31) is exponen-
tially stable. This fact is established with the Lyapunov 
functional 

 

V (X ( t ) ,w ( # , t ) 30,D4 ) 5X ( t )TPX ( t ) 1 2
7PB 7 2
lmin(Q )

 33
D

0
(11 x )w2 (x,t )dx,  (32) 

where 7 # 7  represents the Euclidean norm and P  is the solu-
tion of the Lyapunov equation

 (A1 BK )TP1 P (A1 BK ) 52Q.  (33) 

An alternative representation of the Lyapunov functional 
(32) is given by (15), with a5 2 iPBi 2/lmin(Q ) .  The expo-
nential stability of the closed-loop infinite-dimensional 
system is summarized in the following theorem. 

Theorem 1 
There exist positive constants G  and g  such that all solu-
tions of the closed-loop system (26)–(28) satisfy 

 G ( t ) # Ge2gt G (0)  (34) 

for all t $ 0, where 

 G ( t ) ! iX ( t ) i 21 3
D

0
u2 (x, t )dx.  (35) 

INVERSE OPTIMALITY, DISTURBANCE 
ATTENUATION, AND ROBUSTNESS TO 
ACTUATOR BANDWIDTH LIMITATIONS
We now use the Lyapunov functional (32) to derive distur-
bance attenuation estimates when the system (1) is subject to 
an additive disturbance. We then prove robustness to band-
width limitations in the actuator dynamics and conduct an 
inverse optimal redesign of the predictor  feedback. 

We consider the system 

 X
#
( t ) 5AX ( t ) 1 BU ( t2D ) 1 B1d ( t ) ,  (36) 

where d ( t )  is an unknown, scalar-valued bounded distur-
bance whose bounds are unknown, along with the dynamic 
controller 

 U
#

( t ) 5 2cU ( t ) 1 cUnom( t ) ,  (37) 

where c . 0 and 

 Unom( t ) 5K ceADX ( t ) 1 3
t

t2D
eA(t2u)BU (u )du d  (38) 

is the nominal predictor feedback. Alternatively, the 
dynamic controller can be represented as 

 U
?

(s ) 5 L(s ) aU
?

nom(s ) 1
U (0)

c b,  (39) 

where U
?

(s ) , U
?

nom(s )  are the Laplace transforms of 
U ( t ) , Unom( t ) ,  respectively, and where 

FIGURE 1 The linear system X
#
( t ) 5AX( t ) 1BU( t2D)  with the 

actuator delay D. The actuator delay is represented by the trans-
port partial differential equation (19)–(20) with the spatial coordi-
nate x [ 30, D) .  

e–sD Ẋ = AX + BU (t − D)
X(t )U (t − D )U (t )

u (D,t ) u (0,t )

x

D 0

Direction of Convection
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 L(s ) 5
c

s1 c
.  (40) 

The transfer function L(s )  can arise from either lowpass 
unmodeled dynamics of the actuator, in which case L(s )  is 
a neglected part of the plant, or it can be intentionally intro-
duced by the designer as part of the control law for the sake 
of achieving inverse optimality. 

The following result is established with the Lyapunov 
functional 

 V (X ( t ) , w ( #, t ) 30,D4 )5X ( t )TPX ( t ) 1 2
iPBi 2

lmin(Q )

 33
D

0
(11 x )w2 (x, t )dx1

1
2

w2 (D, t ) .

 (41) 

Consider the system (1). Suppose the static state-feedback 
control (2) is designed for the case without delay (that is, 

with D5 0) such that A1BK  is Hurwitz. We want to map the 
original system (19), (20), (23), which may be unstable (when 
A is not Hurwitz), into the desirable target system (29)–(31), 
which is a cascade of two exponentially stable subsystems, 
one PDE and one ODE. 

The PDE-ODE system (19), (20), (23) has a block-lower-
triangular structure, where the lower left off-diagonal block is 
the potentially unstable ODE plant X

#
5AX( t ) .  For this reason, 

we seek a 2 3 2 transformation (X, u )A (X, w) ,  that has the 
lower triangular form 

 cX
w
d 5 c In3n 0n3 30,D4

G q1 I30,D43 30,D4 d cXu d ,  (S19) 

where In3n  denotes the identity matrix, I30,D43 30,D4  denotes the 
identity operator on a function u (x, t )  of the argument x [ 30, D 4,  
the symbol G  denotes the operator G: X( t )A2g (x )TX( t ) ,  
and the symbol q  denotes the Volterra integral operator 
q: u (x, t )A2ex

0  q (x, y )u (y, t )dy,  where the kernel functions 
g (x )  and q (x, y )  are to be determined. Due to the lower tri-
angularity of q,  the overall transformation (X, u )A (X, w)  is 
lower triangular. Furthermore, the diagonal of this transforma-
tion is the identity operator Id5 diag5In3n, I 30,D43 30,D46.  Due to 
the triangular structure, the transformation (S19) is not only 
suitable for converting the system (19), (20), (23) into the tar-
get form (29)–(31), but is also invertible. 

Hence, following (S19), we seek a backstepping transfor-
mation of the form 

 w(x, t ) 5 u (x, t ) 2 3
x

0
q (x, y )u (y, t )dy2g (x )TX( t ) .  (S20)

To determine the kernel functions g (x )  and q(x, y ) ,  we cal-
culate the time and spatial derivatives of the transformation 
(S20), obtaining 

 wx (x, t ) 5 ux (x, t ) 2 q (x, x )u (x, t ) 2 3
x

0
qx (x, y )u (y, t )dy

 2g r (x )TX( t )  (S21) 

 wt (x, t ) 5 ut (x, t ) 2 3
x

0
q (x, y )ut (y, t )dy

 2g (x )T 3AX1Bu (0 ) 4  (S22) 
 5 ux (x, t ) 2 q (x, x )u (x, t ) 1 q (x, 0 )u (0, t )

 13
x

0
qy (x, y )u (y, t )dy2g (x )T 3AX1Bu (0, t ) 4.  (S23) 

Subtracting (S21) from (S23) we obtain 

 3
x

0
(qx (x, y ) 1 qy (x, y ) )u (y, t )dy1

 3q (x, 0 ) 2g (x )TB 4u (0, t ) 1
 3g r (x )T2g (x )TA 4X( t ) 5 0. (S24) 

Since (S24) must be valid for all functions u (x, t )  and X( t ) ,  
as well as for all the values of their arguments (x, t ) ,  we thus 
have the conditions

 qx (x, y ) 1 qy (x, y ) 5 0,  (S25)
 q (x, 0 ) 5g (x )TB,  (S26)
 g r (x ) 5ATg (x ) .  (S27)

The fi rst two conditions form a fi rst-order hyperbolic PDE, 
while the third condition is an ODE. To fi nd the initial condition 
for this ODE, we set x5 0 in (S20), which gives 

 w(0, t ) 5 u (0, t ) 2g (0 )TX( t ) .  (S28) 

Substituting this expression into (29), we obtain 

 X
#
( t ) 5AX( t ) 1Bu (0, t ) 1B(K2g (0 )T)X( t ) .  (S29) 

Comparing this equation with (23), we have 

 g (0 ) 5KT.  (S30) 

Therefore the solution to the ODE (S27) is g (x ) 5 eATxKT,  
which gives 

 g (x )T5KeAx.  (S31) 

The general solution to (S25) is 

 q (x, y ) 5v (x2 y ) ,  (S32) 

where the function v  is determined from (S26). We obtain 

 q (x, y ) 5KeA(x2y)B.  (S33)

We now substitute the gains g (x )  and q (x, y )  into the trans-
formation (S20) and set x5D,  obtaining the control law 

 u (D, t ) 5 3
D

0
KeA(D2y)Bu (y, t )dy1KeADX( t ) .  (S34)

With (20) and (21), we observe that the backstepping con-
trol law (S34) is the same as the FSA/predictor feedback 
law (3). 

Predictor Feedback from Infinite-Dimensional Backstepping Design
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Theorem 2 
There exists a positive constant c*,  such that for all c . c*,  
the feedback system (36)–(38) is L`-stable, that is, there 
exist positive constants b1, b2, g1 such that 

 N ( t ) # b1e2b2tN (0) 1g1 sup
t[ 30,t4|d (t)| (42) 

for all t $ 0, where 

 N ( t ) ! a iX ( t ) i 21 3
t

t2D
U2 (u )du 1U2 ( t ) b1/2

.  (43) 

Furthermore, there exist a constant c° . c*,  a function 
m: (0, ` ) 2 S (0, ` )  with the property that, for all g2 . 0, 
m(c, g2 ) S `  as c S `,  and a functional V  with the prop-
erty that 

 V (X ( t ) , U ( # ) 3t2D,t4 ) $ m(c, g2 )N2 ( t ),  for all t $ 0, (44)

such that, for all c $ c°  and for all 

 g2 $ g°
2 ! 8

iPBi 2

lmin(Q ) ,  (45)

the feedback (39) minimizes the cost functional

 J5 sup 
d[d

lim
tS`

c2cV ( t ) 1 3
t

0
(V (t ) 1U

# 2 (t ) 2 cg2d
2 (t ))dt d ,

 (46) 

where d: (X, U )  A d  is the set of linear scalar-valued map-
pings whose arguments are vectors X ( t )  and square-inte-
grable functions U (u ) , u [ 3t2D, t 4.  

We emphasize that the bounds c*, c°, g°
2 are independent 

of supt[ 30,t4|d (t)| and of e`0 d2 (t )dt.  
The crucial property of the functional V  is its positive 

definiteness in (X, U ) ,  as stated in (44). While, in direct 
optimal control, the designer is given a positive-definite 

functional V  as a cost on the plant state and is tasked with 
synthesizing an optimal feedback law, in the inverse opti-
mal approach, the designer is allowed to choose the feed-
back law and the cost functional V  simultaneously. This 
additional freedom may be challenging since the functional 
V  must be chosen to be positive definite. A tradeoff exists 
between the direct and inverse optimal control frame-
works. In the direct optimal control framework the designer 
has to solve a Riccati equation that, in the case of infinite-
dimensional systems such as systems with delays, is not a 
matrix equation but an operator equation. Nonlinear and 
infinite-dimensional equations are often difficult to numer-
ically approximate and solve. In the inverse optimal 
approach, optimality is achieved, albeit not for an a priori 
prescribed cost, but with a feedback law (37), (38) that does 
not require the solution of an operator Riccati equation. The 
benefits of optimality include guarantees of an infinite gain 
margin and a 60°  phase margin [20], [21]. 

Theorem 2 shows that, for sufficiently high c,  the predic-
tor feedback (3) is robust to unmodeled actuator bandwidth 
limitations, as depicted in Figure 2, modeled by the first-
order transfer function c/ (s1 c) .  Alternatively, this trans-
fer function can be a part of the control law, as in (39). 

Theorem 2 also shows that the system under predictor 
feedback (3), as well as under feedback (39) with suffi-
ciently high c,  has a finite L`  gain relative to an additive 
disturbance. 

Furthermore, Theorem 2 shows that the feedback (39) 
is an inverse optimal stabilizer for sufficiently high c,  in 
the absence of the disturbance d.  This result is obtained 
by writing the feedback law in terms of U

#
( t )  as the con-

trol input, in which case the feedback law is of the 2LgV  
form [20], namely, in the form where the control is the 
negative of the inner product of the input operator and of 
the gradient of the Lyapunov functional with respect to 
the system’s state. 

Finally, Theorem 2 shows that, in the presence of the dis-
turbance, the feedback (39) with sufficiently high c  is an 
inverse optimal solution to a differential game problem [21] 
with a positive-definite penalty on the state and control, 
and a negative-definite penalty on the disturbance. 

ROBUSTNESS TO DELAY ERROR
In this section we study the problem of robustness to delay 
error, depicted in Figure 3. We construct Lyapunov func-
tional that allows us to provide a positive answer to the 
question of whether predictor feedback has robustness to 
sufficiently small delay error. 

FIGURE 2 An ordinary differential equation with input delay, per-
turbed by unmodeled bandwidth-limiting actuator dynamics and 
additive disturbance. Theorem 2 establishes robustness with 
respect to both perturbations under predictor feedback (3).

U (t ) Y (t )
Bandwidth-Limiting

Unmodeled
Actuator Dynamics

Delay LTI-ODE
Plant

Disturbance d (t )

The PDE backstepping approach is a potentially powerful tool 
for advancing design techniques for systems with input and output delays.
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We consider the feedback system 

 X
#

( t ) 5AX ( t ) 1 BU ( t2D02DD ) ,  (47) 

 U ( t ) 5K ceAD0X ( t ) 1 3
t

t2D0

eA(t2u)BU (u )du d  .  (48)

The actuator delay error DD  can be either positive or nega-
tive relative to the assumed actuator delay D0 . 0. How-
ever, the actual delay must be nonnegative, that is, 
D01DD $ 0. For the study of robustness to a small DD,  
we use two Lyapunov functionals, namely, one for DD . 0, 
which is the easier of the two cases, and another for DD , 0, 
in which case we employ 

V (X ( t ), w ( # , t ) 3DD,D01DD4 ) 5X ( t )TPX ( t )

 1
a
23

D01DD

0
(11 x )w2 (x,t )dx

 1
1
23

0

DD
(D01 x )w2 (x,t )dx  (49) 

with a sufficiently large a.

Theorem 3 
There exists a positive constant d  such that, for all 
DD [ (2d, d ) ,  there exist positive constants G  and g  
such that all solutions of the closed-loop system (47), 
(48) satisfy 

 G ( t ) # Ge2gt G (0)  (50)

for all t $ 0, where 

 G ( t ) ! iX ( t ) i 21 3
t

t2D
U2 (u )du  (51)

and 

 D ! D01max50, DD6 .  (52) 

Although finite-dimensional feedback laws for finite-di-
mensional plants remain stabilizing in the presence of small 
delays [22], this result does not apply to systems considered 
here, which are infinite-dimensional even before a delay 
perturbation is introduced. The delay perturbation to pre-
dictor feedback incorporates the possibility of two different 
classes of perturbations, depending on whether DD  is posi-
tive or negative, so off-the-shelf results cannot be used. 

Theorem 3 may be surprising in light of results of [23], 
which show that boundary controllers for hyperbolic PDEs 

of second order, such as wave equations, have a zero delay 
margin. Even though the input-delay problem involves a 
transport PDE, which is hyperbolic, and the predictor feed-
back is a boundary controller, the results on the lack of 
delay-robustness do not hold for predictor feedback because 
of a distinction between first-order and second-order 
hyperbolic PDEs. The second-order hyperbolic PDEs in [23] 
have infinitely many eigenvalues on the imaginary axis, 
which causes the appearance of closed-loop eigenvalues in 
the right-half plane even for infinitesimal delays in the 
feedback loop. On the other hand, the spectrum of an ODE 
with input delay consists of the spectrum of the ODE and 
the spectrum of the transport PDE, which consists of infi-
nitely many eigenvalues with real parts equal to negative 
infinity. Upon closing the loop with the stabilizing predic-
tor feedback law, stability is not lost in the presence of a 
small delay error since the closed-loop spectrum, which 
consist of finitely many eigenvalues of A1 BK  in the left-
half plane, and of the infinitely many eigenvalues of the 
transport PDE wt5wx  at negative infinity, is shifted by 
only a small amount by the delay perturbation.

DELAY-ADAPTIVE CONTROL
We now turn our attention from robustness to small delay 
error to adaptivity for large delay uncertainty. Relevant 
results on adaptive control of systems with input delays 
include [24] and [25]. However, these results deal with 
parametric uncertainties in the ODE plant, whereas the key 
challenge is uncertainty in the delay.

We now design an adaptive predictor feedback, where 
an estimate D̂ ( t )  is employed instead of the unknown delay 
D.  Let us consider the plant (1) but with a transport PDE 
representation of the input delay given as 

 X
#

( t ) 5AX ( t ) 1 Bu(0, t ) ,  (53) 

 Dut(x, t ) 5 ux (x, t ) ,   (54) 

 u(1, t ) 5U ( t ) .  (55)

U (t ) Y (t )
Uncertain Delay

D + ∆D
LTI-ODE

Plant

FIGURE 3 An ordinary differential equation with input delay D, 
which is known up to a small error DD,  which may be either posi-
tive or negative. Theorem 3 shows that stability is preserved under 
predictor feedback (48) for sufficiently small 0DD 0  but arbitrarily 
large D. 

This article is a tutorial introduction to design tools 
for PDE-ODE and PDE-PDE cascade systems. 
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We take the predictor feedback in the certainty equiva-
lence form 

 U ( t ) 5K ceAD̂ (t)X ( t ) 1 D̂ ( t )3
1

0
eAD̂(t)(12y)Bu(y, t )dy d ,  (56) 

with the update law for the estimate D̂ ( t )  given by 

 D̂
#

( t ) 5gProj30,D4 5t ( t ) 6,  (57) 

 t ( t ) 52
3

1

0
(11x )W (x, t )KeAD̂ (t)xdx (AX ( t )1Bu(0, t ))

11X ( t )TPX ( t )  1b3
1

0
(11x )W2 (x, t )dx

,

 (58)

 w (x, t)5u(x, t)2D̂ (t)3
x

0
KeAD̂ (t)(x2y)Bu(y, t )dy2KeAD̂ (t)xX (t ) ,

 (59)

where

 Proj30,D45t6 5t•0, D̂ # 0 and t , 0,
0, D̂ $ D and t . 0,
1, else,

 (60)

is the standard projection operator, the initial condition for 
the parameter estimate is restricted to

 D̂ (0) [ 30, D 4 ,  (61)

where D  is a known upper bound on D,  and the normal-
ization coefficient b  is chosen such that

 b $
4DiPBi 2

lmin(Q ) .  

The structure of the adaptive control system is shown 
in Figure 4. The choice of the update law (57)–(59) is 
motivated by a Lyapunov analysis, resulting in a nor-
malization of the update law, without the use of any fil-
ters or overparametrization. 

Theorem 4 
Consider the closed-loop adaptive system (53)–(59). 
There exists g* . 0 such that, for all g [ (0, g* ) ,  there 
exist positive constants R  and r  such that, for all initial 
conditions satisfying (X0, u0, D̂0 ) [ Rn 3 L2 30, 1 4 3 30, D 4,
 Y ( t ) # R (erY(0)2 1) ,  for all t $ 0, (62)

where 

 Y ( t ) ! iX ( t ) i 21 3
1

0
u2 (x, t )dx1 (D2D̂ ( t )) 2 .  (63)

Furthermore, 

 lim
tS` 

X ( t ) 5 0,   lim
tS` 

U ( t ) 5 0. (64) 

Example 1 
To illustrate the delay-adaptive design (53)–(59), consider plant 

 X (s ) 5
e2s

s2 0.75
U (s ) .  (65)

As shown in Figure 5, the time period from 0 s to D5 1 s 
is dead time, in which the control signal is propagating 
through the actuator delay, the parameter estimation (57) is 
active until about 3 s, the control evolution is exponential (cor-
responding to a predominantly LTI system) after 3 s, and the 
state evolves exponentially after 4 s. The adaptive controller 
achieves regulation of X ( t )  to zero, with an acceptable adap-
tation transient, both with D̂ (0) 5 0, which corresponds to a 
controller that initially overlooks the presence of the delay, 
and with D̂ (0) 5 2 s, which corresponds to a controller that 
overcompensates the delay. In both cases the parameter error 
is 100% relative to the actual delay value of D5 1. ! 

TIME-VARYING INPUT DELAY
We now consider the problem of time-varying known input 
delays, which is depicted in Figure 6. We consider the system 

 X
#

( t ) 5AX ( t ) 1 BU ( t2d ( t )) ,   (66)

where d ( t )  is the time-varying delay. For convenience, let 

 f ( t ) ! t2d ( t )  (67) 

represent the time transformation affecting the input U.  In 
the case of a constant delay D,  the time transformation (67) 
is a shift of time by D,  that is, f ( t ) 5 t2D.  

The predictor feedback for (66) is 

U ( t )5K ceA(f21(t)2t)X ( t )13
t

f(t)
eA(f21(t)2f21(u))B

U (u )
f r (f21 (u ))

du d .  

 (68) 
We now employ a transport PDE representation with 

 u(x, t ) 5U (f ( t1 x (f21 ( t ) 2 t )))  (69) 

FIGURE 4 Delay-adaptive predictor feedback. The actual delay D 
may be between zero and a known upper bound D,  which is finite 
but arbitrarily large. The certainty-equivalence controller (56) is 
combined with the update law (57)–(59). Theorem 4 guarantees 
global stability and regulation of the state and control.

Certainty
Equivalence

Version of Predictor
Feedback

Transport PDE
with Unknown
Propagation
Speed 1/D

LTI-ODE
Plant

Estimator of D

U(t ) X (t )

u (x,t )
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and apply the time-varying backstepping transformation 

w (x, t ) 5 u(x, t )2KeAx(f21(t)2t)X ( t )

 2K3
x

0
eA(x2y)(f21(t)2t)Bu(y, t ) (f21 ( t )2t )dy  (70) 

of (66), (68) into the target system 

 X
#

( t ) 5 (A1 BK )X ( t ) 1 Bw (0, t ) ,  (71) 

 wt(x, t ) 5p (x, t )wx (x, t ) ,  (72) 

 w (1, t ) 5 0,  (73) 

where the variable speed of propagation p (x, t )  of the 
transport equation w  is given by 

 p (x, t ) 5
11xad (f21 ( t ) )

dt
2 1b

f21 ( t )2t
 .  (74) 

This procedure yields the following stabilization result. 

Theorem 5 
Consider the closed-loop system (66), (68). Assume that 
the delay function d ( t )  is positive and bounded from 
above, and d r ( t )  is less than one and bounded from 
below. Then there exist positive constants G  and g  such 
that, for all t $ 0,

 iX ( t ) i 213
t

f(t)
U 

2 (u )du # Ge2
gt a|X0|213

0

f(0)
U 

2 (u )dub, 

 for all t $ 0 (75)

Example 2
We consider the case of a bounded delay function without 
a limit. Let 

 d ( t ) 5 t2r21 ( t ) ,  (76) 

where 

 r( t ) ! t1 11
1
2

cos t.  (77) 

Consider the first-order system 

 X
#

( t ) 5X ( t ) 1U (r21 ( t )) ,  (78) 

so that A5 B5 1 in (66). The control law (68) in this case 
becomes

U ( t ) 52(11c) ce111
2

cos tX ( t )

 13
t

r21(t)
a12

1
2

sinubet11
2 

cos t2u21
2 

cos uU (u )du d .
 (79)

Figure 7 shows the closed-loop state and control signals for 
c5 0.13. The oscillating U ( t )  compensates the oscillation 
in the delay function. 

FIGURE 5 Time responses of (a) D̂ (t), (b) X(t), and (c) U (t) under 
delay-adaptive predictor feedback for an unstable first-order 
plant. Stabilization is achieved both with D̂(0 ) 5 0 and with 
D̂(0 ).D.  
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PREDICTOR FEEDBACK FOR NONLINEAR SYSTEMS
We now compensate input delays in nonlinear control sys-
tems, shown in Figure 8, through an extension of predictor 
feedback. Consider the nonlinear system 

 X
#

( t ) 5 f(X ( t ) , U ( t2D )) ,   f(0, 0) 5 0,  (80)

and assume that we know a feedback law U5k(X )  with 
k(0) 5 0 that globally asymptotically stabilizes the zero 
solution of the system (80) when D5 0. Denote the initial 
conditions as X05X (0)  and U0 (u ) 5U (u ),  u [ 32D, 0 4.  
A predictor feedback is given by 

 U ( t ) 5k(P ( t )) ,   (81)

where the predictor P ( t )  is defined as 

 P ( t ) 5 3
t

t2D
f(P (u ) , U (u )) du 1X ( t ) ,  t $ 0,  (82) 

 P (u ) 5 3
u

D
f(P (s) , U0 (s)) ds1X0,  u [ 32D, 0 4.  (83) 

The predictor P ( t )  is defined implicitly through a nonlin-
ear integral equation, rather than explicitly, through matrix 
exponentials and the variation of constants formula when 
the plant is linear. The lack of an explicit formula for P ( t )  is 
not an obstacle numerically, since P ( t )  is defined in terms 
of its past values. 

The nonlinear integral equation (82) is equivalent to the 
plant model (80) since P ( t ) 5X ( t1D ) .  A solution P ( t )  to 
(82) does not always exist since the control applied after 
t5 0 has no effect on the plant over the time interval 30, D 4,  
and, as a consequence, system (80) can exhibit finite escape 
over that interval, resulting also in a finite escape for P ( t ) .  
Hence, a natural way to ensure global existence of the pre-
dictor state is to assume that the plant has the property 
that, for all initial conditions and all locally bounded input 
signals, its solutions exist for all time. This property is 
called forward completeness. 

Forward completeness does not require the solutions of 
(80) to be uniformly bounded. For example, solutions can 
be growing to infinity as time approaches infinity. All 
linear time invariant (LTI) systems, stable or unstable, 
driven by inputs with exponential growth, are forward 
complete. The same is true of nonlinear systems with glob-
ally Lipschitz right-hand sides, as well as many systems 
that are neither globally Lipschitz nor have stable equilib-
ria, including systems that contain superlinear nonlineari-
ties that induce limit cycles. 

We now develop a nonlinear predictor design for two 
classes of systems. The first class consists of forward-com-
plete systems, that is, systems that do not exhibit a finite 
escape time for all initial conditions and all input signals 
that are bounded over finite time intervals, which in-
cludes all piecewise-continuous inputs. For this class, we 
develop predictor feedback, which achieves global as-
ymptotic stability, as long as the system without delay is 
globally asymptotically stabilizable. However, the predic-
tor requires the solution of a nonlinear integral equation, 
or a nonlinear DDE, in real time. The stability result for-
mulated in the following theorem employs the standard 
class kl  functions, which are functions of two variables, 

FIGURE 6 The linear system X
#
( t ) 5AX( t )1BU(f( t ))  with the 

time-varying actuator delay d ( t ) 5 t2f( t ) .  Theorem 5 guaran-
tees exponential stability under predictor feedback (68) with com-
pensation of the time-varying delay.

Time-Varying
Delay

LTI Plant

FIGURE 7 (a) State X(t) and (b) control U(t) evolution for Example 2. 
The control starts having an effect on the plant state at 
t5r (0 ) 5 3/2 s. The waviness in the control signal compensates 
the delay, which varies sinusoidally.
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FIGURE 8 Nonlinear control in the presence of an arbitrarily long 
input delay. Theorem 6 guarantees global asymptotic stabilization 
with the predictor feedback (81)–(83) if the plant is forward-complete 
and globally asymptotically stabilizable in the absence of delay.

Delay dX /dt = f (X,U )U (t )
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continuous in both variables, monotonically increasing 
and zero at zero in the first variable, and decaying to zero 
in the second variable. 

Theorem 6 
Let X

#
5 f(X, U )  be forward complete, and let X

#
5 f(X, k(X )) 

be globally asymptotically stable at X5 0. Consider the 
closed-loop system (80)–(83). Then there exists a function 
b̂  in class kl  such that 

 iX ( t ) i1iUiL`3t2D,t4 # b̂(|X (0)|1 iU0iL`32D, 04, t )  (84) 

for all (X0, U0 ) [ Rn 3 L` 32D, 0 4  and for all t $ 0. 
Although P ( t )  may not be explicitly computable, many 

nonlinear system are not only forward complete and glob-
ally stabilizable but also have the property that P ( t )  is 
explicitly computable. These nonlinear systems comprise 
the class of strict-feedforward systems [20]. The relation 
between strict-feedforward systems and strict-feedback 
systems [19], as well as with the forward-complete systems, 
is described in Figure 9. For more information on strict-
feedforward systems, see “Strict-Feedforward Systems and 
Integrator Forwarding.” 

Example 3 
We illustrate the explicit computability of the predictor, and 
thus of the feedback law, for a strict-feedforward system. 
Consider the third-order system 

 X
#
1 ( t ) 5X2 ( t ) 1X3

2 ( t ),   (85)

 X
#

2 ( t ) 5X3 ( t ) 1X3 ( t )U ( t2D ) ,  (86)

 X
#

3 ( t ) 5U ( t2D ) ,  (87) 

which is not feedback linearizable but is a strict-feedforward 
system. The globally asymptotically stabilizing predictor 
feedback for this system is given by 

 U ( t ) 52P1 ( t )23P2 ( t )23P3 ( t )2
3
8

P2
2 ( t ) 1

3
4

P3 ( t )

 3 a2P1 ( t )22P2 ( t ) 1
1
2

P3 ( t ) 1
P2 ( t )P3 ( t )

2

  1
5
8

P3
2 ( t )2

1
4

P3
3 ( t )2

3
8
aP2 ( t )2

P3
2 ( t )
2

b2b,  (88) 

where the D-second-ahead predictor of (X1 ( t ) ,  X2 ( t ) ,  
X3 ( t ))  is given explicitly by 

 P1 ( t ) 5X1 ( t )1DX2 ( t )1
1
2

D2X3 ( t )1DX 3
2 ( t )  

 1 3X3 ( t )3
t

t2D
( t2u )U (u )du1

1
23

t

t2D
( t2u ) 2U (u )du

 1
3
23

t

t2D
a3u

t2D
U (s)dsb2

du,  (89) 

 P2 ( t ) 5X2 ( t )1DX3 ( t )1X3 ( t )3
t

t2D
U (u )du

 13
t

t2D
( t2u )U (u )du 1

1
2
a3 t

t2D
U (u )dub2

,  (90)

 P3 ( t ) 5X3 ( t ) 1 3
t

t2D
U (u )du.  (91) 

Note that the nonlinear infinite-dimensional feedback 
operator employs a finite Volterra series in U (u ) .   ! 

Example 4 
Consider the second-order system 

 X
#

1 ( t ) 5X2 ( t )2X2
2 ( t )U ( t2D ) ,  (92) 

 X
#

2 ( t ) 5U ( t2D ) .  (93) 

The control law is derived as 

 U ( t ) 52X1 ( t )2(21D )X2 ( t ) 2
1
3

X 2
3 ( t )

 23
t

t2D
(21t2u )U (u )du.  (94) 

For D5 3 and initial conditions X1 (0) 5 0 and X2 (0) 5 1, 
we obtain closed-loop solutions shown in Figure 10.  ! 

DELAY-PDE CASCADES
When a plant with an input delay is a PDE, as in Figure 11, 
special challenges arise in the design of predictor feedback, 
particularly if the PDE is actuated through boundary con-
trol, which makes the B  operator unbounded. In [8] we 
consider two benchmark delay-PDE cascades, one where 
the plant is a parabolic PDE and the other where the plant 

FIGURE 9 Relations among system classes studied in nonlinear 
control. The class of strict-feedback systems contains both systems 
that are forward complete and those that are not. As a result, some 
of the strict-feedback (and thus feedback-linearizable) systems are 
not globally stabilizable by predictor feedback in the presence of an 
input delay. In contrast, all strict-feedforward systems are forward 
complete. Hence, strict-feedforward systems are always globally 
stabilizable in the presence of an input delay of arbitrary length. In 
addition, predictor feedback is obtained explicitly for strict-feedfor-
ward systems. Strict-feedback and strict-feedforward systems have 
a small intersection, namely, the chain of integrators, which is both 
upper triangular and lower triangular.

Stabilizable
Forward-Complete

Strict-Feedback

Strict-Feedforward
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is a second-order hyperbolic PDE. We review here the para-
bolic case, where the plant is an unstable reaction-diffusion 
equation, which has an arbitrarily large number of open-
loop unstable eigenvalues. 

Consider the PDE system 

 ut(x, t ) 5 uxx (x, t ) 1lu(x, t ) ,  (95) 

 u(0, t ) 5 0,  (96) 

 u(1, t ) 5U ( t 2 D ) ,  (97)

where l is a constant. Since the open-loop eigenvalues of this 
system are sn5l 

2 n2p2, the system can have arbitrarily 
many unstable eigenvalues for large positive l. We derive the 
stabilizing feedback law as 

 U ( t ) 5 2a`
n51
3

1

0
sin(pnj )lj 

I1a"l(12j2 ) b"l(12j2 )
 dj

 3 a2e(l2p2n2)D3
1

0
sin(pny )u(y, t )dy

S trict-feedforward systems of the form 

X
#
15X21c1(X2, X3, c, Xn) 1f1(X2, X3, c, Xn)U,

 (S35) 
X
#
25X31c2(X3, c, Xn) 1f2(X3, c, Xn)U,  (S36) 

(
X
#
n225Xn211cn22(Xn21, Xn) 1fn22(Xn21, Xn)U,  (S37) 

X
#
n215Xn1fn21(Xn)U,  (S38) 
X
#
n5U,  (S39) 

where fi(0 ) 5 0, ci(Xi11, 0, c, 0 ) ; 0, 'ci (0 ) /'xj5 0 for 
i5 1, 2, c, n2 1, j5 i1 1, c, n,  are globally asymptotically 
stabilizable [26], even though they are generically not feedback 
linearizable. A small subset of this class is feedback linearizable 
[27]. In many ways, strict-feedforward systems are the exact 
opposite of strict-feedback systems [19]. While strict-feedback 
systems can exhibit fi nite-escape instability, strict-feedforward 
systems can be unstable but not exponentially unstable. By in-
spection of their structure, from the bottom toward the top, it 
can be seen that the system consists of n  cascaded “nonlinear 
integrators,” without any feedback loops that could generate 
exponential instability, much less fi nite escape time. This is not 
to say that strict-feedforward systems are easy to stabilize. On 
the contrary, due to the potential presence of control in many of 
the nonlinear state equations, nonlinear nonminimum-phase-
like behavior is possible, which creates challenges for stabiliza-
tion. While the strict-feedback systems, which allow exponen-
tial and fi nite-escape instabilities, call for aggressive forms of 
feedback laws to overcome the instabilities, strict-feedforward 
systems require a more careful approach to prevent inducing 
such behaviors in some of the state variables while controlling 
other state variables. 

Strict-feedforward systems can be stabilized using either the 
method of nested saturations [26] or the method of integrator 
forwarding [20]. We illustrate these methods on the third-order 
system (85)–(87) of Example 3 without the input delay, that is, 

 X
#
15X21X3

2,  (S40) 
 X

#
25X31X3U,  (S41) 

 X
#
35U,  (S42) 

The nested saturation approach employs the feedback law 

 U52b3sat5a33X31b2sat 3a22X21 a23X3

 1b1sat (a11X11 a12X21 a13X3)4 6,  (S43) 

where bi  and aij  are positive constants and sat ( # )  is the stan-
dard unit saturation function. The nested saturation design 
consists of deriving sufficient conditions for the coefficients bi  
and aij  so that stability is ensured. Such conditions are typically 
conservative. 

The integrator forwarding design, on the other hand, em-
ploys Lyapunov functions and a suitable triangular nonlinear 
change of variables to achieve stabilization. For the system 
(85)–(87) a globally stabilizing controller is derived as [27] 

 U52X12 3X22 3X32
3
8

X 2
2 

 1
3
4

X3 a2X12 2X21
1
2

X31
X2X3

2

 1
5
8

X  3
22

1
4

X 332
3
8
aX22

X  3
2

2
b2 b .  (S44) 

The Lyapunov candidate 

 V5 Z 1
21 Z 2

21 Z 3
2 (S45) 

has the derivative 

  
V
#
52a11

3
4

Z3b2

Z 1
22 Z 2

22 Z 3
22aa11

3
4

Z3bZ11 Z21 Z3b2

,

 (S46)

where the triangular change of variables is 

 Z35X3,  (S47) 

 Z25X21X32
X 3

2

2
, (S48) 

 Z15X11 2X21X32
5
8

X 3
21

3
8
aX22

X 3
2

2
b2

.  (S49) 

Comparing the integrator forwarding controller (88) with 
P5X,  namely, the controller (S44) with the nested saturation 
controller (S43), we observe that the nested saturation control-
ler (S43) is bounded, while the integrator forwarding controller 
(S44) has considerable polynomial growth. Not surprisingly, by 
investing more control effort when the state is larger, the integra-
tor forwarding controllers can achieve better performance [20]. 
However, the integrator forwarding procedure employs integra-
tions and cannot always be carried out explicitly. 

Strict-Feedforward Systems and Integrator Forwarding
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 1pn(21)n3
t

t2D
e(l2p2n2)(t2u)U (u )dub,   (98) 

where I1( # )  is the modified Bessel function of the first kind. 

Theorem 7 
Consider the closed-loop system (95)–(98). There exists a con-
tinuous function r  : R2 S (0,`)  such that, for all initial con-
ditions (u0, U0 ) [ L2 30, 1 4 3 H1 30, D 4  and for all c . 0, all 
solutions satisfy the bound 

 Y ( t ) # r(D, l)ecDY (0)e2min52,c6t,  for all t $ 0, (99) 

where 

  Y ( t ) ! 3
1

0
u2 (x, t )dx 1 3

t

t2D
(U2 (u ) 1U

# 2 (u ))du.  (100) 

Two elements of this result are relevant. First, the feedback 
law (98) is derived explicitly. The explicit determination of the 
control gains is made possible by first deriving the control gain 
for D5 0 explicitly as in [28] and then by solving the undriven 
version of the PDE system (95)–(97) with an initial condition 
given by the control gain for D5 0. In more specific terms, we 
solve the PDE systems 

 kxx (x, y ) 5 kyy (x, y )1lk (x, y ) ,   0 # y # x # 1,  (101) 

 k (x, 0) 5 0,  (102) 
 k (x, x ) 5 2

l

2
x,  (103) 

and 

gx (x, y ) 5gyy (x, y )1lg (x, y ) ,  (x, y ) [ 31, 11D 4 3(0, 1) , 

 (104) 
 g (x, 0) 5 0,  (105)
 g (x, 1) 5 0,  (106) 
 g (1, y ) 5 k (1, y ) .  (107) 

Note that the k-system is hyperbolic and defined on a tri-
angular domain, whereas the g-system is parabolic and 
defined on a rectangular semi-infinite domain. Further-
more, the solution to the k-system acts as an initial condi-
tion to the g-system, as given by (107). The process of 
explicitly solving for g (x, y )  is the PDE equivalent of ana-
lytically finding the vector KeAD  in (3). 

Second, when dealing with boundary control of a PDE 
with input delay, we face the problem of controlling two 
PDEs from different classes, such as, in the case covered 
here, a parabolic PDE and a first-order hyperbolic PDE, 
where the PDEs are interconnected through a boundary. 
While for each one of the two PDEs individually a natural 
system norm may be the standard L2 norm, for the inter-
connected system this may not be the case, and a higher 
order Sobolev norm may have to be used for one of the sub-
systems, such as the L2 norm of U

#
 in (100). 

PDE-ODE CASCADES
For the linear ODE (1) with input delay, the predictor 
feedback law (3) provides a boundary controller for a 
PDE-ODE cascade, where the input delay is a PDE of 
transport type. The same boundary control tools can be 

FIGURE 10 Time responses from Example 4 for D5 3 s. Note the 
transient of X1( t )  in (a) after t5 3 s, which highlights the nonlinear 
character of the closed-loop system. The size of the control input 
U( t )  shown in (c) is due to the need to compensate for the long 
input delay of D5 3 s.
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FIGURE 11 Control of an unstable parabolic partial differential 
equation (PDE) with input delay, that is, of a boundary controlled 
cascade of a transport PDE and a reaction-diffusion PDE. Explicit 
gains are derived for the predictor feedback (98). As stated in 
Theorem 7, stability is achieved in a Sobolev norm, rather than in 
the L2 norm of the state of the PDE cascade.
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extended to stabilization of other PDE-ODE cascades, 
where the transport PDE is replaced by heat, wave, and 
other PDEs. Here we consider an ODE controlled through 
the undamped wave (string) PDE, depicted in Figure 12 
and modeled by 

 X
#
( t ) 5AX ( t ) 1 Bu(0, t ) ,  (108) 

 utt(x, t ) 5 uxx (x, t ) ,  (109) 

 ux (0, t ) 5 0,  (110) 

 u(D, t ) 5U ( t ) .  (111) 

The transfer function of the actuator dynamics, which is not 
rational, can be written explicitly as 

 Y
?
(s ) 5

1
cosh(Ds ) U

?
(s ) , (112) 

where Y ( t ) 5 u(0, t )  and Y
?

(s ) , U
?

(s )  are the Laplace trans-
forms of Y ( t ) , U ( t ) , respectively. 

The explicit feedback law for stabilization of (108)–(111) is 
designed as 

 U ( t ) 5KS (D, c)X ( t ) 1 3
D

0
w (D2 y )u(y, t )dy

 1 3
D

0
c (D2 y )ut(y, t )dy,  (113) 

where c . 0, 

 S (D, c) 5M (D ) 1 c3
D

0
M (y )Ady,  (114)

 M (x ) 5 3I   0 4 eB0 A2

I 0
R x c I

0
d , (115)

 w (x ) 5m(x )1cK ( I1M (x ))B,  (116)

 c (x ) 5 3
x

0
KM (j )Bdj 2 c 1 c3

x

0
m(h )dh,  (117)

 m(x ) 5 3
x

0
KM (j )ABdj.  (118)

The following stability result is expressed in terms of the 
Euclidean norm of X ( t )  as well as the total (potential and 
kinetic) energy norm of the wave PDE state. We use the symbol 
j for !21. 

Theorem 8 
Consider the closed-loop system (108)–(111), (113), where 
c [ (0, 1) h (1, ` ) . Then there exist positive constants G, g  
such that 

 G ( t ) # Ge2gtG (0)  (119) 

for all t $ 0, where 

  G ( t ) ! iX ( t ) i 21 3
D

0
ux

2 (x, t )dx1 3
D

0
ut

2 (x, t )dx. (120) 

Furthermore, the spectrum of the system (108)–(111), (113) is 
given by 

 eig5A1BK6 h e21
2

ln `11 c
12 c

` 1 j
p

D
(n1h (c)) ,  n [ Zf ,

 (121) 

where h (c) 5 1/2 if c [ (0, 1)  and h (c) 5 0 if c . 1. 
While the controller (68) for the case of the input delay is 

easy to guess based on the predictor idea, the controller (113) 
for the wave PDE case is more complicated. The target dynam-
ics governing the backstepping design of the controller (113) 
are given by 

  X
#
( t ) 5 (A1 BK )X ( t ) 1 Bw (0, t ) ,  (122)

 wtt(x, t ) 5wxx (x, t ) ,  (123)

  wx (0, t ) 5 cwt(0, t ) ,   c . 0,  (124)

  w (D, t ) 5 0,  (125) 

which is a cascade of a wave equation with the stable ODE 
X
#
5 (A1 BK )X.  The backstepping transformation from 

(109)–(111) into (122)–(125) is given by

w (x, t )5u(x, t )23
x

0
(m(x2y )1cK ( I1M (x2y ))B )u(y, t )dy

 23
x

0
am (x2y ) 2 c1 c3

x2y

0
m(s )dsbut(y, t )dy

 2ag (x )1c3
x

0
g (y )AdybX ( t ) ,  (126) 

where m (x ) 5 ex
0KM (j )Bdj.  The construction of this trans-

formation, given in [8], involves a detailed study of the 
backstepping approach for wave equations. For a wave 
PDE-ODE cascade, the designer’s task is not only to com-
pensate the wave PDE dynamics to stabilize the ODE but 
also to stabilize the wave PDE, which has all of its eigenval-
ues on the imaginary axis. To stabilize the wave equation, 
damping must be added at the boundary x5 0 since the 
position actuation at x5D  does not allow direct addition 
of a force like damping. The transformation (126) allows the 
addition of damping at the boundary x5 0 using control at 
the boundary x5D.  

Force
Actuation

x = D x = 0

dX /dt = AX + Bu

FIGURE 12 An arbitrary ordinary differential equation controlled 
through wave/string partial differential equation (PDE) dynamics 
at its input, using the control law (113). Theorem 8 guarantees 
exponential stability in a norm that includes the total energy of the 
wave PDE.
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Example 5
Consider the undamped oscillator 

 A5 c 0 1
21 0

d ,   B5 c0
1
d . (127) 

We need to add damping both in the plant and in the actuator 
dynamics governed by the undamped wave PDE (109). We 
take the nominal feedback as a pure damping (velocity-based) 
feedback, with the gain vector 

 K5 30   2h 4 ,   h . 0. (128) 

The feedback law (113) is obtained as 

 U ( t ) 5 hc sin(D )X1 ( t ) 2 h cos(D )X2 ( t )

 2 ch3
D

0
(11 cos(D2 y ))u(y, t )dy

 2 3
D

0
(h sin(D2 y ) 1 c)ut(y, t )dy.  (129) 

For D5 0 this controller reduces to the nominal controller 

 U ( t ) 52hX2 ( t ) 52hX
#
1 ( t ) .  (130)

For h5 0 the controller (129) is a stabilizing controller for 
the wave equation (109) alone. The controller’s formula is 

 U ( t ) 52c3
D

0
ut(y, t )dy.  (131) 

This full-state feedback adds damping to the wave equa-
tion. According to (121), in each of the intervals (0, 1)  and 
(1, ` ) ,  where the gain c  is stabilizing, the imaginary 
parts of all the eigenvalues of the wave equation (109), 
(110), (111) with feedback (131) are independent of c,  but 
the real parts decrease as c S 1, achieving 2`  for c5 1, 
and then increase toward zero as c S `.  Hence, maximal 
damping for each of the infinitely many eigenvalues of 
(109), (110), (111), (131) is achieved for c5 1, which results 
in the closed-loop eigenvalues being on a vertical line at 
negative infinity. !

OBSERVERS FOR ODES 
WITH SENSOR PDE DYNAMICS
We now address the dual problem of observer design for 
ODEs in the presence of delay or PDE sensor dynamics. In 
particular we focus on the heat PDE, as a model of sensor 
dynamics. The wave PDE is considered in [8]. 

Consider the LTI ODE system in cascade with diffusive 
sensor dynamics at the output 

 Y ( t ) 5 u(0, t ) ,  (132) 
 ut(x, t ) 5 uxx (x, t ) ,  (133)
 ux (0, t ) 5 0,  (134) 
 u(D, t ) 5CX ( t ) ,  (135) 
 X

#
( t ) 5AX ( t ) 1 BU ( t ) ,  (136) 

as depicted in Figure 13. The sensor dynamics are given by 
the transfer function 

 Y
?
(s ) 5

1

cosh(D"s )
 CX
?

(s ) ,   (137) 

where Y
?

(s ) , X
?

(s )  are the Laplace transforms of Y ( t ) , X ( t ) ,  
respectively. 

While the transfer functions (112) and (137) may appear 
similar, the difference introduced by the square root under 
the hyperbolic cosine in (137) is significant. The wave 
system (112) is characterized by finite propagation speed, 
which is similar to the finite propagation speed of a trans-
port delay, except that reflections off of the boundaries 
occur in the wave system. On the other hand, the heat 
system (137) has lowpass characteristics, which have the 
effect of attenuating the higher frequencies, but which do 
not impose a hard limit on the propagation speed of sig-
nals, leaving the lower frequencies with almost no phase 
shift, while the higher frequencies are subject to higher 
phase shifts. Furthermore, the heat system (137) has a suf-
ficiently strong smoothing property that its output is C`  
even if its input is discontinuous. Hence, due to the differ-
ences in the input-output characteristics of (112) and (137), 
the manners in which the two types of dynamics need to be 
compensated differ significantly. 

The observer for (133)–(136) is constructed as 

 ût(x, t ) 5 ûxx (x, t ) 1CM (x )L(Y ( t ) 2 û(0, t )) ,   (138) 
 ûx (0, t ) 5 0,  (139) 

We use PDEs to model delays, which allows us to develop delay-adaptive 
designs, as well as to model more general PDE actuator dynamics.

Diffusion Process Sensing

x = D x = 0

dX /dt = AX + BU

FIGURE 13 An ordinary differential equation whose output is mea-
sured through a diffusion process, namely, a heat partial differen-
tial equation. Theorem 9 guarantees that the observer (138)–(141) 
achieves exponential convergence of the state estimate.
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 û(D, t ) 5CX̂ ( t ) ,  (140) 
 X̂

#
( t ) 5AX̂ ( t ) 1 BU ( t ) 1M (D )L(Y ( t ) 2 û(0, t )) .

 (141) 

where L is chosen such that A2 LC is Hurwitz and 

 M (x ) 5 3I   0 4 eB0 A
I 0

R x c I
0
d . (142) 

The following result establishes that the error between the 
states of the observer (138)–(141) and of the plant (133)–(136) 
exponentially converges to zero. 

Theorem 9 
The state (X̂ ( t ) , û( t ))  of the observer (138)–(141) converges 
exponentially to the state (X ( t ) , u( t ))  of the plant (133)–(136), 
that is, there exist positive constants G, g such that 

 G ( t ) # Ge2gt G (0)  (143) 

for all t $ 0, where 

 G ( t ) ! 0X ( t ) 2 X̂ ( t ) 0 21 3D

0
(u(x, t ) 2 û(x, t )) 2dx.  (144) 

The observer (133)–(136) estimates not only the ODE state but 
also the internal state of the sensor dynamics. 

Example 6
Consider the unstable scalar plant A5 B5C5 1. Since the 
nominal (D5 0) observer error system is governed by the 
system matrix A2CL5 12L,  we choose the observer gain 
L5 11g,  where g . 0. The observer is thus given by 

 ût(x, t ) 5 ûxx (x, t )1(11 g )sin h(x ) (Y ( t )2û(0, t )) ,   (145) 
 ûx (0, t ) 5 0, (146) 
 û(D, t ) 5 X̂ ( t ) ,  (147) 

 X̂
#
( t ) 5 X̂ ( t ) 1U ( t ) 1 (11 g )sin h(D ) (Y ( t )2û(0, t )) .

 (148) 

We note that the observer gain grows with D and that the gain 
on the sensor state is the highest on the part of the sensor state 
that is the farthest away from the sensor location (x5 0). 
Figure 14 shows simulation results for the state estimation 
error X| ( t ) 5X ( t )2X̂ ( t )  for the scalar ODE state for param-
eter values D5 3 and g5 1. The initial conditions are 
X (0) 5 1, X̂ (0) 5 0, u(x, 0) ; 0, and û(x, 0) ; 0.  !

When the sensor dynamics are governed by pure delay, 
then the observer simplifies to 

 ût(x, t ) 5 ûx (x, t ) 1CeAxL(Y ( t )2û(0, t )) ,  (149) 

 û(D, t ) 5CX̂ ( t ) , (150) 

 X̂
#
( t ) 5AX̂ ( t ) 1 BU ( t ) 1 eADL(Y ( t ) 2 û(0, t )) ,  (151) 

which can be equivalently written as 

 J
#

( t ) 5AJ ( t ) 1 BU ( t2D ) 1 L(Y ( t ) 2CJ ( t )) ,   (152) 

 X̂ ( t ) 5 eADJ ( t ) 1 3
t

t2D
eA(t2u)BU (u )du,  (153) 

 û(x, t ) 5C ceADxJ ( t )13
t1D(x21)

t2D
eA(t1D(x21)2u)BU (u )du d .

 (154) 

The observer representation (152), (153) can be arrived at 
without resorting to the backstepping design. The variable 
J ( t )  is the estimate of X ( t2D ) ,  whereas the variable 
X̂ ( t )  is obtained by advancing J ( t )  in time by the mount 
D  with the help of the variation of constants formula. On 
the other hand, observer design when the sensor dynamics 
are governed by the heat PDE cannot be completed using 
similar intuition. The observer (138)–(141) is derived using 
the PDE backstepping approach. 

0 0.5 1 1.5 2 2.5 3
−15

−10

−5

0

5

t

X
 (

t)
~

FIGURE 14 State-estimation error X|(t ) 5 X(t )2X̂(t )  for the unsta-
ble and unmeasured scalar ordinary differential equation system 
X
#
(t ) 5X(t )1U(t )  in Example 6. The solid curve displays the esti-

mation transient in the presence of sensor dynamics given by a 
heat equation on the domain of length D5 3. The dashed curve 
displays the nominal observer response X|( t ) 5 X|(0 )exp(2gt )  
for D5 0.

The most significant open problem is extending the explicit predictor 
feedback design to systems with simultaneous input and state delays.
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CONCLUSIONS: TOOLS AND OPEN PROBLEMS
The PDE backstepping approach is a potentially powerful 
tool for advancing design techniques for systems with 
input and output delays. Three key ideas are presented in 
this article. The first idea is the construction of backstep-
ping transformations that facilitate treatment of delays 
and PDE dynamics at the input, as well as in more complex 
plant structures such as systems in the lower  triangular 
form, with delays or PDE dynamics affecting the integra-
tors. The second idea is the construction of Lyapunov 
functionals and explicit stability estimates, with the help 
of direct and inverse backstepping transformations. The 
third idea is the connection between delay systems and an 
array of other classes of PDE systems, which can be 
approached in a similar manner, each introducing a differ-
ent type of challenge. 

All the results presented here are constructive. The con-
stants and bounds that are not stated explicitly, such as the 
robustness margin d  in Theorem 3 and the convergence 
speeds in all the theorems, are estimated explicitly in the 
proofs of these theorems. However, these estimates are 
conservative and have limited value as guidance on the 
achievable convergence speeds or robustness margins. 

A wealth of future opportunities exists for research in 
this area. The most significant open problem is extending 
the explicit predictor feedback design to systems with 
simultaneous input and state delays. Another open prob-
lem is developing predictor feedback for systems with 
state-dependent input delays, which are related to, but 
not a subclass, of the case of time-varying delays. Devel-
oping design tools for nonlinear systems with input 
dynamics governed by heat or wave PDEs is of lesser 
practical significance, but it is of considerable theoretical 
and methodological significance. Finally, it is of interest 
to develop feedback laws for more general PDE-PDE cas-
cades, such as wave-heat (or structure-fluid) and other 
interconnections. 
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