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Lyapunov Stability of Linear Predictor
Feedback for Time-Varying Input Delay

Miroslav Krstic

Abstract—For linear time-invariant systems with a time-varying input
delay, an explicit formula for predictor feedback was presented by Nihtila
in 1991. In this note we construct a time-varying Lyapunov functional for
the closed-loop system and establish exponential stability. The key chal-
lenge is the selection of a state for a transport partial differential equation,
which has a non-constant propagation speed, and which is the basis of the
stability analysis. We illustrate the design and its conditions with several ex-
amples. We also develop an observer equivalent of the predictor feedback
design, for the case of time-varying sensor delay.

Index Terms—Backstepping, delay systems, distributed parameter
systems.

I. INTRODUCTION

Systems with long input delays, even those where the plant is un-
stable, can be successfully controlled using predictor feedback [4]–[8],
[10]–[17], [20], [21], [24]–[26] and methods based on LQ control [2],
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[3], [22]. All these results deal with problems where the delay is con-
stant. In the case of systems with time-varying delays, various results
exist for problems with state delay and no input delay. However, the
case of systems with time-varying input delay has received very little
attention.

A basic idea how to approach problems with time-varying input
delay was introduced by Artstein [1], however, the design is not worked
out in detail since the case of time-varying delay is considered only
for plants that are time-varying, in which case explicit developments
are not possible. An explicit state-feedback design for linear time-in-
variant (LTI) plants with time-varying input delays was presented by
Nihtila [19]. (A parameter-adaptive design for a scalar system with
known time-varying delay function [18] preceded the author’s gen-
eral result in [19].) In this note we establish exponential stability of
the feedback system with the controller from [19]. We do so using an
explicit construction of a (strict) Lyapunov functional. Stability is not
claimed in [1], [19], where the approach employed in the design uses a
transformation that relates infinite-dimensional feedback system with
another finite-dimensional system. Such a construction does not yield
a Lyapunov functional, though it yields a controller that compensates
the time-varying delay.

The challenge in the study of stability under time-varying input
delay, as compared to our result for constant input delays [12], is
that one has to construct a Lyapunov functional using a backstepping
transformation with time-varying kernels, and transforming the actu-
ator state into a transport partial differential equation (PDE) with a
convection speed coefficient that varies with both space and time. An
additional challenge is how to define the state of the transport PDE
modeling the actuator state using the past input signal.

We start in Section II with an intuitive introduction of the predictor
feedback under time-varying input delay. Then in Section III we
present a stability study. In Section IV we present an observer for the
case of a plant with time-varying sensor delay. Finally, in Section V
we present several examples, including a numerical example with a
scalar unstable plant and with an oscillating time-varying input delay.

II. PREDICTOR FEEDBACK DESIGN WITH
TIME-VARYING ACTUATOR DELAY

We consider the system

(1)

where is the state, is the control input, and is a contin-
uously differentiable function that incorporates the actuator delay. This
function will have to satisfy certain conditions that we shall impose in
our development, in particular, that

(2)

One can alternatively view the function in the more standard form
, where is a time-varying delay. How-

ever, the formalism involving the function turns out to be more
convenient, particularly because the predictor problem requires the in-
verse function of , i.e., , so we will proceed with the model
(1). The invertibility of will be ensured by imposing the following
assumption.

Assumption 1: is a continuously differentiable func-
tion that satisfies

(3)

and such that

(4)
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The meaning of the assumption is that the function is strictly
increasing, which, as we shall see, we need in several elements of our
analysis.

The main premise of the predictor based design is that one generates
the control input

(5)

so that the closed-loop system is for all
, or, alternatively, using the inverse of

(6)

The gain vector is selected so that is Hurwitz.
We now re-write (5) as

(7)

With the help of the model (1) and the variation of constants formula,
the quantity is written as

(8)

To express the integral in terms of the signal rather than the signal
, we introduce the change of the integration variable, ,

i.e., . Recalling the basic differentiation rule for the inverse
of a function, , where denotes
the derivative of the function , we get

(9)

Substituting this expression into the control law (7), we obtain the pre-
dictor feedback

(10)

The division by safe thanks to assumption (3).
We refer to the quantity as the delay time and to the quantity

as the prediction time.
Remark 2.1: To make sure the above discussion is completely clear,

we point out that, when the system has a constant delay, ,
we have and . Hence, controller
(10) reduces to the standard predictor feedback for constant delay [1],
[12]–[14].

III. STABILITY ANALYSIS

In our stability analysis we will us the transport equation represen-
tation of the delay and a Lyapunov construction. First we introduce
the following fairly non-obvious choice for the state of the transport
equation:

(11)

This choice yields boundary values and
. System (1) can now be represented as

(12)

(13)

(14)

where the speed of propagation of the transport equation is given by

(15)

To obtain a meaningful stability result, we need the propagation
speed function to be strictly positive and uniformly bounded
from below and from above by finite constants. Guided by the concern
for boundedness from above, we examine the denominator .
Since we assumed that is strictly increasing (and continuous), so
is . We also recall the assumption (2). We need to make this
inequality strict, since if , i.e., , for any , the prop-
agation speed is infinite at that time instant and the transport PDE rep-
resentation does not make sense for the study of the stability problem.
Hence, we assume the following.

Assumption 2: for all and

(16)

Assumption 2 can be alternatively stated as . The
implication on the delay time and the prediction time functions is that
they are both positive and uniformly bounded.

Now we return to the system (12)–(14), the definition of the transport
PDE state (11), and the control law (10). The control law (10) is written
in terms of as

(17)

In order to study exponential stability of the system
, we introduce the initial condition

, , and . Now we establish the
following stability result.

Theorem 1: Consider the closed-loop system consisting of the plant
(12)–(14) and the controller (17) and let Assumptions 1 and 2 hold.
There exists a positive constants , and a positive constant indepen-
dent of the function , such that

(18)

Proof: Consider the transformation of the transport PDE state
given by

(19)

Taking the derivatives of with respect to and we get
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(20)

where we have used integration by parts, and

(21)

With the help of (17) we also obtain and hence we arrive
at the “target system”

(22)

(23)

(24)

This is a cascade configuration . We focus first on the Lyapunov
analysis of the -subsystem. We take a Lyapunov function

(25)

where is any positive constant. The time derivative of is

(26)

Noting that , we get

(27)

Next, we observe that

(28)

is a function of only. Hence

(29)

Since this is a linear function of , it follows that it has a minimum
either at or , so we get

(30)

Next we note that
, which yields

(31)

Choosing , we get
, where . So, re-

turning to , we have that

(32)

Let us now turn our attention to the -subsystem. We have

(33)

where satisfies a Lyapunov equation
. With a usual completion of squares, we get

(34)

Now we take the Lyapunov functional

(35)

Its derivative is

(36)

Finally, with the definition of we get , where

(37)

Thus we obtain for all . Let us now denote
. We show that

, where

(38)

(39)
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It then follows that for all . Now
we consider the norm . We recall the
backstepping transformation (19) and introduce its inverse

(40)

It can be show that and
, where

(41)

(42)

(43)

(44)

and where and . Furthermore, we can
show that

(45)

(46)

(47)

(48)

With a few substitutions we obtain that ,
where and . Fi-
nally, we get , which com-
pletes the proof of the theorem with and with .
By choosing , i.e., by picking positive
and such that

(49)

we get , so is independent of .
While Theorem 1 provides a stability result in terms of the system

norm , we would like to also get a stability
result in terms of the norm . Towards that end,
we first observe that

(50)

(51)

With these identities and Theorem 1 we obtain the following.

Theorem 2: Consider the closed-loop system consisting of the plant
(12)–(14) and the controller (17) and let Assumptions 1 and 2 hold.
There exist positive constants and (the latter one being independent
of ) such that

(52)

for all , where is as in the proof of Theorem 1 and

(53)

IV. OBSERVER DESIGN WITH TIME-VARYING SENSOR DELAY

We give a brief presentation of an observer design for an LTI systems
with a time-varying sensor delay:

(54)

(55)

We approach the observer design in a two-step manner:
• Design an observer for the delay state since the output

is delayed.
• Use a model-based predictor to advance the estimate of

by the delay time .
We start by writing (54) as

. Then we introduce a state estimator for
as ,
where is selected so that the matrix is Hurwitz, i.e.,
so that the system , where

, is exponentially stable in the time
variable . Let us now denote . This variable is
governed by the differential equation

(56)

Now we take , which is an estimate of the
past state , and advance it by the delay time ,
obtaining the estimate of the current state as

.
To summarize, the observer is given by the equations

(57)

(58)

This observer has a structure that displays duality with respect to the
predictor-based controller (10) in two interesting ways:

• While controller (10) employs prediction over the future period
, the observer (57)–(58) employs prediction over the

past period .
• While controller (10) involves a time derivative of , the

observer (57)–(58) involves a time derivative of .
In the case of a constant sensor delay, , the observer
(57)–(58) reduces to [9], [12], [25].

V. EXAMPLES

The first two examples violate some of the assumptions of the theory
but are valuable in illustrating the design principle. The other two ex-
amples fit the assumptions.

Example 5.1: (Linearly growing delay.) We consider ,
which means that the delay time is linearly growing and is unbounded.
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(In addition, the assumption that the delay is strictly positive for all
time is violated, but this assumption is less essential.) So, the predictor
feedback (10) assumes the form

(59)

It is interesting to observe that this system has zero dead time, since
the initial delay is zero and the controller continues to compensate the
delay for . The control signal is and, since

, the control signal remains a bounded function
in spite of the delay growing unbounded.

This is potentially confusing as some difficulty should arise in a system
where the delay is growing unbounded. The difficulty manifests itself
when the system is subject to a disturbance or modeling error. In that
case the control signal will not be given by
but will be governed by the feedback law (59). In this feedback law
the gains grow exponentially with time. In the presence of a persistent
disturbance, which prevents from settling, the control signal will
grow unbounded as its gains grow unbounded.

Example 5.2: (Prediction time grows exponentially.) We consider
. In this case

(60)
The gain growth in is more pronounced than in Example 5.2—the
gains grow as an exponential of an exponential.

Example 5.3: (Bounded delay with a constant limit.) We consider
, where the prediction time is

The initial value of the prediction time is , the final
value is , and the uniform bound on the prediction time
is . Furthermore, the uniform bound on the quantity

is 1. Hence
the feedback law

employs bounded gains and achieves exponential stability (it also
achieves a finite disturbance-to-state gain).

Example 5.4: (Bounded delay function without a limit.) In the past
three examples the function was monotonic and it had a limit
(in two of the three examples the function itself also had a limit).
Now we consider an example where is oscillatory. Let

and denote . So, the gains of the
predictor feedback

(61)

Fig. 1. Linear system with time-varying actuator
delay .

Fig. 2. Oscillating delay function in Example 5.4. Solid: , dashed: .

are uniformly bounded. Now we consider a specific first-order example

(62)

namely, . In closed loop with the control law

where , the plant (62) has an explicit solution

.
(63)

The explicit form of the control signal is
(see Fig. 1). The explicit formulae

for both and require , which is given by .
Figs. 2 and 3 show the graphs of the delay, state, and control functions.
The gain is chosen as to achieve visual clarity about the
LTV character of the overall system, particularly about the response
of , which has a “wavy” character to achieve compensation of the
oscillating delay function.

Example 5.5: (Observer.) We illustrate the observer design (57),

(58) for a second order system with ,

, and . The resulting observer is
(64)

(65)

(66)

(67)

VI. CONCLUSION

For predictor feedback for LTI systems with a time-varying delay,
we have proved exponential stability under several conditions on the
delay function :
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Fig. 3. State and control signal evolution for Example 5.4. The control “kicks
in” at . The “waviness” in the control is for the purpose
of compensation of the time-varying (oscillating) delay.

• the delay function is strictly positive (technical condition
which ensures that the state space of the input dynamics can be
defined);

• the delay function is uniformly bounded from above;
• the delay rate function, , is strictly smaller than 1, i.e., the

delay may increase at a rate smaller than 1;
• the delay rate function is uniformly bounded from below (by

a possibly negative finite constant), i.e., the delay may decrease at
a uniformly bounded rate.

These four conditions need to be satisfied simultaneously but they are
not restrictive and they have two natural implications on the growth and
decrease of the delay. First, the delay can grow at a rate strictly smaller
than 1 but not indefinitely, because the delay must remain uniformly
bounded. Second, the delay may decrease at any uniformly bounded
rate but not indefinitely, because the delay must remain positive.

It may be somewhat disappointing, though inherent in the problem,
that the delay function needs to be known sufficiently
far in advance in order to be able to compute , which is needed
in the controller (10). If the delay is bounded by , it is sufficient that
the function be know seconds in advance. For instance, in
Example 5.4 and in Fig. 2, . An approximate real-time com-
putation of can be conducted using the differential equation

, where and . This idea is
based on the singular perturbation approach and will result in a stable
mainainance of thanks to the boundary layer being ex-
ponentially stable since .

A small error in the knowledge of can be tolerated (the error
needs to be sufficiently small and sufficiently slow). This robustness
result is provable due to the fact that the nominal closed-loop system

under predictor feedback is exponentially stable. The topology of the
system in the robustness proof involves an norm of , rather
than the norm.

Another approach to studying stability in the presence of delays is the
invariance principle [23, Theorem IV.4.2]. However, with the approach
we pursue, which involves a strict Lyapunov functional and explicit
norm estimates, we avoid a separate study of orbital precompactness
[23, Theorem IV.5.2].
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