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Much of the boundary control of wave equations in one dimension is based on a single principle—
passivity—under the assumption that control is applied through Neumann actuation on one boundary and
the other boundary satisfies a homogeneous Dirichlet boundary condition. We have recently expanded
the scope of tractable problems by allowing destabilizing anti-stiffness (a Robin type condition) on the
uncontrolled boundary, where the uncontrolled system has a finite number of positive real eigenvalues.
In this paper we go further and develop a methodology for the case where the uncontrolled boundary
condition has anti-damping, which makes the real parts of all the eigenvalues of the uncontrolled system
positive and arbitrarily high, i.e., the system is “anti-stable” (exponentially stable in negative time). Using
a conceptually novel integral transformation, we obtain extremely simple, explicit formulae for the gain
functions. For the case with only boundary sensing available (at the same end with actuation), we design
backstepping observers which are dual to the backstepping controllers and have explicit output injection
gains. We then combine the control and observer designs into an output-feedback compensator and prove

the exponential stability of the closed-loop system.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of stabilization of a one-dimensional
wave equation which is controlled from one end and contains
instability at the other (free) end. The nature of instability (negative
damping) is such that all of the open-loop eigenvalues are located
on the right-hand side of the complex plane, thus the system is not
just unstable, it is anti-stable.

Our control design is based on the method of “backstepping”
[1-3], which results in explicit formulae for the gain functions. In
a recent paper [3], the backstepping method was used to design
controllers and observers for an unstable wave equation with
destabilizing boundary condition at the free end. However, in that
paper the destabilizing term was proportional to displacement,
while in this paper it is proportional to velocity, in the form of
“anti-damper”, which results in all eigenvalues being unstable
instead of just a few. The concept of a boundary anti-damper is not
of huge physical relevance, however, the design that we develop
for this anti-stable system is a methodological breakthrough in
boundary control of wave equations. We introduce a new integral
transformation that makes the closed-loop system dynamically
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behave as a wave equation with well-known “passive damper”
controller [4-10]. The previous results for wave equation with
nonpositive damping include [11], where a distributed damping of
indefinite sign is considered, and [12], where one end of the string
is damped and anti-damped periodically in time.

For the case when only boundary sensing is available (at
the same end with actuation), we design backstepping observers
which are dual to the backstepping controllers and have explicit
output injection gains. Both setups are considered: Neumann actu-
ation/Dirichlet sensing and Dirichlet actuation/Neumann sensing.
We then combine the control and observer designs into dynamic
compensators and prove the exponential stability of the closed-
loop system.

2. Problem formulation

We consider a one-dimensional wave equation

Uye (X, £) = un(x,t), O0<x<1,t>0 (1)
uy(0,t) = —qu¢(0,t), t=>0 (2)
u(1,t) =U(), t=>D0, (3)

where U(t) is the control input and ¢ # =1 is a constant
parameter. For ¢ = 0, Egs. (1)-(3) model a string which is free at
the end x = O and is actuated at the opposite end. For g > O the free
end of the string is negatively damped, with all eigenvalues located
on the right-hand side of the complex plane (hence the open-loop
system is “anti-stable”).
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The objective is to exponentially stabilize the system (1)-(3)
around the zero equilibrium. The case of Dirichlet actuation is
considered in Section 6.

3. Control design

Consider the transformation

wix, £) = ulx, £) — f ke, yyuy, 0 dy — / Csx P, 0 dy
0 0

— / mx, Yu(y, t) dy, (4)
0

where the gains k(x, y), s(x, y), and m(x, y) are to be determined.
We want to map the system (1)-(3) into the following target
system

we (X, t) = wu(x,t), 0<x<1,t>0 (5)
wx(0,t) = cwe(0, ), t>0 (6)
wy(1,t) = —cow(1,t), >0, (7)

which is exponentially stable forc > 0andcy > 0(see, e.g.,[3]). As
will be shown later, the transformation (4) is invertible in a certain
norm, so that stability of the target system ensures the stability of
the closed-loop system.

Compared with the backstepping transformations for parabolic
PDEs, there are two additional terms in (4)—the second and the
third integrals in (4). The term with u; is natural because hyperbolic
systems are second order in time and therefore the state variable
is (u, u;) instead of just u. The need for the term with u, is less
obvious and it is in fact the main conceptual novelty of the paper.

Substituting (4) into (5)—(7) we obtain

0 = we(x, t) — we(x, t)

= u(x,t) (ik(x, X) + ky(x, X)>
dx
+u(x, £) (ES(& x) + sy (x, X)>
dx
U, 0) (im("’ X) + My (x, x)) 4 / ok, YUy, £) dy
0

— / k(x, y)uyy (v, £) dy + / Sw(X, Y)ue (y, t) dy

0 0
- / S(x, Yugy(y, t) dy

0

+ / e (%, Y1ty (v, £) ly — / (%, V)it . 1) dy
0 0

—k(x, x)u(x, t) — s(x, x)ug(x, t) — m(x, x)u(x, t). (8)

Using integration by parts (twice) in the appropriate integrals and
the identity ky(x, x) 4 k,(x, x) = (d/dx)k(x, x), we obtain

d d
0 = 2u(x, t)—k(x, x) + 2u;(x, t) —s(x, x)
dx dx

d X
+ 2uy(x, t)am(x, X) + / (kxx (X, ) — kyy(x, y))u(y, t) dy
0
+ / (Su(X. ) — 5y (6, )t . 1) dy
0

X
+ [ matey) = my . 0 ey
0
—ky(x, 0)u(0, t) + [gmy(x, 0) — sy(x, 0) — gk(x, 0)]u; (0, t)
Matching all the terms we get the following PDE for k(x, y):

ko (%, ¥) = kyy(x,y), 0<y<x<1, (10)
ky(x,0) =0, x¢€]0,1), 11
d

—k(x,x) =0, xe][0,1), (12)
dx

and two coupled PDEs for s(x, y) and m(x, y):

sx(X,¥) =syy(x,y), O<y<x<1, (13)
sy(x, 0) = qgmy(x, 0) — gk(x,0), x€[0, 1), (14)
d

—s(x,x) =0, xe[0,1) (15)
dx

and

Mu(X,y) =myx,y), 0<y<x<1, (16)
m(x,0) = gs(x,0), x¢€][0,1), (17)
d

—m(x,x) =0, xe€][0,1). (18)
dx

Substituting (4) into the boundary condition (6) we get
0= w)((05 t) - th(ov t)

= [gm(0, 0) —s(0, 0) — q — c]ue (0, t) — k(0, 0)u(0,t),  (19)
which gives two more conditions:
k(0,0) =0, (20)
qm(0,0) =s(0,0) +q +c. (21)
The solution to (10)-(12), (20) is simply k(x,y) = 0. This is a
consequence of not changing a stiffness of the system (i.e., if we
were to add the term proportional to w(0, t) to the boundary
condition at x = 0, the gain k(x, y) would not be zero). To solve
the PDEs for s and m, we note that a general solution to (13) and
(15) is s(x,y) = ¢(x — y) and similarly for (16), (18) we have
m(x,y) = Y (x — y) for arbitrary functions ¢ and . Using (14)
and (17) we obtain

') =gy’ (%), (22)
Y (%) = qo(x). (23)
Integrating (22) from O to x and using (23), we obtain

(@ — D(@Kx) —¢(0)) =0. (24)

Since g* # 1, we get that both ¢ (x) and 1 (x) are constant functions
of x. Finally, using the relationship (21) together with (23), we get

q+c
S(X, =
*.y) pr—

mex, y) = q;g J_r 28 (26)

: (25)

1

The transformation (4) can therefore be written in one of the two
forms, either as

w(x, ) = ux, £) — q(g+c)f (v, £) dy
-1 Jo

X
-2 [Cwooay, @7)
g —=1Jo
or as
1+qc
L

q(q+c)

¢ —1
qg+c [*
o1 u(y, t) dy. (28)
- 0

Differentiating (28) with respect to x, setting x = 1, and using the
boundary condition (7), we obtain the following controller

wx, t) =

u(x, t) +

u(o, t)
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U = 24919 06— cut. o)
14 ¢qc
. (U O PR 29)
1+qc (1, 1+qc t W, Y.

Note that this controller is non-local since it uses spatially-
averaged velocity.

We will use the following two spaces in the paper:
H=H'0,1) x[*0,1), X =H*0,1) x H'(0, 1). (30)

Our main result on stabilization is given by the following
theorem.

Theorem 1. Consider the system (1)-(3) with the controller (29)
under the assumption ¢ # 1,c > 0, gqc # —1. For any initial data
(u(-, 0), us(-,0)) € H the closed-loop system has a unique solution
(u, u) € C([0, o0), H), which is exponentially stable in the sense of
the norm

1 1 1/2
(/ Uy (X, t)de+/ ue (x, t)?dx + u(1, r)2> ) (31)
0 0

If, in addition, the initial conditions are compatible with the boundary
conditions and belong to X, then (u,u;) € C'([0,00),H) N
C([0, 00), X) is the classical solution of the closed-loop system.

Proof. First, let us establish the stability of the target system. With
the Lyapunov function

1 2 1 2 2
Vi) = 5 wy(x, t)°dx + > wt(x t) dx+ w(l t)
0

0
1
+ 8/ (x — 2)wy(x, Hw(x, t) dx, (32)
0

where § is sufficiently small (so that V; is positive definite), we
obtain

8 1
=— f (wy(x, 1) 4wy (x, £)?) dx
2 Jo

— [e =81+ A ]we(0,0)* — g [we(1, 0% + gw(1, 0)?]
< —wVy, (33)
where w > 0. Since
a1V, Vi 2 a;Va, (34)
where a; = min{1/2 — §, ¢y/2}, a, = max{1/2 + 8, cp/2}, and

1 1
Va(t) :/ wy(x, t)zdx—l—/ we (x, £)2dx + w(1, t)?, (35)
0 0
we obtain
az —owt
Vo (t) < e 'V, (0). (36)

1

Let us differentiate the transformation (28) with respect to t and x.
We get

+qc +c
we(x, t) = — U (X, t) — —— 1ux(X, t), (37)
and
1+ qc +c
wy(x, t) = —qzi_q]ux(x, t) — %u[(x, t). (38)

From (37) and (38) it easily follows that

1
/ (wX(X7 t)z + wt(x9 t)z) dX

1 2
< [t 07 i 1) (39
Using the transformation (27) with x = 1, we get
w(l,t)?
4 2 1
< 2u(1,0% + (|(q| +‘;))2 / (uex, 0% + u (x> dx. (40)

From (39) and (40) we obtain
@+0)*+(c+1)?

N (TR R @
where
1 1
v3(r):/ Uy (X, t)zdx—i—/ u (x, £)%dx 4+ u(1, )2 (42)
0 0

One can easily show that the inverse transformation to
(37)-(38)is

1+ qc +c
ug(x, t) = T2 we (X, £) + 1wx(x t), (43)
and

1+ qc +c
(%, £) = =5 wilx, t)+ w0, (44)

Settingx = 1in(27)and using (43), (44) to express u(1, t) in terms
of w(1, t), w, and wy, we obtain
c)? 1)?
APPAC R B C R (45)
(c —1)?
From (36), (41) and (45) one gets
16a; (@ +0)* + (c+ DH((@+0)* + @+ D?)
a (c = D2(lgl — D?
x e~“'V5(0). (46)
The existence and uniqueness of the solution follow by standard
arguments as in [3]. First, the abstract operator describing the
system is introduced. It is dissipative due to the estimates above

and it is easy to show that it has a bounded inverse. The result then
follows from the Lumer-Phillips theorem. O

V3(t) <

4. Observer design

In this section, we design an observer for the system (1)-(3)
when only boundary measurements are available. We assume
that displacement and velocity at the end x = 1 are measured
(i.e, u(1, t) and u,(1, t)).

Since we expect this observer to be dual to the controller
designed in the previous section, it is natural to assume that
the observer gains are also constant. We propose the following
observer!

Uy (%, £) = fi(x, £) + pr[u(1, £) — (1, 0)]
+p2lue (1, £) — 6 (1, 0)] (47)

—qie (0, t) + ps[u(1, ©) — a(1, £)]

+palue(1,6) — 6 (1, )] (48)
Ux(1,8) = U(0) +ps[u(l, ©) — a(1, )]

+pslue(1, ) — U (1, 0)]. (49)

ax(ov t) =

1 For the rest of the paper we do not explicitly specify that every PDE evolves on
(x,t) : 0 < x < 1,t > 0 and that boundary conditions are valid for t > 0.
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The observer error it = u — 11 satisfies

ﬁft(X1 t) = ﬁXX(x’ t) - plﬁ(]v t) - pzﬁ[(ls t) (50)
ﬁx(O, t) = _qﬂ[(05 t) - p3ﬁ(1v t) - p4ﬂt(1s t) (5])
Uy(1,t) = —psu(1, t) — pslle(1, t). (52)

Consider the transformation

1
ux, t) = w(x, t)+a[ w(y, t)dy

1 1
ny’ / Dy, O dy + 7 / (9, 1) dy. (53)

Note that unlike in the control transformation (27), here the
integrals run from x to 1. This is because the input and the output
are collocated.

We map the observer error system into the system

W (X, 1) = Wix(x, £) (54)
Wy (0, t) = Cw (0, t) (55)
wy(1,t) = —cow(1, t), (56)

which is exponentially stable for ¢ > 0 and ¢y > 0.
First, we differentiate the transformation (53) twice w.r.t. time
(note that ti(1, t) = w(1, t)),

U (X, 1) = Ugx (X, 1) + @y (1, ) + By (1, 1) + y e (1, £)

= U (X, t) — acoi(1, t) — Beolle (1, 1) + yUu (1, t). (57)
Comparing the above with (50) we get
y =0, pi=ac, p2=pc. (58)

From the transformation (53) we also get
Uy(1,t) = wx(1,t) —aw(1,t) — Bw(1,t)

= —(co + )u(1,t) — puc(1,t) (59)
and

1
Uy (0, £) + qu(0, t) = —aw(0,t) + qa/ we(y, t) dy
0

+ (0, H)[¢ — B +q — qBC] — qBcou(l, t). (60)
Comparing (59) and (60) with (51) and (52), respectively, we get
p5:C0+a7 pszﬂa (61)
p3 = qpBco, ps=0, a=0, c+q=p(1+q0). (62)
Using (58), (61) and (62), we get the observer
. . co(q +©) .
flee (x, £) = e (X, £) + —————[ue (1, £) — f1e(1, )] (63)

14 qc
. . C +c .
i,0.0) = —qi 0.0 + 299D a6y —aca, ) (64)
1+4qc
U(1,6) = U(t) + colu(1, t) — (1, t)]
q+c¢ A
1,t) — 1,t 65
+1+q5[ur(, ) — u(1,8)] (65)
and the transformation is
3 . qg+c¢ ['.
ux, t) = w(x, t) + = | we(y, t)dy. (66)
1+qc J,

Note the duality of 4 observer gains in (63)-(65) to 4 control
gains in (29) (for ¢ = c), even though the control and observer
transformations are different.

Theorem 2. For any initial data (ii(-, 0), ¢ (-, 0)) € H the system
(50)-(52) with¢ > 0,¢ # 1,¢q # —1, and p; — ps given by (58),
(61)-(62), has a unique solution (i, ;) € C([0, 00), H), which is
exponentially stable in the sense of the norm

1 1 1/2
(/ T (%, t)zdx—i-/ il (x, t)zdx—i—ﬁ(l,t)z) . (67)

0 0

If, in addition, the initial conditions are compatible with the boundary
conditions and belong to X, then (ii,1;) € C'([0,00),H) N
C([0, 00), X) is the classical solution of the system (50)-(52).

Proof. With the Lyapunov function

L. 2 1t 2 G - 2
Vy = = Wy(x, t)°dx + = we(x, £)°dx + —w(1, t)
2 Jo 2 Jo 2

1
+ 8, / (x — 2)wy(x, t)w(x, t) dx, (68)
0

where §, is sufficiently small, exactly the same calculation as in
(33) shows that

Vs < —aVy, (69)

where & > 0.
Differentiating the transformation (66) we get

¢
i (x, £) = By(x, £) — 1

W (X, 1), 70
1+q5wt(x ) (70)
and
- . qg+c¢ . co(q+¢0) .
7t = 9t - ~ 9t - = l,t. 71
Ur(x, t) = we(x, t) 1+chx(x ) g w(l,t) (71)

Note also that ti(1, t) = w(1, t). Therefore,

I ll® + l1aell® + 2(1)* < Me(liell® + 1 @cl” + D(D?),  (72)

where Mg = 3 + 3 max{c3, 1}(q + ¢)?/(1 + q¢)*.
The inverse to (70) and (71) is

(14 q8)?ix(x, t) + (g + &) (1 + gO) iU (x, t)

e ) = @ - —1)
(@+0?* .
+ @-DeE—1 1)u(l, t) (73)
3 (14 q&)?i, (x, t) + (q + O) (1 4 qO)iix(x, 1)
wt(X, t) =
(@ —1D(2-1)
co(q+ ) (1+qc) .
i r— (1, o). (74)
Therefore,
lxll® + 1 ]1” + ®(1)* < My ([Ell* + [|Te 1> + 2(1)%), (75)
where M; = 3max{c}, 1}((g + O)* + (1 + qO)»)*(¢> —

1)72(¢% — 1)~2. From (69), (72), and (75) we get that the norm
(67) decays exponentially. The existence and uniqueness of the
solution of the observer error system are obtained as in the proof
of Theorem 1. O

5. Output feedback
In this section we combine the controller and the observer
designed in the previous two sections to solve the output-feedback

problem.

Theorem 3. Consider the system (1)-(3) with the observer (63)-(65)
and the controller

u(t) = %a(o, £) — cou(l, £)
1
R R S LCR a2y B WP (76)

14 qc 14+qc Jo
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under the assumptionsc > 0,¢ > 0,c # 1,¢ # 1,¢cq # —1,¢q #
—1. For any initial data (u(-, 0), u.(-, 0), @i(-, 0), ti(-, 0)) € H x H,
the closed-loop system is exponentially stable in the sense of the norm

1 1
</ uy(x, £)%dx + / ur(x, £)2dx + u(1, t)?
0 0

1 1 1/2
+/ fle (x, t)zdx—i-/ i (x, t)zdx+ﬁ(l,t)2) ) (77)
0 0

If, in addition, the initial conditions are compatible with the boundary
conditions and belong to X x X, then (u, u;, i, ii;) € C'([0, 0o), H x
H) N C([0, 00), X x X) is the classical solution of the closed-loop
system.

Proof. Consider two transformations: (66) and

D, 1) = +_qlA X 0) + q(q+ )A(o £
—qqzt:/(, it (y. t) dy. (78)

It is straightforward to show that these transformations along with
the control law (76) map the system (il, i) into the (), W)-system,
where the w part is given by (54)-(56) and w satisfies the following
PDE:

Wit (X, £) = Wi (X, 1) +A(qe (1, t) — xWe (1, 1)) (79)

Wy(0, £) = ctie (0, t) — A M~(l t) (80)
q+c

De(1,6) = —co(1, t 6_C~1r 81

wx(,)——Cow(,)+1+qur(,), (81)

where

q 0@+O@+o (82)

(> — (1 +q0)

Note that the PDE (79)-(81) contains the terms proportional to
w; (1, t) and W (1, t), which are in H? and H? respectively, while
our Lyapunov functions used in control and observer designs
are H' norms. To overcome this difficulty, we introduce a new
variable w(x, t) = w(x, t) + Axw(1, t), which eliminates the term
wy (1, £). The remaining w; (1, t)-terms are handled using the term
—;(1, t)? in V4, which was simply discarded in the estimate (69)
(see (33)).
The variable w(x, t) satisfies the following PDE:

W (X, £) = Wi (X, £) + Aqiie (1, 1) (83)

coc(q+¢)

wx(0, t) = cwe (0, t) — T+

w(l,t) (84)

wy(1,t) = —cow(1,t) + ¢- C~ we(1,t) 4+ (co + DAW(1, t).(85)
1+qc

With the Lyapunov function

1 1 1!
Vs = 7/ Wy (x, t)2dx + f/ Wy (x, £) dx+ w(1, t)?
2 0 2 0

1
+81/ (x — 2wy (x, DHwe(x, t) dx + KVy (86)
0
we get
Vs = ——(n Wll? + [l )12 )—— (1, 0)?
8 2, ~—cu -
- 5 X(l t) ~wt(1st)wt(lst)
2 qc

+ (co + DAW:(1, )W (1, t) — cbe (0, t)?
coc(q+70) .

T+ @ w (0, Hw(l, t)

1
+81100(0, £)% + 8100, ) + Aqibe (1, ) / i (x, 0) dx
0

1
+Agsiwe (1, t) f (14 x)wx(x, t) dx
0

)
—K[E — 8,(1 + &)1 (0, 1) — 1<§zbt(1, £)2

2 2~

8 52 ~ 2 ~ 2
—K—cu(, £)? — K= CFoell™ + Jed17). (87)

Using Young's inequality, we estimate
. 31 o o 81 o
Vs < ——(lwxll® + e |1?) — —-cgv(1, )
4 2
c
- [5 - aa+2)] 0.0

é » - . "D
—K—Z(nwxnz + [l 11%) — KIE — 85(1 + )1/, £)?

1(82 (5] + 2)(5 — C)2 2A2q2
2 81(1+qc)? 1
) 4421+ 8
k2 A0+
2 81
Gedl +4C)fq+5)2} (1, 0)°.
(14 qc)?

For large enough K and small enough §; and §, (independent of
initial conditions) we get

1+ 43%)] We (1, £)?

(co+ 1)°

(88)

V5 < —w1Vs — aw(1, t)z, w; > 0,a > 0. (89)

Going back to the old variable w, and using (89) we obtain the
exponential stability in (w0, W) variables. From the transformations
(66) and (78) and their inverses we obtain the exponential stability
in (&I, &i) variables, and therefore in (u, i) variables. The existence
and uniqueness of the solutions is proved as in Theorem 1. O

6. Dirichlet actuation and Neumann sensing

In this section we use the control and observer transformations
derived in Sections 3 and 4 to design the controller and the
observer for the case of Dirichlet actuation and Neumann sensing.

Consider the system

U (X, 1) = Uge(x, 1) (90)
uX(O’ t) = _qut(ov t) (91)
u(1,t) = U(t). (92)

Using the transformation (28), we map this system into the target
system

Wi (X, 1) = Wi (X, £) (93)
wy(0, t) = cw (0, t) (94)
w(l,t) =0, (95)

which is exponentially stable for ¢ > 0. The controller is obtained
by setting x = 1in (28):

q9q+0o) 10, ) — q+c

u(t) =
1+qc 1+qc

ut(y, t)dy. (96)

Theorem 4. Consider the system (90)-(92) with the controller (96)
under the assumption c > 0,c # 1, cq # —1. For any initial
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data (u(-, 0), u;(-, 0)) € X compatible with the boundary conditions,
the closed-loop system has a unique classical solution (u,u;) €
C'([0, 00), H) N C([0, 00), X), which is exponentially stable in the
sense of the norm

1 1 1/2
( / ue(x, t)2dx + / U (x, t)zclx> ) (97)
0 0

Proof. Starting with the Lyapunov function

1 ! 1 !
Ve(t) = f/ wy(x, t)%dx + f/ we(x, £)2dx
2 Jo 2 Jo

1
—I—(Sf (x — 2)wy(x, Hw (x, t) dx, (98)
0

where § is sufficiently small, we obtain

y § ! 2 2

Ve =—2 (wx(x, ) 4+ we(x, 1)) dx
0

— [e =801+ A ]w (0, 0)* — gwx(l, £’

< —wVs, o> 0. (99)
The rest of the proof is very similar to the proof of Theorem 1. O

When only measurements of u, (1, t) and uy. (1, t) are available,
we design the observer

Uee (%, £) = tye(x, £) + prlux(1, £) — (1, 0)]

+p2luxe (1, ) — e (1, )] (100)
U(0,t) = —qil (0, t) + p3[u(1, t) — (1, t)]

+ Paluw (1, 1) — Uy (1, 0] (101)
u(1,t) = U@, (102)
where p1, p2, P3, P4 are constants to be chosen.

The observer error system is

U (X, £) = Ugx (X, £) — P1llx(1, £) — Pallxe (1, ) (103)
Uy (0, t) = —qur (0, t) — p3iix(1, ) — palixe (1, 1) (104)
u(1,t) =0. (105)

We use the observer transformation (66), derived for the case of
the Dirichlet sensing to map the observer error system into the
following system:

W (X, 1) = Wix(X, £) (106)
Wy (0, t) = Cw (0, t) (107)
w(l,t) =0. (108)

Substituting (66) into (103)-(105), we get the following condi-
tions:

q+¢ qg+¢c

—p, =0, - . = . 109
p1=D2 D3 a7 e P4 T (109)
Therefore, the observer is
. . q+c .
U (X, ) = Upe(X, T) — T[uxt(ly t) — Uy (1, )] (110)
N N q(q+ <) N
Uy (0, t) = —qu;(0, t) — o [ K(1,t) — Ux(1,8)] (111)
u(1,t) =U(). (112)

Note the duality of two observer gains in (110), (111) to the two
control gains in (96) (for ¢ = c).

Theorem 5. Consider the system (90)-(92) with the observer (110)-
(112) and the controller

q(q + ) a0, - 4t +c

1+¢q 1+4+qc
under the assumptions ¢ > 0, ¢ > O, c#1,C#1,cq# —1,¢q #
—1. For any initial data (u(-, 0), u;(-, 0), (-, 0), #i;(-,0)) € X x X
compatible with the boundary conditions, the closed-loop system has
a unique classical solution (u, uc, i1, ii;) € C'([0,00),H x H) N
C([0, 00), X x X), which is exponentially stable in the sense of the
norm

1 1 1
(/ U (x, t)2dx + / ue (x, t)?dx + / U (x, £)?dx
0 0 0

1 1 1 1/2
+ / Uy (x, £)%dx + f fl (x, £)2dx + / il (x, t)zdx> .
0 0 0

u() =

ut(y, t)dy (113)

(114)
Proof. The transformations (66) and
D) = — +q1A t)+q<qu )A(o 0
-2 o w (115)
-1/

map (103)-(105), (110)-(112) into (106)—(108) and the following
system

e, 6) = i, ) — 1":; (1, )
%xwma, 0 (116)

(0, 1) = cid, (0, 1) + % (1. 1) (117)

W1, 1) = 0. (118)

First, we establish the exponential stability of the system (106)-
(108) with the Lyapunov function

1 ! 1 !
Vo (t) = f/ Wy(x, t)? dx+f/- w; (x, £)2 dx
2 Jo 2 Jo
1
+61/ (x — 2)wx(x, Hwe(x, ) dx
0

1 ! 1 !
+f/ Wy (X, )2 dx—f—f/ Wy (x, £)% dx
2 Jo 2 Jo

1
+ 6 [ (X — 2)Wix (X, )Wy (x, t) dx. (119)
0
It is straightforward to show that
Vo < —oV; — atg(1,6)%, @ >0,a > 0. (120)

Note that, unlike in the case of Dirichlet sensing, here the Lyapunov
function has to contain H?> norms for us to be able to show the
exponential stability of the observer error system. This is due to
the H? nature of the terms ii,(1, t) appearing in (103)-(105).

To eliminate the term proportional to wy.(1,t) in (116) we
introduce a new variable

(@+0)(q+0)
(@* -1+ )
With the Lyapunov function

wx, t) = wx, t) — wy(1,t). (121)

1 ! 1!
Vs(t) = f/ Wy(x, t)? dx+f/ Wy (x, £)2 dx
2 Jo 2 Jo

1
+5/ (x — 2)iby(x, )iy (x, £) dx + KV5(8),
0
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we obtain

Vg < —a)z‘/g, wy > 0 (122)

for sufficiently large K and sufficiently small §, §;, and §,
(independent of initial conditions). The rest of the proof is similar
to the proof of Theorem 3. O

7. Conclusions

In this paper we introduced a new integral transformation
for wave equations and used it to obtain explicit controllers and
observers for a wave equation with negative damping at the
boundary. The application of the presented approach to other
hyperbolic systems is very promising and will be the subject of
future work.
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