A Closed-Form Full-State Feedback Controller for Stabilization of 3D Magnetohydrodynamic Channel Flow

We present a boundary feedback law that stabilizes the velocity, pressure, and electromagnetic fields in a magnetohydrodynamic (MHD) channel flow. The MHD channel flow, also known as Hartmann flow, is a benchmark for applications such as cooling, hypersonic flight, and propulsion. It involves an electrically conducting fluid moving between parallel plates in the presence of an externally imposed transverse magnetic field. The system is described by the inductionless MHD equations, a combination of the Navier–Stokes equations and a Poisson equation for the electric potential under the MHD approximation in a low magnetic Reynolds number regime. This model is unstable for large Reynolds numbers and is stabilized by actuation of velocity and the electric potential at only one of the walls. The backstepping method for stabilization of parabolic partial differential equations (PDEs) is applied to the velocity field system written in appropriate coordinates. Control gains are computed by solving a set of linear hyperbolic PDEs. Stabilization of nondiscretized 3D MHD channel flow has so far been an open problem.

[DOI: 10.1115/1.3089561]

1 Introduction

In this paper, we derive an explicit boundary controller that stabilizes an incompressible magnetohydrodynamic (MHD) flow in an infinite rectangular 3D channel. Known as the Hartmann flow [1], this model is considered a benchmark for applications such as liquid-metal cooling of nuclear reactors and supercomputers, plasma confinement, electromagnetic casting, hypersonic flight, and propulsion.

In the Hartmann flow, an electrically conducting fluid (such as a liquid metal, a plasma, or salt water) moves between parallel plates and is affected by an imposed transverse magnetic field. The movement of a conducting fluid produces an electric field and subsequently an electric current. The interaction between this current and the external magnetic field induces a body force, called the Lorentz force, which acts on the fluid itself. Hence the velocity and electromagnetic fields are highly coupled. These fields are mathematically described by the MHD equations [2], which are the Navier–Stokes equation coupled with the Maxwell equations.

In the nonconducting case, the geometry we consider (channel flow) is known to be unstable for high Reynolds numbers and has been thoroughly studied and is frequently cited as a paradigm for transition to turbulence [3]. There are many works in flow control that consider the problem of channel flow stabilization, for instance, using optimal control [4], backstepping [5,6], spectral decomposition/pole placement [7], Lyapunov design/passivity [8,9], or nonlinear model reduction/in-domain actuation [10].

The stability of the Hartmann flow has also been extensively studied, both from the numerical and the analytical point of view [11–14]. However, specific results on stabilization of magnetohydrodynamic flows are more scarce. Prior works focus mainly on electromagnetohydrodynamic (EMHD) flow control in weak electrically conducting fluids such as salt water. Traditionally two types of actuator designs have been used: one type generates a Lorentz field parallel to the wall in the streamwise direction [15], while the other generates a Lorentz field normal to the wall in the spanwise direction [16,17]. EMHD flow control has been dominated by strategies that either permanently activate the actuators or pulse them at arbitrary frequencies. However, it has been shown that feedback control schemes can improve the efficiency, by reducing control power, for both streamwise [18] and spanwise [19,20] approaches. Other recent developments use model-based techniques, for instance, using nonlinear model reduction [21,22] or optimal control [23]. There are some experimental results available as well, showing the feasibility of MHD flow control; actuators consist of magnets and electrodes [16,17,24], for instance, electromagnetic tiles [25]. Mathematical studies of controllability of magnetohydrodynamic flows have been done, though they do not provide explicit controllers [26,27].

Applications include drag reduction [16,20], boundary layer control [25,28], mixing enhancement for cooling systems [29,30], turbulence control [31], or estimation of velocity, pressure, and electromagnetic fields [32].

This paper uses the backstepping method and extends our previous work for stabilization of the velocity field in a (nonconducting) 3D channel flow [6]. It also extends to three dimensions our past efforts for the 2D Hartmann flow [33]. None of these extensions is trivial since the growing number of states (three components of the velocity field, the electric field, and the pressure field, all infinite dimensional, evolving in an infinite 3D region) make the problem very challenging.

Our controller is designed for the continuum MHD model. Since the system is spatially invariant [34], control synthesis is done in the wave number space after application of a Fourier transform. Large wave numbers are found to be stable and left uncontrolled, whereas for small wave numbers control is used. For these wave numbers, control is used to put the system in a strict-feedback form; this is necessary for application of the back-
stepping method for stabilization of parabolic partial differential equations (PDEs) [35]. Writing the velocity field in some appropriate coordinates, the resulting system is very similar to the Orr–Sommerfeld–Squire system of PDEs for nonconducting fluids and presents the same difficulties (non-normality leading to a large transient growth mechanism [36,37]). Thus, applying the same ideas as in Ref. [6], we use backstepping not only to guarantee stability but also to decouple the system in order to prevent transients. The control gains are computed by solving a set of linear hyperbolic PDEs—a much simpler task than, for instance, solving nonlinear operator Riccati equations. Actuation of velocity and electric potential is done at only one of the channel walls. Full-state knowledge is assumed, but the controller can be combined with an observer for MHD channel flow [32], which is a dual to the controller design in the present paper, to obtain an output feedback controller.

This paper is organized as follows. Section 2 introduces the governing equations. The equilibrium profile is presented in Sec. 3, and the linearized plant in wave number space is introduced in Sec. 4. Section 5 presents the design of the control laws to guarantee stability of the closed-loop system and states the main result. We end the paper with concluding remarks in Sec. 6.

2 Model

Consider an incompressible conducting fluid enclosed between two plates, separated by a distance \(L \), under the influence of a pressure gradient \(\nabla P \) and a magnetic field \(B_0 \) normal to the walls, as shown in Fig. 1. Under the assumption of a very small magnetic Reynolds number

\[
\text{Re}_M = \frac{v\rho \sigma L d}{\mu L} \ll 1
\]

where \(\nu \) is the viscosity of the fluid, \(\rho \) is the density of the fluid, \(\sigma \) is the conductivity of the fluid, and \(\mu \) is the reference velocity (maximum velocity of the equilibrium profile), the dynamics of the magnetic field can be neglected, and the dimensionless velocity and electric potential field is governed by the inductionless MHD equations [38].

We set nondimensional coordinates \((x, y, z)\), where \(x \) is the streamwise direction (parallel to the pressure gradient), \(y \) is the wall-normal direction (parallel to the magnetic field), and \(z \) is the spanwise direction so that \((x, y, z) \in (-\infty, \infty) \times [0, 1] \times (-\infty, \infty)^2\). The governing equations are

\[
\begin{align*}
\frac{\Delta U}{\text{Re}} &= -UU_x - VV_x - WU_z - P_x + N\phi_y - NU \\
\frac{\Delta V}{\text{Re}} &= -UU_x - VV_y - WV_z - P_y \\
\frac{\Delta W}{\text{Re}} &= -UU_x - VW_y - WV_z - P_z - N\phi_x - NW
\end{align*}
\]

\(\phi \) presents the same difficulties as the Orr–Sommerfeld–Squire system of PDEs for nonconducting fluids and presents the same difficulties (non-normality leading to a large transient growth mechanism). Thus, applying the same ideas as in Ref. [6], we use backstepping not only to guarantee stability but also to decouple the system in order to prevent transients. The control gains are computed by solving a set of linear hyperbolic PDEs—a much simpler task than, for instance, solving nonlinear operator Riccati equations. Actuation of velocity and electric potential is done at only one of the channel walls. Full-state knowledge is assumed, but the controller can be combined with an observer for MHD channel flow [32], which is a dual to the controller design in the present paper, to obtain an output feedback controller.

This paper is organized as follows. Section 2 introduces the governing equations. The equilibrium profile is presented in Sec. 3, and the linearized plant in wave number space is introduced in Sec. 4. Section 5 presents the design of the control laws to guarantee stability of the closed-loop system and states the main result. We end the paper with concluding remarks in Sec. 6.

\[
\Delta \phi = U_x - W_t
\]

where \(U, V, W \) denote, respectively, the streamwise, wall-normal, and spanwise velocities, \(P \) is the pressure, \(\phi \) is the electric potential, \(\text{Re} = U_0L/\nu \) is the Reynolds number, and \(N = \alpha L B_0^2/\mu U_0 \) is the Hartmann number. Since the fluid is incompressible, the continuity equation is verified,

\[
U_x + V_y + W_z = 0
\]

The boundary conditions for the velocity field are

\[
\begin{align*}
U(t,x,0,z) &= 0, & U(t,x,1,z) &= U(t,x,z) \\
V(t,x,0,z) &= 0, & V(t,x,1,z) &= V(t,x,z) \\
W(t,x,0,z) &= 0, & W(t,x,1,z) &= W(t,x,z)
\end{align*}
\]

where \(U(t,x,z), V(t,x,z), \) and \(W(t,x,z) \) denote, respectively, the actuators for streamwise, wall-normal, and spanwise velocities in the upper wall. We denote the initial conditions for the velocity field as \(U_0(x,y,z) = U(0,x,y,z), V_0(x,y,z) = V(0,x,y,z), \) and \(W_0(x,y,z) = W(0,x,y,z) \).

Assuming perfectly conducting walls, the electric potential must verify

\[
\phi(t,x,0,z) = 0, \quad \phi(t,x,1,z) = \Phi_k(t,x,z)
\]

where \(\Phi_k(t,x,z) \) is the imposed potential (electromagnetic actuation) in the upper wall. The nondimensional electric current, \(j(t,x,y,z) \), a vector field that is computed from the electric potential and velocity fields, is as follows:

\[
\begin{align*}
j_x(t,x,y,z) &= -\phi_x - W \\
j_y(t,x,y,z) &= -\phi_y \\
j_z(t,x,y,z) &= -\phi_z + U
\end{align*}
\]

where \(j_x, j_y, \) and \(j_z \) denote the components of \(j \).

We assume that all actuators can be independently actuated for every \((x,z) \in \mathbb{R}^2\). Note that no actuation is done inside the channel or at the bottom wall.

3 Equilibrium Profile

The equilibrium profile for system (2)–(5) with no control can be calculated following the same steps that yield the Poiseuille solution for Navier–Stokes channel flow. Thus, we assume a steady state with only one nonzero nondimensional velocity component, \(U^e(y) \), that depends only on the \(y \) coordinate. Substituting \(U^e(y) \) into Eq. (2), one finds that it verifies the following equation:

\[
0 = \frac{U^e(y)}{\text{Re}} - P^e - NU^e(y)
\]

whose nondimensional solution is, setting \(P^e \) such that the maximum velocity (centerline velocity) is unity,

\[
U^e(y) = \frac{\sinh(H(1-y)) - \sinh H + \sinh(Hy)}{2 \sinh H/2 - \sinh H}
\]

\[
V^e = W^e = 0
\]

\[
P^e = \frac{N \sinh H}{2 \sinh H/2 - \sinh H}
\]

\[
j_x^e = j_y^e = 0, \quad j_z^e = U^e(y)
\]

where \(H = \sqrt{\text{Re} N B_0 L \sigma/\mu U_0} \) is the Hartmann number. In Fig. 2 (left) we show \(U^e(y) \) for different values of \(H \). Since the equilibrium profile is nondimensional the centerline velocity is always 1. For \(H = 0 \) the classic parabolic Poiseuille profile is recovered. In Fig. 2 (right) we show \(U_x^e(y) \), proportional to shear stress, whose

041001-2 / Vol. 131, JULY 2009

Transactions of the ASME
maximum is reached at the boundaries and grows with H.

4 The Plant in Wave Number Space

Define the fluctuation variables

$$u(t, x, y, z) = U(t, x, y, z) - U^0(y)$$ \hspace{1cm} (19)$$
$$p(t, x, y, z) = P(t, x, y, z) - P^0(y)$$ \hspace{1cm} (20)$$
where $U^0(y)$ and $P^0(y)$ are, respectively, the equilibrium velocity and pressure given in Eqs. (15) and (17). The linearization of Eqs. (2)–(4) around the Hartmann equilibrium profile, written in the fluctuation variables (u, V, W, p, ϕ), is

$$u_t = \frac{\Delta u}{\text{Re}} - U^0(y)u_x - U^0_y(y)V - p_x + N\phi_x - Nu$$ \hspace{1cm} (21)$$
$$V_t = \frac{\Delta V}{\text{Re}} - U^0(y)V_x - p_y$$ \hspace{1cm} (22)$$
$$W_t = \frac{\Delta W}{\text{Re}} - U^0(y)W_x - p_z - N\phi_z - NW$$ \hspace{1cm} (23)$$

The equation for the potential is

$$\Delta \phi = u_x - W_z$$ \hspace{1cm} (24)$$
and the fluctuation velocity field verifies the continuity equation

$$u_t + V_x + W_z = 0$$ \hspace{1cm} (25)$$
and the following boundary conditions:

$$u(t, x, 0, z) = W(t, x, 0, z) = V(t, x, 0, z) = 0$$ \hspace{1cm} (26)$$
$$u(t, x, 1, z) = U_e(t, x, z)$$ \hspace{1cm} (27)$$
$$V(t, x, 1, z) = V_e(t, x, z)$$ \hspace{1cm} (28)$$
$$W(t, x, 1, z) = W_e(t, x, z)$$ \hspace{1cm} (29)$$

We denote the initial conditions for the fluctuation velocity as $u_0(x, y, z) = U_0(x, y, z) - U^0(y)$.

To guarantee stability, our design task is to design feedback laws U_e, V_e, W_e and Φ_e so that the origin of the velocity fluctuation system is exponentially stable. Full-state knowledge is assumed.

Since the plant is linear and spatially invariant [34], we use a Fourier transform in the x and z coordinates (the spatially invariant directions). The transform pair (direct and inverse transform) is defined for any function $f(x, y, z)$ as

$$f(k_x, y, k_z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y, z)e^{-2\pi i(k_x x + k_z z)}dx dz$$ \hspace{1cm} (31)$$
$$f(x, y, z) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(k_x, y, k_z)e^{2\pi i(k_x x + k_z z)}dk_x dk_z$$ \hspace{1cm} (32)$$

Note that we use the same symbol f for both the original $f(x, y, z)$ and the image $f(k_x, y, k_z)$. In hydrodynamics k_x and k_z are referred to as the “wave numbers.”

The plant equations in wave number space are

$$u_t = -\frac{\alpha^2 u + U_y}{\text{Re}} - \beta(y)u - U^0_y(y)V - 2\pi k_x p_x + 2\pi k_z N\phi$$ \hspace{1cm} (33)$$
$$V_t = -\frac{\alpha^2 V + V_y}{\text{Re}} - \beta(y)V - p_y$$ \hspace{1cm} (34)$$
$$W_t = -\frac{\alpha^2 W + W_y}{\text{Re}} - \beta(y)W - 2\pi k_x p_x - 2\pi k_z N\phi$$ \hspace{1cm} (35)$$

where $\alpha^2 = 4\pi^2(k_x^2 + k_z^2)$ and $\beta(y) = 2\pi k_y U^0(y)$.

The continuity equation in wave number space is expressed as

$$2\pi k_x u_t + V_x + 2\pi k_z W = 0$$ \hspace{1cm} (36)$$

and the equation for the potential is

$$-\alpha^2 \phi + \phi_y = 2\pi (k_x u - k_z W)$$ \hspace{1cm} (37)$$

The boundary conditions are

$$u(t, k_x, 0, k_z) = W(t, k_x, 0, k_z) = V(t, k_x, 0, k_z) = 0$$ \hspace{1cm} (38)$$
$$u(t, k_x, 1, k_z) = U_e(t, k_x, k_z)$$ \hspace{1cm} (39)$$
$$V(t, k_x, 1, k_z) = V_e(t, k_x, k_z)$$ \hspace{1cm} (40)$$
$$W(t, k_x, 1, k_z) = W_e(t, k_x, k_z)$$ \hspace{1cm} (41)$$
$$\phi(t, k_x, 0, k_z) = 0, \phi(t, k_x, 1, k_z) = \Phi_e(t, k_x, k_z)$$ \hspace{1cm} (42)$$

5 Control Design

We design the controller in wave number space. Note that Eqs. (33)–(42) are uncoupled for each wave number. It is well known that large wave numbers (which correspond to small scales where dissipation is present) are already stable, and instability can only be found in small wave numbers (large scale behavior) [3]. Therefore, as in Refs. [5, 6], the set of wave numbers $k_x^2 + k_z^2 \leq M^2$, which we refer to as the controlled wave number range, and the set k_x^2
+k_z^2 > M^2$, the *uncontrolled* wave number range, can be treated and studied separately. If stability for all wave numbers is established, stability in physical space follows (see Ref. [5]). The number M, which will be computed in Sec. 5.2, is a parameter that ensures stability for uncontrolled wave numbers.

We define χ, a *transcating* function, as

$$\chi(k_x, k_z) = \begin{cases}
1, & k_x^2 + k_z^2 \leq M^2 \\
0 & \text{otherwise}
\end{cases} \tag{43}$$

Then, we reflect that we do not use control for large wave numbers by setting

$$\begin{bmatrix}
U_x(t,x,z) \\
V_y(t,x,z) \\
W_z(t,x,z) \\
\Phi_z(t,x,z)
\end{bmatrix} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \begin{bmatrix}
U_x(t,k_x,k_z) \\
V_y(t,k_x,k_z) \\
W_z(t,k_x,k_z) \\
\Phi_z(t,k_x,k_z)
\end{bmatrix} \times \chi(k_x,k_z) e^{2\pi i k_x x} dk_x dk_z \tag{44}$$

Next we design stabilizing control laws for small wave numbers and analyze uncontrolled wave numbers.

5.1 Controlled Wave Number Analysis

Consider $k_x^2 + k_z^2 \leq M^2$. Then $\chi = 1$, so there is control. Using the continuity equation (36) and taking divergence of Eqs. (35)–(35), a Poisson equation for the pressure is derived,

$$-\alpha^2 p + p_{yy} = -4\pi k_x i U_y^0(y) V + NV_y \tag{45}$$

Evaluating Eq. (34) at $y=0$ one finds that

$$p_x(k_x,0,k_z) = \frac{V_y}{Re} \frac{V_x(k_x,0,k_z)}{Re} = -2\pi i k_x u_0 + k_z W_0 \tag{46}$$

where we use Eq. (36) for expressing V_y at the bottom in terms of $u_0 = u_x(k_x,0,k_z)$ and $W_0 = W_z(k_x,0,k_z)$. Similarly, evaluating Eq. (34) at $y=1$ we get

$$p_x(k_x,1,k_z) = \frac{V_y}{Re} \frac{V_x(k_x,1,k_z)}{Re} = -(V_y) - \alpha^2 \frac{V_z}{Re} = -2\pi i k_x u_1 + k_z W_1 \tag{47}$$

where we use Eq. (36) for expressing V_y at the top wall in terms of $u_1 = u_x(k_x,1,k_z)$ and $W_1 = W_z(k_x,1,k_z)$ and the controller V_y.

Equation (45) can be solved in terms of integrals of the state and the boundary terms appearing in Eqs. (46) and (47).

$$p = -4\pi k_x i \int_0^\gamma U_y^0(y) \sinh(\alpha(y - \eta)) V(k_x, \eta, k_z) d\eta$$

$$+ N \int_0^\gamma \sinh(\alpha(y - \eta)) V(k_x, \eta, k_z) d\eta$$

$$-2\pi i \cos(\alpha(1 - \eta)) k_x u_0 + k_z W_0 \frac{V_z}{Re}$$

$$+ 4\pi k_x i \cos(\alpha y) \frac{V_z}{Re} \int_0^1 U_y^0(y) \cos(\alpha(1 - \eta)) \times V(k_x, \eta, k_z) d\eta$$

$$- N \cos(\alpha y) \frac{V_z}{Re} \int_0^1 \cos(\alpha(1 - \eta)) \times V(k_x, \eta, k_z) d\eta$$

$$-2\pi i \cos(\alpha y) k_x u_1 + k_z W_1 \frac{V_z}{Re}$$

$$\times \sinh(\alpha(1 - \eta)) V(k_x, \eta, k_z) d\eta$$

(51)

Similarly, solving for Φ_z in terms of the control V_y and the right hand side of its Poisson equation (37),

$$\Phi_z = 2\pi i \int_0^\gamma \sinh(\alpha(y - \eta))(k_x u(k_x, \eta, k_z) - k_z W(k_x, \eta, k_z)) d\eta$$

$$+ \sinh(\alpha y) \frac{\Phi_z}{k_x} = \frac{2\pi i \sinh(\alpha y)}{\alpha \sinh(\alpha y)} \int_0^1 \sinh(\alpha(1 - \eta))$$

$$\times (k_x u(k_x, \eta, k_z) - k_z W(k_x, \eta, k_z)) d\eta$$

(52)

As in the pressure, an actuator (Φ_z in this case) appears inside the solution for the potential. The last two lines of Eq. (52) are non-strict-feedback integrals and need to be canceled to apply the backstepping method. As for the pressure, this means that we do not let electric field perturbations of the flow at one given point to be affected by the velocity field further “up” than the point (closer to the upper wall); only the velocity field closer to the lower wall affects the electrical field perturbation.

For this we use Φ_z by setting

$$\Phi_z(k_x, k_z) = \frac{2\pi i \sinh(\alpha(1 - \eta))(k_x u(k_x, \eta, k_z) - k_z W(k_x, \eta, k_z)) d\eta}{\alpha \sinh(\alpha(1 - \eta))}$$

(53)

Then the potential can then be expressed as a strict-feedback integral of the states u and W as follows:
\[
\phi = \frac{2\pi i}{\alpha} \int_0^\gamma \sinh(\alpha(y - \eta))(k_u(k_v, \eta, k_v) - k_u W(k_v, \eta, k_v)) d\eta
\]

Introducing the expressions (51) and (54) in Eqs. (33) and (35), we get

\[
u_i = -\frac{\alpha^2 u + u \nu_i}{\text{Re}} - \beta(y)u - U'_y(y)V - Nu - 4\pi^2 k_z \times \frac{\cosh(\alpha y) - \cosh(\alpha(1-y))}{\alpha \sinh \alpha} (k_u \nu_i + k_z W)_0
\]

\[-8\pi^2 k_z \int_0^\gamma \frac{U'_y(\eta)\sinh(\alpha(y - \eta))V(k_z, \eta, k_z)}{\alpha} d\eta
\]

\[= -2\pi i \int_0^\gamma \frac{\sinh(\alpha(y - \eta))}{\alpha} V(k_z, \eta, k_z) d\eta
\]

\[-4\pi^2 k_N \int_0^\gamma \frac{\sinh(\alpha(y - \eta))}{\alpha} V(k_z, \eta, k_z) d\eta
\]

\[-k_w W(k_z, \eta, k_z) d\eta\]

We have omitted the equation for \(V\) since, from Eq. (36) and using the fact that \(V(k_z, 0, k_z) = 0\), \(V\) is computed as

\[V = 2\pi i \int_0^\gamma (k_z W(k_z, \eta, k_z)) d\eta \]

Now we use the following change in variables and its inverse:

\[Y = 2\pi i (k_z U + k_z W), \quad \omega = 2\pi i (k_z U - k_z W)\]

\[u = \frac{2\pi i}{\alpha^2} (k_z U + k_z W), \quad w = \frac{2\pi i}{\alpha^2} (k_z Y - k_z \omega)\]

Note that \(\omega\) is the normal vorticity, whereas \(Y = -V_y\), the rate of change in the velocity \(V\) along the channel.

Defining \(\epsilon = 1/\text{Re}\) and the following functions:

\[g_1 = 4\pi k_z \left\{ \frac{U'_y(\sigma)}{2} + \int_0^\gamma \frac{U'_y(\sigma) \sinh(\alpha(y - \sigma))}{\alpha} d\sigma \right\} + N\alpha \sinh(\alpha(y - \sigma)) \]

\[g_2 = -\alpha \frac{\cosh(\alpha y) - \cosh(\alpha(1-y))}{\alpha \sinh \alpha} \]

\[h_1 = 2\pi i k_z U'_y\]

Eqs. (55) and (56) expressed in terms of \(Y\) and \(\omega\) are

\[Y = \epsilon(-\alpha^2 Y + \beta Y)Y - NY + g Y \int_0^\gamma f(k_z, \eta, k_z) Y(k_z, \eta, k_z) d\eta \]

\[\omega = \epsilon(-\alpha^2 \omega + \omega_i) - \beta(\omega)Y - N\omega + h_1 Y \int_0^\gamma Y(k_z, \eta, k_z) d\eta \]

where we have used the inverse change in variables (59) to express \(U_0\) and \(W_0\) in terms of \(Y_0\) as follows:

\[Y_0 = 2\pi i (k_z U + k_z W)\]

\[\omega_0 = 2\pi i (k_z U - k_z W)\]

Equations (64) and (65) are a coupled, strict-feedback, plant, with integral and reaction terms. As in Ref. [6], a variant of the design presented in Ref. [35] can be used to stabilize the system using a double backstepping transformation. The transformation maps, for each \(k_z\) and \(k_z\), the variables \((Y, \omega)\) into the variables \((\Psi, \Omega)\), verify the following family of heat equations (parametrized in \(k_z, k_z\)):

\[\Psi = \epsilon(-\alpha^2 \Psi + \Psi_{yy}) - \beta(y)\Psi - N\Phi \]

\[\Omega = \epsilon(-\alpha^2 \Omega + \Omega_{yy}) - \beta(y)\Omega - N\Omega \]

with boundary conditions

\[\Psi(k_z, 0, k_z) = \Psi(k_z, 1, k_z) = 0 \]

\[\Omega(k_z, 0, k_z) = \Omega(k_z, 1, k_z) = 0 \]

The transformation is defined as follows:

\[\Psi = Y - \int_0^\gamma K(k_z, \eta, k_z)Y(k_z, \eta, k_z) d\eta \]

\[\Omega = \omega - \int_0^\gamma \Gamma_1(k_z, \eta, k_z)Y(k_z, \eta, k_z) d\eta \]

\[-\int_0^\gamma \Gamma_2(k_z, \eta, k_z)\omega(k_z, \eta, k_z) d\eta \]

Following Refs. [35,5,6], the functions \(K(k_z, \eta, k_z), \Gamma_1(k_z, \eta, k_z), \Gamma_2(k_z, \eta, k_z)\) are found as the solution of the following partial integrodifferential equations:

\[\epsilon K_{yy} = \epsilon K_{yy} + (\beta(\eta) - \beta(y))K - f + \int_0^\gamma f(\eta, \xi)K(y, \xi) d\xi \]
\[e^{\Gamma_{1y}} = e^{\Gamma_{1y}} + (\beta(y) - \beta(\eta))\Gamma_{1} - h_{1} + \int_{\eta}^{\gamma} \Gamma_{2}(y, \xi) \times h_{1}(\xi) d\xi \]
\[+ \int_{\eta}^{\gamma} f(\eta, \xi) \Gamma_{1}(y, \xi) d\xi \quad (79) \]
\[e^{\Gamma_{2y}} = e^{\Gamma_{2y}} + (\beta(y) - \beta(\eta))\Gamma_{2} - h_{2} + \int_{\eta}^{\gamma} h_{2}(\xi, \eta) \Gamma_{2}(y, \xi) d\xi \quad (80) \]

Equations (78)–(80) are hyperbolic partial integrodifferential equations in the region \(T = \{(y, \eta) : 0 \leq y \leq 1, 0 \leq \eta \leq y\} \). Their boundary conditions are

\[K(y, y) = -\frac{g(0)}{\epsilon} \quad (81) \]
\[K(y, 0) = \frac{\int_{0}^{\gamma} K(y, \eta)g(\eta) d\eta - g(y)}{\epsilon} \quad (82) \]
\[\Gamma_{1}(y, 0) = \frac{\int_{0}^{\gamma} \Gamma_{1}(y, \eta) g(\eta) d\eta}{\epsilon} \quad (83) \]
\[\Gamma_{1}(y, 0) = 0, \Gamma_{2}(y, 0) = 0, \Gamma_{2}(y, 0) = 0 \quad (84) \]

Remark 5.1. Equations (78)–(84) are well posed and can be solved symbolically, by means of a successive approximation series, or numerically [35,6]. Note that Eqs. (78) and (80) are autonomous. Hence, one must solve first for \(K(k_{x}, y, \eta, k_{z}) \) and \(\Gamma_{2}(k_{x}, y, \eta, k_{z}) \). Then the solution for \(\Gamma_{2} \) is plugged in Eq. (79), which then can be solved for \(\Gamma_{1}(k_{x}, y, \eta, k_{z}) \).

Control laws \(Y_{c} \) and \(W_{c} \) are found by evaluating Eqs. (76) and (77) at \(y = 1 \) and using Eqs. (68), (69), (74), and (75), which yields

\[Y_{c}(k_{x}, k_{z}) = \int_{0}^{1} K(k_{x}, 1, \eta, k_{z}) Y_{c}(k_{x}, k_{z}) d\eta \quad (85) \]
\[\omega_{c}(k_{x}, k_{z}) = \int_{0}^{1} \Gamma_{1}(k_{x}, 1, \eta, k_{z}) Y_{c}(k_{x}, k_{z}) d\eta + \int_{0}^{1} \Gamma_{2}(k_{x}, 1, \eta, k_{z}) \omega_{c}(k_{x}, k_{z}) d\eta \quad (86) \]

Using Eqs. (58) and (59) to write Eqs. (85) and (86) in \((u, W)\), we get

\[U_{c} = \int_{0}^{1} K^{uu}(k_{x}, 1, \eta, k_{z}) u(k_{x}, k_{z}) d\eta \]
\[+ \int_{0}^{1} K^{uw}(k_{x}, 1, \eta, k_{z}) W(k_{x}, k_{z}) d\eta \quad (87) \]
\[W_{c} = \int_{0}^{1} K^{wu}(k_{x}, 1, \eta, k_{z}) u(k_{x}, k_{z}) d\eta \]
\[+ \int_{0}^{1} K^{ww}(k_{x}, 1, \eta, k_{z}) W(k_{x}, k_{z}) d\eta \quad (88) \]

where

\[
\begin{pmatrix}
K^{\text{uu}}

K^{\text{uw}}

K^{\text{wu}}

K^{\text{ww}}
\end{pmatrix} = A
\begin{pmatrix}
K(k_{x}, y, \eta, k_{z})

\Gamma_{1}(k_{x}, y, \eta, k_{z})

0

\Gamma_{2}(k_{x}, y, \eta, k_{z})
\end{pmatrix}
\quad (89)
\]

and where the matrix \(A \) is defined as

\[
A = -\frac{4\pi^{2}}{\alpha^{2}}
\begin{pmatrix}
\frac{k_{x}^{2}}{k_{x}^{2}}
\frac{k_{x}k_{z}}{k_{x}^{2}}
\frac{k_{x}k_{z}}{k_{z}^{2}}
\frac{k_{z}^{2}}{k_{x}^{2}}
\frac{k_{z}^{2}}{k_{z}^{2}}
\end{pmatrix}
\quad (90)
\]

Stability in the controlled wave number range follows from stability of Eqs. (72) and (73) and the invertibility of the transformations (76) and (77). We get the following result, whose proof we sketch (see Ref. [6] for more details).

Proposition 5.1. For \(k_{x}^{2} + k_{z}^{2} \leq M^{2} \), the equilibrium \(u = V = W = 0 \) of systems (33)–(42) with control laws (50), (53), (87), and (88) is exponentially stable in the \(L^{2} \) norm, i.e.,

\[\int_{0}^{1} \left(|u|^{2} + |V|^{2} + |W|^{2} \right) (t, k_{x}, y, k_{z}) d\eta \leq C_{1} e^{-2\alpha t} \int_{0}^{1} \left(|u|^{2} + |V|^{2} \right) \left(0, k_{x}, y, k_{z} \right) d\eta \quad (91) \]

where \(C_{1} \geq 0 \).

Proof. From Eqs. (72) and (73) we get, using a standard Lyapunov argument,

\[\int_{0}^{1} (|\Psi|^{2} + |\Omega|^{2}) (t, k_{x}, y, k_{z}) d\eta \leq e^{-2\alpha t} \int_{0}^{1} (|\Psi|^{2} + |\Omega|^{2}) (0, k_{x}, y, k_{z}) d\eta \quad (92) \]

and then from the transformations (76) and (77) and its inverse (which is guaranteed to exist [35]), we get

\[\int_{0}^{1} (|\Psi|^{2} + |\Omega|^{2}) (t, k_{x}, y, k_{z}) d\eta \leq C_{0} e^{-2\alpha t} \int_{0}^{1} (|\Psi|^{2} + |\Omega|^{2}) \times (0, k_{x}, y, k_{z}) d\eta \quad (93) \]

where \(C_{0} > 0 \) is a constant depending on the kernels \(K, \Gamma_{1} \) and \(\Gamma_{2} \), and their inverses. Then writing \((u, W)\) in terms of \((Y, \omega)\) and bounding the norm of \(V \) by the norm of \(Y \) (using \(Y = V_{y} \) and Poincaré’s inequality), the result follows.

\[\square \]

5.2 Uncontrolled Wave Number Analysis

When \(k_{x}^{2} + k_{z}^{2} > M^{2} \), the plant verifies the following equations:

\[u = \frac{-\alpha^{2}u + u_{y}}{Re} - \beta(y)u - U_{y}(y)V - 2\pi k_{x} i p + 2\pi k_{y} i N \phi - Nu \quad (94) \]

\[V_{y} = \frac{-\alpha^{2}V + V_{yy}}{Re} - \beta(y)V - p_{y} \quad (95) \]

\[W_{y} = \frac{-\alpha^{2}W + W_{yy}}{Re} - \phi W - 2\pi k_{x} i p - 2\pi k_{y} i N \phi - NW \quad (96) \]

the Poisson equation for the potential

\[-\alpha^{2} \phi + \phi_{y} = 2\pi(k_{x}u - k_{z}W) \quad (97) \]

the continuity equation

\[2\pi k_{x} i p + V_{y} + 2\pi k_{y} W = 0 \quad (98) \]

and Dirichlet boundary conditions

\[u(t, k_{x}, 0, k_{z}) = V(t, k_{x}, 0, k_{z}) = W(t, k_{x}, 0, k_{z}) = 0 \quad (99) \]

\[u(t, k_{x}, 1, k_{z}) = V(t, k_{x}, 1, k_{z}) = W(t, k_{x}, 1, k_{z}) = 0 \quad (100) \]
where we write \(f^* = \int f(k_x,y,k_z) dy \). The function \(\Lambda \) is the \(L^2 \) norm (kinetic energy) of the perturbation velocity field (which is closely related to the turbulent kinetic energy).

Denote by \(f^* \) the complex conjugate of \(f \). Substituting \(Y \) and \(\omega \) from Eq. (59) into Eq. (105), we get

\[
\Lambda = \int_0^1 \int [d_3^2 |V|^2 + |\dot{V}|^2 + |\nabla V|^2] dy
\]

where \(\alpha^2 \) is the Lyapunov function

\[
\Lambda = \int_0^1 \left[\alpha^2 |V|^2 + |\dot{V}|^2 + |\nabla V|^2 \right] dy
\]

Define then a new Lyapunov function

\[
\Lambda_1 = \int_0^1 |\dot{V}|^2 + |V|^2 + |\nabla V|^2 \right] \frac{dy}{2}
\]

The time derivative of \(\Lambda_1 \) can be estimated as follows:

\[
\Lambda_1' = \int_0^1 \left[\alpha^2 |V|^2 + |\dot{V}|^2 + |\nabla V|^2 \right] \frac{dy}{2}
\]

For bounding (108), we use the following two lemmas.

Lemma 5.1. \(- \alpha^2 \int_0^1 d_3^2 \dot{\phi} + \phi o^* \leq \int_0^1 |\phi|^2 \frac{dy}{2}\).

Proof. The term we want to estimate is

\[
- \alpha^2 \int_0^1 \left[\dot{\phi} + \phi o^* \right] \frac{dy}{2}
\]

Substituting \(\alpha^2 \) from Eq. (104), Eq. (109) can be written as

\[
- \alpha^2 \int_0^1 \left[\dot{\phi} + \phi o^* \right] \frac{dy}{2} + \int_0^1 |\phi|^2
\]

Therefore, we need to prove that

\[
\int_0^1 \left(\dot{\phi} \phi + \phi o^* \right) \geq 0
\]

Substituting \(\phi \) from Eq. (104) into Eq. (111), we get

\[
\int_0^1 \left(\dot{\phi} \phi + \phi o^* \right) = \int_0^1 \left(\dot{\phi} \phi + \phi o^* \right)
\]

which is non-negative.

Lemma 5.2. \(|U^*_0(\gamma)| \leq 4 + H \).

Proof. Computing \(U^*_0(\gamma) \) from Eq. (15),

\[
U^*_0(\gamma) = \frac{H \sinh(H - 1) \gamma}{2 \sinh H - 2 \sinh H / 2}
\]

Calling \(g_1(\gamma) = \cosh(H) \gamma - \cosh(H(1 - \gamma)) \), since \(g_1(\gamma) \) is positive, the maximum must be in the boundaries. Therefore

\[
|U^*_0(\gamma)| \leq g_2(H) = \frac{H \cosh H - 1}{\sin H - 2 \sin H / 2}
\]

One can rewrite \(g_2 \) as

\[
g_2 = \frac{H \sinh H / 2}{\cosh H / 2 - 1}
\]

Since \(g_2(0) = 4 \), it suffices to verify that \(g_2(H) \leq 1 \).

\[
\frac{g_2(H)}{g_4} = \frac{H \sin H / 2}{\cosh H / 2 - 1}
\]

This is equivalent to verify that \(g_2 \leq g_4 \). Since \(g_3(0) = g_4(0) = 0 \), it is enough that \(g_2 \leq g_4 \). Since \(g_4(0) = 0 \), it is enough that \(g_2 \leq g_4 \).

Integrating by parts and applying Lemma 1,

\[
\begin{align*}
\Lambda_1 &\leq -2 \epsilon \alpha^2 \Lambda_1 - \int_0^1 (|\dot{V}|)^2 + |V|^2 + |\nabla V|^2 dy \\
&\quad + \int_0^1 \pi n U^*_0(\gamma) V(2k_x Y + k_x, \omega) \right) - \int_0^1 \pi n U^*_0(\gamma) V(2k_x Y + k_x, \omega)
\end{align*}
\]

Using Lemma 2 to bound \(U^*_0(\gamma) \) in Eq. (118),

\[
\Lambda_1 \leq -2 \epsilon (1 + \alpha^2) \Lambda_1 - \int_0^1 (|\dot{V}|)^2 dy + 2 \pi (4 + H) \int_0^1 |V| dy dy
\]

and stability in the uncontrolled wave number range follows when \(k_x^2 + k_z^2 = M^2 \) for \(M \) (conservatively) chosen as

\[
M \geq \frac{1}{2 \pi \sqrt{(H + 4) \Re / 2}}
\]

We summarize the result in the following proposition.

Proposition 5.2. For \(k_x^2 + k_z^2 \geq M^2 \), where \(M \) is the equilibrium \(u = V = W = 0 \) of the un-
controlled systems (94)–(101) is exponentially stable in the L^2 sense, i.e.,
\[
\int_0^t \left(|u|^2 + |V|^2 + |W|^2(t,k_0,y,k)dy + \equiv e^{-\omega t} \int_0^t \left(|u_0|^2 + |V|^2 + |W|^2(t,k_0,y,k)dy \right)
\]

5.3 Main Result. Substituting Eqs. (50), (53), (87), and (88) into Eq. (44), and using the Fourier convolution theorem, we get the control laws in physical space, which can be expressed compactly as
\[
\begin{align*}
(U_t, W_t, \Phi_t) &= \int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{-\infty}^{\infty} \Sigma(x - \xi, \eta, \zeta - \xi) \times \left(\begin{array}{c} u(\xi, \eta, \zeta) \\ W(\xi, \eta, \zeta) \\ \phi(\xi, \eta, \zeta) \end{array} \right) d\xi d\eta d\zeta \\
\end{align*}
\]

where
\[
\Sigma(\xi, \eta, \zeta) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Sigma(k_x, \eta, k_z) \times \chi(k_x, k_z) e^{2\pi i (k_x \xi + k_z \zeta)} dk_x dk_z
\]

and
\[
\begin{pmatrix}
K_{Uu}(k_x,1, \eta, k_z) & K_{Uw}(k_x,1, \eta, k_z) \\
K_{Wu}(k_x,1, \eta, k_z) & K_{Ww}(k_x,1, \eta, k_z) \\
\end{pmatrix} =
\begin{pmatrix}
-\frac{2\pi k_x}{\alpha^2} \sinh(\alpha(1 - \eta)) + \frac{2\pi k_z}{\alpha^2} \sinh(\alpha(1 - \eta)) \\
\end{pmatrix}
\]

Control law V_t is a dynamic feedback law computed as the solution of the following forced parabolic equation:
\[
V_t(x) = \frac{(V_{ax} + V_{az})}{Re} - NV_t + g(t,x,z)
\]

where $g(x,t,z)$ is defined as
\[
g = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\int_{0}^{1} g(x - \xi, \eta, \zeta - \xi) V(\xi, \eta, \zeta) d\eta + g_u(x - \xi, \eta, \zeta) \times (W_t(\xi,0,\zeta) - W_t(\xi,1,\zeta)) + g_u(x - \xi, \eta, \zeta) (a(x,\xi,0,\eta) - \omega(x,\xi,0,\eta)) \right] d\xi d\eta d\zeta
\]

and
\[
g_u = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{1} 2\pi i \frac{k_x}{Re} \chi(k_x, k_z) e^{2\pi i (k_x \xi + k_z \zeta)} dk_x dk_z
\]
\[
g_v = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{1} \cosh(\alpha(1 - \eta)) (N + 4\pi k_x i U_f(\eta)) \times \chi(k_x, k_z) e^{2\pi i (k_x \xi + k_z \zeta)} dk_x dk_z
\]
\[
g_w = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{1} 2\pi i \frac{k_x}{Re} \chi(k_x, k_z) e^{2\pi i (k_x \xi + k_z \zeta)} dk_x dk_z
\]

As in Refs. [5,6], considering all wave numbers and using Propositions 1 and 2, the following result holds regarding the convergence of the closed-loop system.

Theorem 1. Consider the systems (21)–(30) with control laws (124)–(131). Then the equilibrium profile $u = V = W = 0$ is asymptotically stable in the L^2 norm, i.e.,
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{1} (u^2 + V^2 + W^2(t)) dx dy dz \leq C_2 e^{-2\alpha t} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{1} (u_0^2 + V_0^2 + W_0^2(x,y,z)) dx dy dz
\]

where $C_2 = \max\{C_1,1\} \geq 0$.

We have assumed in the above result that the closed-loop linearized system is well posed and that the velocity and electromagnetic field equations have at least L^2 solutions. See Ref. [40] for some mathematical considerations on the well-posedness of MHD problems.

Remark 5.2. In case that $N = 0$, meaning that there is no imposed magnetic field or the fluid is nonconducting, Eqs. (2)–(4) are the Navier–Stokes equations. Some physical insight can be gained by analyzing this case. In the context of hydrodynamics, stability theory, the linearized observer error systems written in (\tilde{Y}, \tilde{W}) variables verify equations analogous to the classical Orr–Sommerfeld–Squire equations. These are Eqs. (64) and (65) for controlled wave numbers and Eqs. (102) and (103) for uncontrolled wave numbers. As in Ref. [6], we use the backstepping transformations (76) and (77) not only to stabilize the system using gain f but also to decouple the system (using gains Γ_1, Γ_2) in the small wave number range, where non-normality effects are more severe. Even if the linearized system is stable, non-normality produces large transient growths [3,37], which enhanced by nonlinear effects may allow the system to go far away from the origin, activating the mechanism of transition to turbulence. This warrants the use of extra gains to map the system into two uncoupled heat equations (72) and (73).

Remark 5.3. As in Ref. [5], Theorem 2, some properties of the feedback control laws can be derived. The most important properties of the feedback laws from the point of view of implementation are the spatial decay of the kernels and conservation of mass. Spatial decay means that the function $\Sigma(x,y,z)$ appearing in Eq. (124) rapidly decreases as x or z grows and that implies that the control law mostly needs information about the states close to the actuation point. This suggests that our control laws could be approximately implemented by an array of discrete actuators, each of them only requiring information from the flow in its vicinity. Conservation of mass is derived by studying the behavior of the control laws at wave numbers $k_x = k_z = 0$ and can be mathematically expressed as
\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{1} V(x,z) dx dz = 0
\]

Physically, it means that the actuators do not need to add or subtract mass from the flow to stabilize it, which is a very desirable property for a possible implementation.

6 Concluding Remarks

In this paper we have stabilized the Hartmann flow, a benchmark MHD model with several potential applications. We have used the backstepping method that allows to compute the control kernels without needing to discretize the system. Our solution is summarized in control laws (124)–(131) and Theorem 1. The feedback kernels given by Eqs. (89) and (90) and calculated from Eqs. (78)–(84) can be computed beforehand.

The design of the control laws (124)–(131) was based on using several invertible transformations to simplify the problem and then go back to obtain the solution in physical space. Figure 3 summarizes all the transformations that were used. The structure of the controller is shown in Fig. 4 (top).

These feedback laws require full-state knowledge. In Ref. [32] we presented an observer for estimation of velocity and electromagnetic fields of the Hartmann flow based on boundary measurement of pressure, current, and skin friction. Such an observer can be used together with the control laws (124)–(131) to obtain an output feedback stabilizing boundary controller that only needs
boundary measurements; a block diagram showing the structure of the proposed output feedback controller is shown in Fig. 4 (bottom).

This work can be used as the starting point to also solve the problems of motion planning and trajectory tracking, which are of interest in engineering applications. The problem has been solved in the case of nonconducting fluids [41] using the backstepping method.

Our result uses the linear backstepping control method for parabolic PDEs and thus requires linearization of the MHD equations as a first step. Hence, Theorem 1 only holds for initial conditions close enough to the equilibrium profile. If one considers instead the fully nonlinear MHD equations, the problem is extremely challenging not only because of the nonlinearity itself but also because the plant becomes coupled in the wave number space. The nonlinearity is of bilinear type, and recent developments that extend the backstepping method to nonlinear parabolic PDEs using Volterra series [42,43] and to the viscous Burgers equation [44,45] are potentially applicable; however, the method has to be extended to consider the coupling between different wave numbers.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Stuart number</td>
</tr>
<tr>
<td>P</td>
<td>pressure</td>
</tr>
<tr>
<td>p</td>
<td>pressure fluctuation</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>ReM</td>
<td>magnetic Reynolds number</td>
</tr>
<tr>
<td>U</td>
<td>streamwise velocity</td>
</tr>
<tr>
<td>U⁺</td>
<td>streamwise equilibrium velocity</td>
</tr>
<tr>
<td>Uₑ</td>
<td>streamwise velocity controller</td>
</tr>
<tr>
<td>u</td>
<td>streamwise velocity fluctuation</td>
</tr>
<tr>
<td>V</td>
<td>wall-normal velocity</td>
</tr>
<tr>
<td>Vₑ</td>
<td>wall-normal velocity controller</td>
</tr>
<tr>
<td>W</td>
<td>spanwise velocity</td>
</tr>
<tr>
<td>Wₑ</td>
<td>spanwise velocity controller</td>
</tr>
<tr>
<td>φ</td>
<td>electric potential</td>
</tr>
<tr>
<td>φₑ</td>
<td>electric potential controller</td>
</tr>
<tr>
<td>Λ</td>
<td>Lyapunov function</td>
</tr>
</tbody>
</table>

References

