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a b s t r a c t

For (possibly unstable) ODE systems with actuator delay, predictor-based infinite-dimensional feedback
can compensate for actuator delay of arbitrary length and achieve stabilization.We extend this concept to
another class of PDE-ODE cascades, where the infinite-dimensional part of the plant is of diffusive, rather
than convective type. We derive predictor-like feedback laws and observers, with explicit gain kernels.
The gain kernels involve second-order matrix exponentials of the system matrix of the ODE plant, which
is the result of the second-order-in-space character of the actuator/sensor dynamics. The construction of
the kernel functions is performed using the continuum version of the backstepping method. Robustness
to small perturbations in the diffusion coefficient is proved.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

For ODE systems with actuator and sensor delays, predictor-
based control design and its extensions to observers, adaptive
control, and even nonlinear system have been active areas of
research over the last thirty years [1–27].
Though various finite-dimensional forms of actuator dynamics

(consisting of linear and nonlinear integrators) have been success-
fully tackled in the context of the backstepping methods, realistic
forms of infinite-dimensional actuator and sensor dynamics differ-
ent than pure delays have not received attention.
In this note we address the problems of compensating

the actuator and sensor dynamics dominated by diffusion,
i.e., modeled by the heat equation. Purely convective/first-order
hyperbolic PDE dynamics (i.e., transport equation, or, simply,
delay) considered in [9], and diffusive/parabolic PDE dynamics
(i.e., heat equation) considered here, introduce different problems
with respect to controllability and stabilization. On the elementary
level, the convective dynamics have constant magnitude response
at all frequencies but are limited by a finite speed of propagation.
The diffusive dynamics,when control enters throughoneboundary
of a 1-D domain and exits (to feed the ODE) through the other,
are not limited in the speed of propagation but introduce an
infinite relative degree, with the associated significant roll-off of
the magnitude response at high frequencies.
In this note we present an exact extension of the predic-

tor feedback and observer design, from delay-ODE cascades
[1,9] to diffusion PDE-ODE cascades. We apply the same ideas we
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employed in [9] to construct infinite-dimensional state transfor-
mations and Lyapunov–Krasovskii functionals. The key difference
is in the transformation kernel functions (and the associated ODEs
and PDEswhich need to be solved).While in ourwork on delays [9]
the kernel ODEs and PDEs were of first order, here they are of
second-order. To bemore precise, the design PDEs for control gains
arising in delay problems were hyperbolic of first order, whereas
with diffusion problems they are hyperbolic of second-order. As
we did in [9], we solve them explicitly.
While the transfer function of the heat equation PDE dynamics

is available—it is 1
cosh(D

√
s) , where D is the delay value—our success

in compensating these actuator dynamics is based onusing the PDE
representation, rather than working in the frequency domain. This
was also the case with our past work with delay dynamics [9].
We start in Section 2 with an actuator compensation design

with full state feedback. With a simple design we achieve closed-
loop stability. We follow this with a more complex design which
also endows the closed-loop system with an arbitrarily fast decay
rate. In Section 3 we approach the question of robustness of
our infinite-dimensional feedback law with respect to uncertainty
in the diffusion coefficient. This question is rather nontrivial
for actuator delays. We resolved it positively for small delay
perturbations in [11] and we resolve it positively here for small
perturbations in the diffusion coefficient. Finally, in Section 4 we
develop a dual of our actuator dynamics compensator and design
an infinite-dimensional observer which compensates the diffusion
dynamics of the sensor.

2. Stabilization with full-state feedback

We consider the cascade of a heat equation and an LTI finite-
dimensional system given by

Ẋ(t) = AX(t)+ Bu(0, t) (1)

http://www.elsevier.com/locate/sysconle
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Fig. 1. The cascade of the heat equation PDE dynamics of the actuatorwith the ODE
dynamics of the plant.

ut(x, t) = uxx(x, t) (2)
ux(0, t) = 0 (3)
u(D, t) = U(t), (4)

where X ∈ Rn is the ODE state, U is the scalar input to the entire
system, and u(x, t) is the state of the PDE dynamics of the diffusive
actuator. The cascade system is depicted in Fig. 1.
The length of the PDE domain, D, is arbitrary. Thus, we take

the diffusion coefficient to be unity without loss of generality. We
assume that the pair (A, B) is stabilizable and take K to be a known
vector such that A+ BK is Hurwitz.
We recall from [9] that, if (2), (3) are replaced by the

delay/transport equation,

ut(x, t) = ux(x, t), (5)

then the predictor-based control law

U(t) = K
[
eADX(t)+

∫ D

0
eA(D−y)Bu(y, t)dy

]
(6)

achieves perfect compensation of the actuator delay and achieves
exponential stability at u ≡ 0, X = 0.
The transfer function of the actuator dynamics (3)–(4) is given

by

u(0, t) =
1

cosh(D
√
s)
[U(t)]. (7)

This makes the task of compensating them rather non-routine as
compared to compensating delay dynamics u(0, t) = e−Ds[U(t)].
Next we state a new controller that compensates the diffusive

actuator dynamics and prove exponential stability of the resulting
closed-loop system.

Theorem 1 (Stabilization). Consider a closed-loop system consisting
of the plant (1)–(4) and the control law

U(t) = K
[
I 0

]e
[
0 A
I 0

]
D [ I
0

]
X(t)

+

∫ D

0

∫ D−y

0
e

[
0 A
I 0

]
ξ

dξ

[ I0
]
Bu(y, t)dy

 . (8)

For any initial condition such that u(x, 0) is square integrable in x
and compatible with the control law (8), the closed-loop system has a
unique classical solution and is exponentially stable in the sense of the
norm(
|X(t)|2 +

∫ D

0
u(x, t)2dx

)1/2
. (9)

Proof. We start by formulating an infinite-dimensional transfor-
mation of the form

w(x, t) = u(x, t)−
∫ x

0
q(x, y)u(y, t)dy− γ (x)X(t), (10)

with kernels q(x, y) and γ (x) to be derived, which should
transform the plant (1)–(4), alongwith the control law (8), into the
‘‘target system’’
Ẋ(t) = (A+ BK)X(t)+ Bw(0, t) (11)
wt(x, t) = wxx(x, t) (12)
wx(0, t) = 0 (13)
w(D, t) = 0. (14)

We first derive the kernels q(x, y) and γ (x) and then show that the
target system is exponentially stable. The first two derivativeswith
respect to x ofw(x, t), as defined in (10), are given by

wx(x, t) = ux(x, t)− q(x, x)u(x, t)−
∫ x

0
qx(x, y)u(y, t)dy

− γ ′(x)X(t) (15)

wxx(x, t) = uxx(x, t)−
(
q(x, x)

)′
u(x, t)− q(x, x)ux(x, t)

− qx(x, x)u(x, t)−
∫ x

0
qxx(x, y)u(y, t)dy

− γ ′′(x)X(t). (16)

The first derivative ofw(x, t)with respect to t is

wt(x, t) = ut(x, t)−
∫ x

0
q(x, y)ut(y, t)dy

− γ (x) (AX(t)+ Bu(0, t))

= uxx(x, t)−
∫ x

0
q(x, y)uxx(y, t)dy

− γ (x) (AX(t)+ Bu(0, t))
= uxx(x, t)− q(x, x)ux(x, t)+ q(x, 0)ux(0, t)
+ qy(x, x)u(x, t)− qy(x, 0)u(0, t)

−

∫ x

0
qyy(x, y)u(y, t)dy− γ (x) (AX(t)+ Bu(0, t)) .

(17)

Let us now examine the expressions

w(0, t) = u(0, t)− γ (0)X(t) (18)

wx(0, t) = −q(0, 0)u(0, t)− γ ′(0)X(t) (19)

wt(x, t)− wxx(x, t) = 2
(
q(x, x)

)′
u(x, t)

+
(
γ ′′(x)− γ (x)A

)
X(t)

−
(
qy(x, 0)+ γ (x)B

)
u(0, t)

+

∫ x

0

(
qxx(x, y)− qyy(x, y)

)
u(y, t)dy,

(20)

where we have employed the fact that ux(0, t) = 0. A sufficient
condition for (11)–(13) to hold for any continuous functions u(x, t)
and X(t) is that γ (x) and q(x, y) satisfy

γ ′′(x) = Aγ (x) (21)

γ (0) = K (22)

γ ′(0) = 0, (23)

which happens to represent a second order ODE in x, and

qxx(x, y) = qyy(x, y) (24)

q(x, x) = 0 (25)
qy(x, 0) = −γ (x)B, (26)

which is a hyperbolic PDE of second order and of Goursat type. We
then proceed to solve this cascade system explicitly. The explicit
solution to the ODE (21)–(23) is readily found as

γ (x) =
[
K 0

]
e

[
0 A
I 0

]
x [ I
0

]
, (27)

and the explicit solution to the PDE (24)–(26) is
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q(x, y) =
∫ x−y

0
γ (σ )Bdσ . (28)

In a similar manner, the inverse of the transformation (10) can
be found. To summarize and to introduce compact notation for
further use in the proof, the direct and inverse backstepping
transformations are given by

w(x, t) = u(x, t)−
∫ x

0
m(x− y)u(y, t)dy− KM(x)X(t) (29)

u(x, t) = w(x, t)+
∫ x

0
n(x− y)u(y, t)dy+ KN(x)X(t), (30)

where

m(s) =
∫ s

0
KM(ξ)Bdξ (31)

n(s) =
∫ s

0
Kn(ξ)Bdξ (32)

M(ξ) =
[
I 0

]
e

[
0 A
I 0

]
ξ
[
I
0

]
(33)

N(ξ) =
[
I 0

]
e

[
0 A+ BK
I 0

]
ξ
[
I
0

]
. (34)

Now we proceed to prove exponential stability. Consider the
Lyapunov function

V = XTPX +
a
2
‖w‖2, (35)

where ‖w(t)‖2 is a compact notation for
∫ D
0 w(x, t)

2 dx, thematrix
P = PT > 0 is the solution to the Lyapunov equation

P(A+ BK)+ (A+ BK)TP = −Q (36)

for some Q = Q T > 0, and the parameter a > 0 is to be chosen
later. It is easy to show, using (29) and (30), that

‖w‖2 ≤ α1‖u‖2 + α2|X |2 (37)

‖u‖2 ≤ β1‖w‖2 + β2|X |2, (38)

where

α1 = 3
(
1+ D‖m‖2

)
(39)

α2 = 3‖KM‖2 (40)

β = 3
(
1+ D‖n‖2

)
(41)

β = 3‖KN‖2. (42)

Hence,

δ
(
|X |2 + ‖u‖2

)
≤ V ≤ δ̄

(
|X |2 + ‖u‖2

)
, (43)

where

δ = max
{ a
2
α1,
a
2
α2 + λmax(P)

}
(44)

δ̄ =
max{β1, β2 + 1}
min

{ a
2 , λmin(P)

} . (45)

Taking a derivative of the Lyapunov function along the solutions of
the PDE-ODE system (11)–(14), we get

V̇ = −XTQX + 2XTPBw(0, t)− a‖wx‖2

≤ −
λmin(Q )
2
|X |2 +

2|PB|2

λmin(Q )
w(0, t)2 − a‖wx‖2
≤ −
λmin(Q )
2
|X |2 −

(
a−

8|PB|2

λmin(Q )

)
‖wx‖

2, (46)

where the last line is obtained by using Agmon’s inequality. Taking

a >
8|PB|2

λmin(Q )
, (47)

and using Poincare’s inequality, we get

V̇ ≤ −bV , (48)

where

b = min
{
λmin(Q )
2λmax(P)

,
1
2
−
4|PB|2

aλmin(Q )

}
> 0. (49)

Hence,

|X(t)|2 + ‖u(t)‖2 ≤
δ̄

δ
e−bt

(
|X0|2 + ‖u0‖2

)
(50)

for all t ≥ 0, which completes the proof. �

The convergence rate to zero for the closed-loop system is
determined by the eigenvalues of the PDE-ODE system (11)–(14).
These eigenvalues are the union of the eigenvalues ofA+BK , which
are placed at desirable locations by the control vector K , and of
the eigenvalues of the heat equation with a Neumann boundary
condition on one end and a Dirichlet boundary condition on the
other end. While exponentially stable, the heat equation PDE need
not necessarily have fast decay. Its decay rate is limited by its first
eigenvalue,−π2/

(
4D2

)
.

Fortunately, the compensated actuator dynamics, i.e., the w-
dynamics in (13)–(14) can be sped up arbitrarily by a modified
controller.

Theorem 2 (Performance Improvement). Consider a closed-loop
system consisting of the plant (1)–(4) and the control law

U(t) = φ(D)X(t)+
∫ D

0
ψ(D, y)u(y, t)dy, (51)

where

φ(x) = KM(x)−
∫ x

0
κ(x, y)KM(y)dy (52)

ψ(x, y) = κ(x, y)+
∫ x−y

0
KM(ξ)Bdξ

−

∫ x

y
κ(x, ξ)

∫ ξ−y

0
KM(η)Bdηdξ (53)

κ(x, y) = −cx
I1
(√
c
(
x2 − y2

))√
c
(
x2 − y2

) , c > 0, (54)

and I1 denotes the appropriate Bessel function. For any initial
condition such that u(x, 0) is square integrable in x and compatible
with the control law (51), the closed-loop systemhas a unique classical
solution and its eigenvalues are given by the set

eig {A+ BK} ∪

{
−c −

π2

D2

(
n+

1
2

)2
, n = 0, 1, 2, . . .

}
. (55)

Proof. Consider the new (invertible) state transformation,

z(x, t) = w(x, t)−
∫ x

0
κ(x, y)w(y, t)dy. (56)

By direct substitution of the transformation
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w(x, t) = u(x, t)−
∫ x

0

∫ x−y

0
KM(ξ)Bdξu(y, t)dy− KM(x)X(t)

(57)

into (56), and by changing the order of integration, one obtains that

z(x, t) = u(x, t)−
∫ x

0
ψ(x, y)u(y, t)dy− φ(x)X(t), (58)

where the functions ψ(x, y) and φ(x) are as defined in the
statement of the theorem. It was shown in [28, Sections VIII.A and
VIII.B] that the function κ(x, y) satisfies the PDE

κxx(x, y) = κyy(x, y)+ cκ(x, y) (59)

κy(x, 0) = 0 (60)

κ(x, x) = −
c
2
x. (61)

Using these relations and (56), a direct verification yields the
transformed closed-loop system

Ẋ(t) = (A+ BK)X(t)+ Bz(0, t) (62)
zt(x, t) = zxx(x, t)− cz(x, t) (63)
zx(0, t) = 0 (64)
z(D, t) = 0. (65)

With an elementary calculation of the eigenvalues of the z-system,
the result of the theorem follows. �

3. Robustness to diffusion coefficient uncertainty

We now study robustness of the feedback law (8) to a
perturbation in the diffusion coefficient of the actuator dynamics,
i.e., we study stability robustness of the closed-loop system

Ẋ(t) = AX(t)+ Bu(0, t) (66)
ut(x, t) = (1+ ε)uxx(x, t) (67)
ux(0, t) = 0 (68)

u(D, t) =
∫ D

0
m(D− y)u(y, t)dy+ KM(D)X(t) (69)

to the perturbation parameter ε, which we allow to be either
positive or negative but small.

Theorem 3 (Robustness to DiffusionUncertainty). Consider a closed-
loop system (66)–(69). There exists a sufficiently small ε∗ >
0 such that for all ε ∈ (−ε∗, ε∗) the closed-loop system
has a unique classical solution (under feedback-compatible initial
data in L2) and is exponentially stable in the sense of the norm(
|X(t)|2 +

∫ D
0 u(x, t)

2dx
)1/2
.

Proof. It can be readily verified that

Ẋ(t) = (A+ BK)X(t)+ Bw(0, t) (70)

wt(x, t) = (1+ ε)wxx(x, t)
+ εKM(x) ((A+ BK)X(t)+ Bw(0, t)) (71)

wx(0, t) = 0 (72)
w(D, t) = 0. (73)

Along the solutions of this system, the derivative of the Lyapunov
function (35) is

V̇ ≤ −
λmin(Q )
2
|X |2 −

(
a−

8|PB|2

λmin(Q )
− |ε|a

)
‖wx‖

2

+ aε
∫ D

0
w(x)KM(x)dx ((A+ BK)X(t)+ Bw(0, t))

≤ −
λmin(Q )
4
|X |2 −

(
a−

8|PB|2

λmin(Q )

)
‖wx‖

2

+ |ε|a
(
1+ 4‖µ1‖ + |ε|a

4‖µ2‖2

λmin(Q )

)
‖wx‖

2, (74)

whereµ1(x) = KM(x)B, µ2(x) = |KM(x)|. In the second inequality
we have employed Young’s and Agmon’s inequalities. Choosing
now, for example, a = 16|PB|2

λmin(Q )
, it is possible to select |ε| sufficiently

small to achieve negative definiteness of V̇ . �

4. Observer design

Consider the LTI ODE system in cascade with diffusive sensor
dynamics at the output (as depicted in Fig. 2),
Y (t) = u(0, t) (75)
ut(x, t) = uxx(x, t) (76)
ux(0, t) = 0 (77)
u(D, t) = CX(t) (78)

Ẋ(t) = AX(t)+ BU(t). (79)
The sensor dynamics are thus given by the transfer function

Y (t) =
1

cosh(D
√
s)
[CX(t)]. (80)

We recall from [9] that, if (76), (77) are replaced by the
delay/transport equation, ut(x, t) = ux(x, t), then the predictor-
based observer

ût(x, t) = ûx(x, t)+ CeAxL
(
Y (t)− û(0, t)

)
(81)

û(D, t) = CX̂(t) (82)
˙̂X(t) = AX̂(t)+ BU(t)+ eADL

(
Y (t)− û(0, t)

)
(83)

achieves perfect compensation of the observer delay and achieves
exponential stability at u− û ≡ 0, X − X̂ = 0.
Nextwe state a newobserver inspired by [30] that compensates

the diffusive sensor dynamics and prove exponential convergence
of the resulting observer error system.

Theorem 4 (Observer Design and Convergence). The observer

ût(x, t) = ûxx(x, t)+ CM(x)L
(
Y (t)− û(0, t)

)
(84)

ûx(0, t) = 0 (85)

û(D, t) = CX̂(t) (86)
˙̂X(t) = AX̂(t)+ BU(t)+M(D)L

(
Y (t)− û(0, t)

)
. (87)

where L is chosen such that A − LC is Hurwitz, guarantees that X̂ , û
exponentially converge to X, u, i.e., more specifically, that the observer
error system is exponentially stable in the sense of the norm(
|X(t)− X̂(t)|2 +

∫ D

0

(
u(x, t)− û(x, t)

)2 dx)1/2 .
Proof. Introducing the error variables X̃ = X − X̂ , ũ = u − û, we
obtain:

ũt(x, t) = ũxx(x, t)− CM(D)Lũ(0, t) (88)

ũx(0, t) = 0 (89)

ũ(D, t) = CX̃(t) (90)
˙̃X(t) = AX̃(t)−M(D)Lũ(0, t). (91)
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Fig. 2. The cascade of the ODE dynamics of the plant with the heat equation PDE
dynamics of the sensor.

Consider the transformation

w̃(x) = ũ(x)− CM(x)M(D)−1X̃ . (92)

Its derivatives in x and t are

w̃x(x, t) = ũx(x, t)− CM ′(x)M(D)−1X̃(t) (93)

w̃xx(x, t) = ũxx(x, t)− CM ′′(x)M(D)−1X̃(t) (94)

w̃t(x, t) = ũt(x, t)− CM(x)M(D)−1
(
AX̃(t)−M(D)Lũ(0, t)

)
,

(95)

and furthermore,

w̃(0, t) = ũ(0, t)− CM(D)−1X̃(t), (96)

where we have used the fact that M(0) = I . Then, using the
fact that M ′(0) = 0, that M(D)−1 commutes with A (since M(x)
commutes with A for any x), that M ′′(x) = M(x)A, and that
ũx(0, t) = 0, we obtain

w̃t(x, t) = w̃xx(x, t) (97)

w̃x(0, t) = 0 (98)

w̃(D, t) = 0 (99)
˙̃X(t) =

(
A−M(D)LCM(D)−1

)
X̃ −M(D)Lw̃(0, t). (100)

Thematrix A−M(D)LCM(D)−1 is Hurwitz, which can be easily seen
by using a similarity transformation M(D), which commutes with
A.
With a Lyapunov function

V = X̃TM(D)−TPM(D)−1X̃ +
a
2

∫ D

0
w̃(x)2 dx, (101)

where P = PT > 0 is the solution to the Lyapunov equation
P(A− LC)+ (A− LC)TP = −Q for some Q = Q T > 0, one gets

V̇ = −X̃TM(D)−TQM(D)−1X̃

− 2X̃TM(D)−TPLw̃(0, t)−
a
2
‖w̃x‖

2. (102)

Applying Young’s and Agmon’s inequalities, taking a is sufficiently
large, and then applying Poincare’s inequality, one can show that
V̇ ≤ −µV for some µ > 0, i.e., the (X̃, w̃) system is exponentially
stable at the origin. From (92) we get exponential stability in the

sense of
(
|X̃(t)|2 +

∫ D
0 ũ(x, t)

2dx
)1/2
. �

The convergence rate of the observer is limited by the first
eigenvalue of the heat Eqs. (97)–(99), i.e., by−π2/(4D2). A similar
observer re-design, as applied for the full-state control design in
Theorem 2, can be applied to speed up the observer convergence.

5. Conclusions

In this notewedeveloped explicit formulae for full-state control
laws and observers in the presence of diffusion-governed actuator
and sensor dynamics.
Since using the control law (8) we have established the

stabilizability of system (1)–(4), other control designs should be
possible—both heuristic control designs for some pairs (A, B) and
other systematic PDE-based control designs for all stabilizable
pairs (A, B). For example, an optimal control problem could be
formulated, with quadratic penalties on X(t) and U(t), as well
as an L2 penalty (in x) on u(x, t), yielding an operator Riccati-
equation based control law. This alternativewould lack the explicit
character of our control law (8).
While the approach we use in this paper is the same as

in [9] – PDE backstepping – there is a difference in the end
result (8) as opposed to (6). The controller (6) is ‘obvious’ in
retrospect, it is based on D-seconds-ahead ‘prediction.’ In contrast
the controller (8) is a rather non-obvious choice. The controller
(51)–(54) with an arbitrarily fast decay rate is an even less obvious
choice.
Though we focused on purely diffusion-based actuator dy-

namics ut(x, t) = uxx(x, t), there is no obstacle to extend-
ing the present results to diffusion-advection actuator dynamics
ut(x, t) = uxx(x, t) + bux(x, t), where b can have any value, or to
reaction-diffusion dynamics ut(x, t) = uxx(x, t)+ λux(x, t)which
can have many unstable eigenvalues, or to much more complex
dynamics governed by parabolic partial integro-differential equa-
tions.
It is reasonable to ask many questions regarding the possibility

of extension of these results to other types of cascades. For
example, can these results be extended to actuators and sensors
which are of wave equation (second order hyperbolic) type? This
is the subject of our companion paper [29].
How about an extension to other types of cascades? For

example, an unstable reaction-diffusion (parabolic) PDE with
boundary control entering through a delay? Our design works
in this case to the extent that a feedback transformation can be
constructed to convert the closed-loop system into a cascade of
two exponentially stable systems, a transport equation feeding
into a heat equation. However, difficulties arise when trying to
construct a composite Lyapunov–Krasovskii functional for the
two PDEs because they are connected through a Dirichlet type
of boundary condition (which is a fundamental problem—PDEs
from different classes interacting through boundary conditions).
In this case one must resort to higher order norms to characterize
stability. This is the subject of our ongoing research, both for
parabolic and second-order hyperbolic PDEs with input delays.
We have also studied other cascade combinations of PDEs, such

as heat-wave and wave-heat cascades, connected through Dirich-
let or Neumann variables. Parts of the PDE control community
consider these coupled problems to be representative of PDE prob-
lems modeling fluid-structure interactions. The heat-wave and
wave-heat cascades give rise to more serious challenges than
delay-heat and delay-wave cascades. After a rather major effort
to identify conditions on the backstepping transformation kernels,
one is facedwith formidable, uncommon PDEs that contain fourth-
order derivatives in time or space, plus additional effects. These are
also subjects of our ongoing research.
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