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Input Delay Compensation for Forward Complete
and Strict-Feedforward Nonlinear Systems
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Abstract—We present an approach for compensating input delay
of arbitrary length in nonlinear control systems. This approach,
which due to the infinite dimensionality of the actuator dynamics
and due to the nonlinear character of the plant results in a non-
linear feedback operator, is essentially a nonlinear version of the
Smith Predictor and its various predictor-based modifications for
linear plants. Global stabilization in the presence of arbitrarily
long delay is achieved for all nonlinear plants that are globally sta-
bilizable in the absence of delay and that satisfy the property of for-
ward completeness (which is satisfied by most mechanical systems,
electromechanical systems, vehicles, and other physical systems).
For strict-feedforward systems, one obtains the predictor-based
feedback law explicitly. For the linearizable subclass of strict-feed-
forward systems, closed-loop solutions are also obtained explicitly.
The feedback designs are illustrated through two detailed exam-
ples.

Index Terms—Global stabilization.

I. INTRODUCTION

1) Background:

S INCE the 1959 publication of Otto J. M. Smith’s “Smith
Predictor” paper [50], there has been continuing interest in

compensation of long input delay in control systems. Smith’s
original result was not applicable to unstable plants, however,
numerous subsequent papers have dealt with removing this lim-
itation [3], [7], [11], [19]–[25], [37]–[40], [42], [44], [47], [62],
[64]–[66], including even efforts on adaptive predictor feedback
control [4], [5], [43]. In parallel, over the last ten years, inno-
vative efforts have been ongoing on developing control design
and stability analysis for nonlinear systems with state delays
[9]–[12], [16], [28], [30], [45], [46], [63]. Some efforts have in-
stead considered input delays [31], [58]. However, no attempts
have been made to systematically address the problem of com-
pensation of a long delay at the input of a nonlinear (possibly
unstable) control system.

In [19] we launched an effort on developing a delay com-
pensation scheme for nonlinear systems. Such ideas have al-
ready been pursued in the process control community [8], [17]
for control structures that expand upon the classical Smith Pre-
dictor, which requires open-loop stability of the plant. Related
work was also presented in [41], in the context of motion plan-
ning, employing linearization along the reference trajectory and
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time discretization. Our approach in [19] was based on ideas
coming from boundary control for nonlinear PDEs [60], [61].
The scheme that we arrived at, despite employing a nonlinear
infinite-dimensional feedback operator, was an exact analog of
the classical extensions of the Smith Predictor for unstable LTI
systems [3], [24], [25]. We dealt only with a scalar problem that
highlighted the key difficulty with nonlinear plants—in the pres-
ence of input delay, the plant may have finite escape before the
control ‘kicks in.’ In [19] we obtained a regional result, which
achieves a region of attraction equal to the set of initial condi-
tions from which plant does not exhibit finite escape during the
control dead time.

2) Contributions: With the finite escape obstacle recognized,
in this paper we focus on two classes of problems for which
global stability is achievable in the presence of arbitrarily long
input delay. The first class is the general class of forward com-
plete systems (Section VI), which do not exhibit finite escape
as long as the input remains (locally, i.e., not necessarily uni-
formly) bounded. This seems like a restrictive class in a math-
ematical sense, but includes most, if not all, mechanical and
electromechanical systems.

The second class is the class of strict-feedforward systems
(Section VII), which is a subclass of forward complete systems.
For this class, which addresses a relatively limited set of appli-
cations but is important from the structural point of view, we not
only obtain global stability, but also obtain an explicit formula
for the predictor state, which is used in the nominal control law
to compensate for the input delay. This is significant, because
the predictor state is normally not obtainable explicitly—for ex-
ample, it is generally not available in explicit form for feedback
linearizable systems.

We dedicate special attention (Section VIII) to a small but
nice subclass of strict-feedforward systems which area lineariz-
able by coordinate transformation [18], [51]–[53]. For these
systems we obtain both the feedback operator and the closed-
loop solutions (which are both infinite dimensional) in closed
form.

3) Organization: We start in Section II where we introduce
a predictor-based delay compensation design for general stabi-
lizable nonlinear systems. In Section V we present some impor-
tant stability properties of the transport PDE in various (mostly
non-standard) norms. These technical results help in the stability
proof for the broad class of forward-complete systems. Then
in subsequent sections we introduce a predictor feedback de-
sign for general nonlinear systems and present global stability
analyses for the forward-complete and strict-feedforward sys-
tems.

4) Notation: Several norms are used in the paper, for vec-
tors and functions. For an -vector, the norm denotes the
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Fig. 1. Nonlinear system with input delay.

Fig. 2. Relation between forward-complete systems, strict-feedforward sys-
tems, and strict-feedforward systems that are feedback linearizable. For all these
systems predictor feedback achieves global stabilization.

usual Euclidean norm. For functions , the

norm for
denotes the spatial norm. For we simplify the no-
tation to . The norm

is the spatial norm, which is, in
some cases where the context is clear, written more com-
pactly as . For functions , we use the norm

. Finally, for vector valued
functions , we use a spatial -norm

.
The types of solutions that the closed-loop system has depend
on the initial state and input. If they satisfy a ‘compatibility’
condition (the initial input is equal to the value of the feedback
law applied to the initial ODE state and actuator state), the
solutions are classical (continuously differentiable in time).
Otherwise, the system has mild solutions (measurable and
locally essentially bounded).

II. PREDICTOR FEEDBACK FOR GENERAL NONLINEAR SYSTEMS

Consider the system

(1)

where is the state vector and is a scalar control
input, as given in Fig. 1. Denote the -second ahead predic-
tion , or, alternatively, as

, where is the flow of the system
(see Fig. 2). Assuming that a continuous

function is known such that is globally
asymptotically stable at , we define our delay-compen-
sating nonlinear predictor-based controller as

(2)

(3)

where the initial condition for the integral equation for is
defined as

(4)

The predictor state is given by the implicit relation (3),
which can be solved using various approximation strategies for
the integral on the right-hand side, the simplest one being the
explicit expression , where

is the discretization step for the integral, is an
integer the user chooses, and , ,

. Convergence of this—or any other approxima-
tion algorithm—for (3) is an important question but beyond the
scope of the present paper which concentrates on basic contin-
uous-time designs.

A crucial ingredient in the stability analysis for the control
law (2), (3) is a backstepping transformation, and its inverse

(5)

(6)

where is defined via the integral equation

(7)

with initial condition

(8)

The backstepping transformation results in a closed-loop system
(target system) of the form

(9)

(10)

The target system is obtained by shifting the time back by
in (5) which yields (9) from (1). Equation (10) follows trivially
from (2) and (5) for . For , is nonzero
and defined by (5) with given by (4), hence, it depends only
on the initial condition and the initial actuator state, ,

.
Note that , however, depending on which of the two

definitions is considered, namely, depending on whether it is
governed by input or , this variable plays two dif-
ferent roles. The mapping (5) represents the direct backstep-
ping transformation , whereas (6) represents the inverse
backstepping transformation . Both transformations are
nonlinear and infinite dimensional.

Throughout the paper we make an assumption that the plant
is forward complete, namely, that, for every ini-

tial condition and every measurable locally essentially bounded
input signal the corresponding solution is defined for all ,
i.e., the maximal interval of existence is .

Forward completeness may seem as a restrictive assump-
tion because some basic globally stabilizable systems are not
forward complete—it is only under stabilizing feedback that
they become forward complete. For instance, the scalar system

fails to be globally stabilizable
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for because it can exhibit finite escape for .
In [19] we estimated its region of attraction under predictor
feedback. Unfortunately, many systems within popular classes
such as feedback linearizable systems, or strict-feedback sys-
tems , ,

, are not globally stabilizable for because
they are not forward complete. Hence, we look among for-
ward-complete systems to find globally stabilizable nonlinear
systems with long input delay. However, we note that Hypoth-
esis (A2) in [16] allows to study some strict-feedback systems
in the framework developed in the present paper.

The plant-predictor system (3) and the target-predictor
system (7) play crucial roles in determining whether a
closed-loop system under predictor feedback is globally
stable or not. If the plant is forward-complete, the plant-pre-
dictor system is globally well defined, and so is the direct
backstepping transformation . If the
plant is globally stabilizable, then the target-predictor system
is globally well defined, and so is the inverse backstepping
transformation .

For global stabilization via predictor feedback we require all
of the following three ingredients:

1) target system is globally asymptotically stable;
2) direct backstepping transformation is globally well de-

fined;
3) inverse backstepping transformation is globally well de-

fined.
The ingredients 1 and 3 are automatically satisfied by the ex-

istence of a globally stabilizing feedback in the absence of input
delay . As for ingredient 2, this ingredient is missing
from the scalar example in [19] which is not forward-complete
and thus not globally stabilizable.

To summarize our conclusions, which at this point are not
supposed to be obvious but should be helpful in guiding the
reader through the coming sections:

• For general systems that are globally stabilizable in the ab-
sence of input delay, including feedback linearizable sys-
tems and systems in the strict-feedback form, the target-
predictor system and the inverse backstepping transforma-
tion will be globally well defined, but this is not necessarily
the case for the plant-predictor system and the direct back-
stepping transformation. Consequently, predictor feedback
will not be globally (but only regionally) stabilizing within
this broad class of systems.

• For forward-complete systems that are globally stabiliz-
able in the absence of input delay, both the plant-predictor
and the target-predictor systems, and both the direct and in-
verse backstepping transformations, will be globally well
defined. Consequently, predictor feedback will be glob-
ally stabilizing within this class, including its subclass of
strict-feedforward systems.

III. STABILITY PROOF WITHOUT A LYAPUNOV FUNCTION

FOR FORWARD COMPLETE SYSTEMS

The property of predictor feedback that it exactly compen-
sates the input delay, and that after seconds the closed-loop
system evolves as if no delay were present, allows to prove sta-
bility without using Lyapunov functions. This approach would

not be possible in the presence of even the most innocuous mod-
eling uncertainties such as disturbances. For this reason, in Sec-
tion VI we revisit the problem of stability proof using Lyapunov
functions.

Theorem 1: Consider the closed-loop system (1), (2), (3),
(4) with , and with an initial condition

and . Let
be forward complete and be globally asymp-
totically stable at . Then there exists a function
such that

(11)

for all and for all .
Proof: From the forward completeness of

, from [15, Lemma 3.5], using the fact that
which allows to set , we get that

, with a
continuous positive-valued monotonically increasing func-
tion and a function in class . It follows that

for all
. Using the fact that

for all , and using the fact that is globally
asymptotically stable at the origin, there exists a class
function such that for all .
It follows that:

(12)

for all , where we have used the fact that
for all . Due to continuity of , there ex-
ists such that . With the
above expressions we get

for all
, which also implies that

for
all . Now we turn our attention to estimating

over . We split the interval
in the following manner:

(13)
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where . Let us now consider the
function

.
(14)

Since is a class function and are class , there
exists a class function such that for all

. For example, the function can be chosen as

.
(15)

Hence,
for all . Adding now

the bound (12), we get

for all . Denoting
, we complete

the proof of the theorem.

IV. A TRANSPORT PDE REPRESENTATION OF THE

INFINITE-DIMENSIONAL BACKSTEPPING TRANSFORMATION

To develop Lyapunov-based tools for studying stability of
nonlinear predictor feedback, we introduce a transport PDE for-
malism for representing the actuator state. We represent the
plant as

(16)

(17)

(18)

and the target system as

(19)

(20)

(21)

The predictor variables are represented by the following integral
equations:

(22)

(23)

where . It should be noted that, in the
(22) and (23), acts as a parameter. It is helpful not to view in
its role as a time variable when thinking about solutions of these
two nonlinear integral equations. The alternative form of these
integral equations is as differential equations, with appropriate
initial conditions, given as

(24)

(25)

where we reiterate that these are equations in only one indepen-
dent variable, , so they are not PDEs but ODEs, despite our use
of partial derivative notation. The variables and
are used to define the backstepping transformations (direct and
inverse) as

(26)

(27)

with .
Lemma 2: The functions satisfy the (16),

(17) if and only if the functions satisfy the (19),
(20), where the three functions are related
through (22)–(27).

Proof: This result is immediate by noting that
and are functions of only one variable, ,
and therefore so are and based on the
ODEs (24), (25). This implies that
and , from which it follows that

and

, which completes the proof.
The variables and are used to generate the

plant-predictor state and the target predictor
state . From (26) and (21) the backstepping con-
trol law is given by .

V. LYAPUNOV FUNCTIONS FOR THE TRANSPORT PDE

In order to be able to construct Lypunov functions for the
closed-loop nonlinear system under predictor feedback, we need
various Lyapunov functions for the target system’s transport
PDE subsystem

(28)

(29)

where denotes its initial condition.
The following results on stability and Lyapunov functions for

this system will be useful in this paper.
Theorem 3: Consider the functional

, where is the classical
solution of the system (28), (29), is any positive constant, and

is any function in class . Then, for all

(30)

(31)

Proof: The derivative of is
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(32)

which yields (30). Hence, we get .
Next, we observe that

. Combining the last two inequali-
ties, we obtain (31).

Taking and for , , we obtain the
following corollary.

Corollary 4: The following holds for the system (28), (29):

(33)

for any and any .
This corollary does not cover the case , which we are

also interested in. This result is proved separately.
Theorem 5: Consider the functional

, where is the classical
solution of the system (28), (29), and is any positive constant.
Then, for all

(34)

(35)

Proof: Let denote the following “spatially
weighted norm:”

(36)

where is a positive integer. Then the derivative of is given
by

(37)

With integration by parts we get

(38)
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which yields (34) and finally . Then one gets
(35) as follows:

(39)

The following Lyapunov fact follows from Theorem 5.
Lemma 6: For any with and any ,

the derivative of the function
along the classical solutions of the system (28), (29) is given
by .

VI. STABILITY ANALYSIS FOR FORWARD-COMPLETE

NONLINEAR SYSTEMS

The stability proof in Section III does not employ Lyapunov
functionals but exploits properties of exact solutions to the
closed-loop system. The absence of a Lyapunov functional
would prevent a study of stability in the presence of distur-
bances and other uncertainties. Availability of a Lyapunov
function is also important if one wants to conduct an inverse
optimal re-design of the feedback law. In this section we
construct a Lyapunov functional for the system and conduct
a proof of global stability on the basis of this functional. A
Lypunov construction requires that we somewhat strengthen the
assumptions of forward completeness and global stabilizability.

Definition 6.1: System with is
strongly forward complete if there exists a smooth function

and class functions such that

(40)

(41)

for all and for all .
This property differs from standard forward completeness [1]

in the sense that we assume that and, in accordance
with that, also assume that the function is positive definite.

Assumption 6.1: The system is strongly for-
ward complete.

Assumption 6.2: The system is input-to-
state stable.

Before we proceed to our Lyapunov construction, we state a
bound on the norm of the plant-predictor system.

Lemma 7: Let system (24) satisfy Assumption 6.1. There ex-
ists a function such that

(42)

Proof: With the Lyapunov-like function we get
that

(43)
from which it follows that:

(44)

Using (40), we get that
, which yields

. With
standard properties of class functions, we get the result of
the lemma.

The next two lemmas relate the norms of the plant and of the
target system.

Lemma 8: Let system (24) satisfy Assumption 6.1 and con-
sider (26) as its output map. Then there exists a function

such that

(45)
Proof: With , (26), and Lemma 7.

Lemma 9: Let system (25) satisfy Assumption 6.2 and con-
sider (27) as its output map. Then there exists a function

such that

(46)
Proof: Under Assumption 6.2, there ex-

ists and such that

. Taking a supremum of
both sides in , we get that

. With and
(27) we obtain the result of the lemma.

Now we turn out attention to the full target system (19)–(21).
Based on Assumption 6.2, there exists a smooth function

and class functions such that

(47)

(48)

for all and for all . Suppose that is
a class function, or has been appropriately majorized so
this is true (with no generality lost). Take a Lyapunov function

(49)

where . This Lyapunov function is positive definite and
radially unbounded (due to the assumption on ). With it we
get the following result on stability in the norm of the target
system.

Lemma 10: Let system (19)–(21) satisfy Assumption 6.2.
There exists a function such that

(50)
Proof: From Lemma 6 we get that
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(51)

It follows, with the help of (47), that there exists so that
and then there exists a class function

such that for all . With ad-
ditional routine class calculations, using the definition (51),
one can show that there exists a function such that

. From (39)
we get and

. Hence,
, with which we arrive

at the result of the lemma.
By combining Lemmas 8, 9, and 10, we get that

. To
summarize we obtain the following main result on closed-loop
stability under predictor feedback in terms of the system norm
of the original plant.

Theorem 11: Let system (19)–(21) satisfy Assumptions 6.1
and 6.2. Then there exists a function such that

(52)
A slightly different and relevant way to state the same global

asymptotic stability result is as follows.
Corollary 12: Let system (19)–(21) satisfy Assumptions 6.1

and 6.2. Then

(53)
The norm on the delay state used in Theorem 11 and

Corollary 12 is a somewhat nonstandard norm in the
delay system literature. Stability in the sense of other
norms also holds. To see this, take a Lyapunov func-
tional , where

and . With the help of (30) and (48),
its derivative is

. With some routine class
majorizations, the following result is obtained.
Theorem 13: Let system (19)–(21) satisfy Assumptions

6.1 and 6.2. Then, for any class function such
that for all , there exists a func-
tion such that

.
Note that allows a significant degree of freedom in terms

of relative (functional) weighting of the ODE state and the ac-
tuator state, however, this extra freedom is ‘paid for’ through

.
The following example illustrates the nonlinear predictor

feedback for a system that is forward complete.
Example 6.1: Consider the system ,

, which is motivated by the pendulum
problem with torque control (one can view as the angle rela-
tive to the upward equilibrium, and as the angular velocity).

A predictor-based feedback law for stabilization at the origin
is given by ,

,
, with an appropriate initial condition on . The closed-

loop system can be shown to be globally exponentially stable in

terms of the norm by em-
ploying quadratic choices for .

VII. STRICT-FEEDFORWARD SYSTEMS

We now focus on a special subclass of the class of for-
ward-complete systems—the strict-feedforward systems. The
similarity in name is pure coincidence. For forward-complete
systems, the forward refers to the direction of time. Such
systems have finite solutions for all finite positive time. With
feedforward systems, the word forward refers to the absence of
feedback in the structure of the system. The system consists of
a particular cascade of scalar systems.

Feedforward systems have received a large amount of at-
tention since the early 1990s, starting with the introduction of
this class and the first feedback laws in Teel’s thesis [54], fol-
lowed by the subsequent developments by Praly and Mazenc
[33] and Jankovic, Sepulchre, and Kokotovic [13], and contin-
uing with extensions and generalizations by many authors [2],
[6], [11], [12], [14], [18], [26]–[29], [31], [32], [34]–[36], [48],
[49], [51]–[53], [56], [57], [59].

While forward complete systems yield global stability when
predictor feedback is applied to them, the strict-feedforward
systems have an additional property that, despite being non-
linear, they can be solved explicitly. The consequence of this is
that the predictor state can be defined explicitly. Related to this,
the direct infinite-dimensional backstepping transformation can
be explicitly constructed.

A special subclass of strict-feedforward systems exists, which
are linearizable by coordinate change (Section VIII). For these
systems, not only is the predictor state explicitly defined, but the
closed-loop solutions can be found explicitly.

We introduce these ideas first through an example.

A. Example: A Second-Order Strict-Feedforward Nonlinear
System

Consider the second order system
(54)

This system is the simplest ‘interesting’ example of a strict-
feedforward system. The nominal controller is

(55)

and it results in the closed loop system ,
, where is defined by the diffeomorphic trans-

formation
(56)

The predictor is found by solving explicitly the non-
linear ODE ,

with initial conditions
, . The control is given by

(57)
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where and are given by

(58)

(59)

The control law is a nonlinear infinite-dimensional operator, but
it is given explicitly. The backstepping transformation is also
given explicitly

(60)

(61)

(62)

Now we derive the inverse transformation. This
transformation is given by

, where and
are the solutions of the ODE

,
,

with initial condition , . It is
hard to imagine that one could solve these ODEs for
and directly. Indeed, for the general strict-feedback
class, the -system won’t be solvable explicitly.

However, the present example is in the special subclass of lin-
earizable strict-feedforward systems. Specifically, with a change
of variable

(63)

the plant (54), can be converted into

(64)

Then the inverse backstepping transformation is given by

(65)

where the functions and are defined through the
ODE ,

with initial conditions
, . This ODE is

linear and we will solve it explicitly. For this, we need the matrix

exponential . With the

help of this matrix exponential, we find the solution

(66)

(67)

with which we obtain an explicit definition of the inverse back-
stepping transformation (65). Like the direct one, this transfor-
mation is nonlinear and infinite-dimensional.

To summarize, for the example nonlinear plant
(54), we have obtained both the transformation

and its inverse
explicitly.

Now we discuss the target system given by
, , ,

, where the variables are defined as in (56).
This target system is a cascade of the exponentially stable trans-
port PDE for and the linear exponentially stable ODE for

, which allows us to establish the following stability result
for the closed-loop system.

Proposition 14: Consider the plant (54), in closed loop with
the controller (57)–(59). Its equilibrium at the origin

is globally asymptotically stable and locally exponentially
stable in terms of the norm

(68)

Proof: We first perform a stability analysis of the
system using a standard Lyapunov functional as in [23], ob-
taining a stability estimate in terms of the norm

(69)

Then, we turn to the direct backstepping transformation
(60)–(62) and to the forwarding transformation (56) to obtain
a bound on the initial value of the norm (68) in terms of the
initial value of the norm (69). Note that the relation between
these norms would be nonlinear. Finally, we invoke the direct
backstepping transformation (65) with (66), (67), as well as the
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inverse of the forwarding transformation (56), to bound (68) in
terms of (69). This yields the result that there exists a class
function such that

(70)

for all . In addition, due to the fact that the target system
is exponentially stable, and due to the fact that all the

transformations and inverse transformations, though nonlinear,
have a locally linear component, we obtain that is locally
linear in the first argument and exponentially decaying in for
sufficiently large .

When we plug the predictor (58), (59) into the control law
(57) we obtain the feedback

(71)
Comparing with the nominal controller (55), this appears to be
an amazing simplification of (57). This kind of a simplifica-
tion won’t be possible for strict-feedforward systems in general,
but only for the subclass of strict-feedforward systems which
are linearizable by a diffeomorphic change of coordinates. This
simplified feedback could have been obtained by starting di-
rectly from the linearized system (64) and by applying linear
predictor design from [23].

The linearizability of this example by coordinate change al-
lows us to go beyond the result of Proposition 14. The open-
loop system in variables is given by

, , ,
, whereas the closed-loop system in the variables is

, ,
, . The transformations

and employ the formulae
and

. As we shall see in Example 8.1 in Sec-
tion VIII, with these explicit transformations, one can not only
get an easy estimate of the function in (70), but one can
find explicit solutions of the closed-loop system.

B. General Strict-Feedforward Nonlinear Systems: Integrator
Forwarding

Consider the class of strict-feedforward systems

(72)
... (73)

(74)

(75)

(76)

with input delay

(77)

or, for short
(78)

where , ,
, , , ,

for , .
The nominal control design for the class of systems

(78) is given by the following recursive procedure [18], [48]. Let

(79)

For , , 1, the designer needs to symbolically
(preferably) or numerically calculate

(80)

(81)

(82)

(83)

where the notation in the integrand of (83) refers to the solutions
of the (sub)system(s)

(84)

for , , at time , starting from the initial con-
dition . The control law for is given by

(85)

It is important to understand the meaning of the integral in
(83). Clearly, the solution is impossible to obtain an-
alytically in general but, when possible, will lead to an imple-
mentable control law. Note that the last of the ’s that need
tobe computed is ( is not defined).

C. Predictor for Strict-Feedforward Systems

As in the case of general nonlinear systems (Section II), the
predictor-based feedback law is obtained from (85) as

(86)

where the predictor variable is defined next.
Consider the ODE (in ) given by

(87)
...

(88)
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(89)

(90)

with an initial condition

(91)

The set of equations for can be solved explicitly,
starting from the bottom

(92)

continuing on to

(93)

and so on. For a general , the predictor solution is given recur-
sively as

(94)

Clearly, this procedure involves only computation of integrals
with no implicit problems to solve (such as differential or in-
tegral equations). Hence, the predictor state ,
where its element is defined in terms of
and , , , is obtainable explicitly,
due to the strict-feedforward structure of the class of systems.
An example of an explicit design of a nonlinear infinite-dimen-
sional predictor for a third-order system (which is not lineariz-
able) is presented in (115)–(117).

D. General Strict-Feedforward Nonlinear Systems: Stability
Analysis

Before we start, we need to define the -subsystem, which is
used in the inverse backstepping transformation

(95)
...

(96)

(97)

(98)

with an initial condition

(99)

The following result follows immediately from (26) and (27).
Lemma 15: If the mapping in (26), (27) is

continuous and , there exists a class function
such that

(100)

(101)

With Lemmas 16–18, presented next, we establish an esti-
mate on the target system norm in terms of the plant norm.

Lemma 16: For the system

(102)

(103)

with initial condition , the following bounds hold:

(104)

(105)

for all and all , where are class func-
tions.

Proof: First, we note that (105) follows from (92). Then
with the Cauchy–Schwartz inequality, from (94) we get

(106)

With a suitably chosen class function , we get
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(107)

Taking , we complete the
proof of the lemma.

By successive application of Lemma 16, in the order
, , 1, we obtain that there exist class functions
such that , ,

for all and all . Hence, the following result
holds.

Lemma 17: There exists a class function such that
for all .

With Lemmas 15 and 17, we obtain the following result.
Lemma 18: There exists a class function such that

for all .
This is an important upper bound on the transformation

, which we will use soon. However, we also
need to derive a bound on the inverse of that transformation.
Towards that end, we first prove the following result.

Lemma 19: There exists a class function such that
for all .

Proof: Consider the system (95)–(98), along with
the diffeomorphic transformation de-
fined by (79)–(84). Denote a transformed variable for the

-system, . With the observation that

, it is easy to verify that
. Noting from (85)

and (82) that , we get
(note that this notation

implies that ). Taking the
Lyapunov function , one obtains

(108)

Noting that is being treated only as a parameter here, we obtain,
by integrating in , the following bound

. Since

, we get
. Due to the fact

that is a diffeomorphism, there exists a class function
such that for all

and all , from which the result of the lemma
follows by taking a supremum in .

With Lemmas 15 and 19, we upper bound the plant norm in
terms of the target system norm.

Lemma 20: There exists a class function such that
for all .

Now we turn our attention to the target system and
prove the following result on stability in the sense of its norm.

Lemma 21: There exists a function such that
for all .

Proof: Taking a Lyapunov function
, we have that
, which we proved

in (108) using the ‘predictor-equivalent’ of the system
model .
Now we introduce an overall Lyapunov function

where . Using (30),
we get .
Since the function is positive definite (though not
necessarily radially unbounded) in , there exists a class
function such that . Then there exists
a class function such that for
all . With additional routine class calculations one finds

that completes the proof of the lemma.
By combining Lemmas 18, 20, and 21, we get the following

main result on stability in the plant norm.
Theorem 22: Consider the closed-loop system consisting

of the plant (72)–(77) and controller (86)–(91). There ex-
ists a function such that

for all .
A slightly different and relevant way to state the same global

asymptotic stability result is as follows.
Corollary 23: Consider the closed-loop system consisting of

the plant (72)–(77) and controller (86)–(91). Then

(109)

The following result is also true.
Theorem 24: The closed-loop system (72)–(77), (86)–(91) is

locally exponentially stable in the norm .
This result, which we leave without a proof, is very

much to be expected, since the linearized plant is a chain
of integrators, with delay at the input, and the linearized
feedback is predictor feedback of the standard form

, where
, , , and

else. (110)

The spectrum of the nominal system matrix, , is
.

E. Example of Predictor Design for a Third-Order System
That is Not Linearizable

To illustrate the construction of nominal forwarding design
, we consider the following example:

(111)

(112)

(113)
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The second order subsystem is linearizable (and is of
both Type I and Type II, as defined in [18]) when . Like
Teel’s “benchmark problem” [54], , ,

, the overall system (111)–(113) is not linearizable.
While the benchmark system requires only two steps of ‘for-
warding’ design because the subsystem is linear, the
system (111)–(113) requires three steps (for ). The
first two steps yield
and

, which are then em-
ployed in . The third step of forwarding
produces
and ,
namely, when . The predictor feedback for
system (111)–(113) is obtained as

(114)

where the predictor is determined
from the ODE system

, ,
with initial condition

, , . We start
the solution process from , obtaining

. Then, substituting this solution into
the ODE for , we obtain

, which yields

. In the last step of the predictor derivation
we calculate ,
finally obtaining

.
From the explicit formulae for ,

we obtain explicit formulae for ,
, as

(115)

(116)

(117)

Hence, the explicit infinite-dimensional nonlinear controller
(114), (115)–(117) achieves global asymptotic stability of the
non-linearizable strict-feedforward system (111)–(113).

F. An Alternative: A Design With Nested Saturations

The predictor given in Section VII-C can be combined
with any stabilizing feedback for strict-feedforward systems.
Thus, the nominal design based on integrator forwarding in
Section VII-B is not the designer’s only option. The design
alternatives include the nested saturation designs [54], [56] and
other designs for feedforward systems [33]. A nested saturation
design in the absence of delay would have the form

(118)

(119)

where and are positive constants and is the standard
unit saturation function. Sufficient conditions for and are
typically very conservative.

It is significant that the nested saturation designs guarantee
not only stability but also a particular form of robustness to input
disturbances which are bounded in time [57], as was the case
with our design in this paper, which allowed it to be robust to the
predictor error disturbance, . Since the predictor design
is independent of the method employed to develop the nominal
stabilizing controller, and it is given explicitly in Section VII-C,
for the nested saturation approach, the predictor-compensated
feedback would be .

A design based on nested saturations was developed by
Mazenc et al. [31] for stabilization of strict-feedforward sys-
tems in the presence of input delay of arbitrary size. This
design employs no predictor of any kind in the feedback law.
Rather than performing a compensation of the delay, this
design cleverly exploits the inherent robustness to delay in the
particular structure of the feedback law and the plant. Only the
strict-feedforward class with is considered in [31].

The nested saturation design in [31] has an advantage over
the design in this paper in the sense of achieving robustness to
input delay without any increase of the dynamic order of the
controller, while our design clearly employs an infinite-dimen-
sional compensator.

On the other hand, the advantage of our design is that its nom-
inal design—integrator forwarding [48]—achieves quantifiable
closed-loop performance, rather than just stability. The perfor-
mance advantage of integrator forwarding over the nested satu-
ration design was thoroughly illuminated in [49, Sec. 6.2.6], and
it is reinforced by the proof of inverse optimality [48]. In the
presence of delay, the predictor-based compensator maintains
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the performance of the nominal forwarding design, modulo the
first seconds. Thus, a clear complexity-versus-performance
tradeoff exists between the design in this paper and the design
in [31].

VIII. LINEARIZABLE STRICT-FEEDFORWARD SYSTEMS

Most strict-feedforward systems are not feedback lineariz-
able, however a small class of strict-feedforward systems is lin-
earizable, and, in fact, it is linearizable by coordinate change
alone, without the use of feedback. In this section we review
the conditions for linearizability of strict-feedofrward systems,
present a control algorithm which results in explicit formulae
for control laws, present formulae for predictor feedbacks that
compensate for actuator delays (which happen to be nonlinear
in the ODE state but linear in the distributed actuator state), and
derive the formulae for closed-loop solutions in the presence of
actuator delay.

A. Integrator Forwarding (SJK) Algorithm Applied to
Linearizable Strict-Feedforward Systems

In [18] it was shown that a strict-feedforward system (without
delay)

(120)

is linearizable provided the following assumption is satisfied (a
systematic approach to satisfying this assumption was subse-
quently developed by Tall and Respondek [52], [53]).

Assumption 8.1: The functions can be
written as , , and

(121)

(122)

for , using some scalar-valued functions
satisfying for ,

.
If Assumpiton 8.1 is satisfied, then the functions are

used in the diffeomorphism
(123)

(124)

for transforming the strict-feedforward system (120) into a
system of the “chain of integrators” form

(125)

(126)

The general control design algorithm for linearizable strict-
feedforward systems starts with , , and
continues recursively, for , , 1, as

(127)

(128)

(129)

(130)

(131)

The control law is .
There are two sets of linearizing coordinates, one given by

, which, with the control law
, yields the closed-loop system

in the “Teel form” [55]

...
...

. . .
...

...
. . .

. . .

(132)

and the other set of coordinates given by
, which, with the control law

yields the closed-loop system
in the companion form

(133)

(134)

Both the -coordinates and the -coordinates have a useful pur-
pose, as we shall see when we study the system in the presence
of actuator delay.

B. Predictor Feedback for Linearizable Strict-Feedforward
Systems

Now we consider the system with actuator delay

(135)

(136)

(137)

With the diffeomporphic transformation , i.e.,
, which is recursively defined by and

(138)

we get the system
(139)

(140)
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(141)

(142)

which is a cascade of a delay line and a chain of integrators. The
predictor feedback design for this system is easy.

Denote by the state of the system

(143)

(144)

with initial condition . The predictor feedback is
given as

(145)
Fortunately, the -system can be solved explicitly

(146)
so the “predictor” is obtained as

(147)
Substituting the transformation , we get the
predictor

(148)

Plugging this predictor into the predictor feedback law, we get
the feedback law explicitly

(149)

Replacing by , we finally get

(150)

This feedback law is linear in the infinite-dimensional delay
state , but nonlinear in the ODE plant state .

The infinite-dimensional backstepping transformation and its
inverse are given by

(151)

(152)

where

(153)

(154)

with initial condition .
The proof of stability for the general design in this section

for linearizable strict-feedforward systems proceeds in a similar
manner as for general strict-feedforward systems, except that a
few of the steps can be completed explicitly or more directly by
noting that, with the predictor feedback, the closed-loop system
in the variables is

(155)

(156)

(157)

(158)

In the end, the following result is obtained.
Theorem 25: Consider the closed-loop system consisting

of the plant (135)–(137) under Assumption 8.1 and controller
(150). There exists a class function such that

(159)

C. Explicit Closed-Loop Solutions for Linearizable
Strict-Feedforward Systems

For linearizable strict-forward systems one can find the
closed-loop solutions. Over the time interval one
uses the linear model

(160)

(161)

whereas over the time interval one would use the model
(162)

(163)

where the delay has been completely compensated.
For the time period we obtain
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(164)

whereas for the time period we get

(165)

where , , ,

else (166)

and

(167)

Theorem 26: Consider the closed-loop system consisting
of the plant (135)–(137) under Assumption 8.1 and controller
(150). The closed-loop solution is given by ,
where is given by (164) for and by (165), (167)
for .

Example 8.1: To illustrate this theorem, we return to the ex-
ample plant (54), from Section VII-A. We will now calculate
the explicit solution for this system in closed loop with feed-
back (71). For simplicity of calculations, we will assume that
the initial actuator state is zero, namely, .
Over the time interval the solution is given by

, . To find the solution
for , we recall the linearizing transformation for this ex-
ample from (63): , .
The resulting equations for , ,
can be solved as

(168)

(169)

Using the linearizing transformation, is obtained as
, .

To find the solution for , we need the inverse of the
linearizing transformation, (63): ,

. By substituting into and then into
, we obtain the closed-loop solutions explicitly as

(170)

(171)

Fig. 3. Time responses from Example 8.1 for . Note the nonlinear tran-
sient of after . The size of the control input is due to the
need to compensate for a long input delay, .

for . The closed-loop control signal is
, which gives

, and in its final form becomes

(172)

for all . For example, if we take the initial conditions as
and , we obtain closed-loop solutions as

given in Fig. 3.

IX. CONCLUSION

In this paper we presented a predictor-based design for com-
pensating input delay of arbitrary length in nonlinear control
systems. For the broad class of forward-complete systems,
global stabilization is maintained but requires on-line solution
of a nonlinear integral equation (whose solutions we guarantee
to remain bounded in closed loop). For strict-feedback systems
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TABLE I
PROPERTIES OF THE BACKSTEPPING TRANSFORMATION

FOR DIFFERENT CLASSES OF SYSTEMS

the predictor feedback is obtained explicitly. For the lineariz-
able subclass of strict-feedforward systems the closed-loop
solutions are obtained explicitly.

The infinite-dimensional nonlinear backstepping transforma-
tion (of the input delay state) is of key significance in the anal-
ysis of closed-loop stability. In Table I we summarize the prop-
erties of this transformation for various systems that we have
considered in [19] and in the present paper. The explicit form
of the direct backstepping transformation implies that the pre-
dictor feedback can be obtained explicitly, which is the case with
strict-feedforward systems.
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