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Motion Planning and Tracking for
Tip Displacement and Deflection
Angle for Flexible Beams
Explicit motion-planning reference solutions are presented for flexible beams with
Kelvin–Voigt (KV) damping. The goal is to generate periodic reference signals for the
displacement and deflection angle at the free-end of the beam using only actuation at the
base. The explicit deflection angle reference solution is found as a result of writing the
shear beam model in a strict-feedback form. Special “partial differential equation (PDE)
backstepping” transformations relate the strict-feedback model to a “target system,”
governed by an exponentially stable wave equation with KV damping, whose displace-
ment reference solution is relatively easy to find. The explicit beam displacement refer-
ence solution is found using the target system solution and an inverse backstepping
transformation. The explicit reference solutions for the wave equation and shear beam
with KV damping are novel results. State-feedback tracking boundary controllers are
found by extending previous PDE backstepping stabilization results. Application of the
shear beam results to the more complicated Timoshenko beam is
discussed. �DOI: 10.1115/1.3072152�

Keywords: motion planning, trajectory generation, trajectory tracking, boundary
control, PDE backstepping, wave equation, string, flexible beam, shear beam, Timosh-
enko beam, Kelvin–Voigt damping
Introduction
Great strides have been made in the design and implementation

f collocated boundary controllers—a control architecture with
ensing and actuation implemented at the same boundary point—
or flexible beams for vibration suppression and stabilization. A
omprehensive monograph on collocated boundary control of
exible beams �1� presents the key approaches for studying sta-
ility and for imparting damping via boundary control. Work done
n Refs. �2–6� has achieved analytical and experimental success in
esigning collocated boundary controllers for flexible beams. Re-
ent work has also been done to extend vibration suppression and
tabilizing controllers to noncollocated systems �7–10�—systems
ith actuation and sensing at different points. This work pursues

he line of noncollocated boundary control, going beyond the
roblem of equilibrium stabilization to solve the problems of mo-
ion planning and reference tracking for flexible beams. Motion
lanning �trajectory generation� is the problem of finding the ap-
ropriate boundary input to produce a desired output. The full-
tate motion-planning reference solution can be used to find an
pen-loop boundary input, or combined with tracking boundary
ontrollers to improve the rate of convergence to the reference
olution.

Motion-planning results for strings and flexible structures with-
ut Kelvin–Voigt �KV� damping—internal/material damping—
ave been presented in Refs. �11–16�. This work considers sys-
ems with KV damping since they are more physically relevant,
nd note that the damping terms make finding the reference solu-
ion more difficult �though they make the stabilization problem
lightly easier�. The system models being considered are the wave
quation �string and target system� and the shear and Timoshenko
eams. A string is a single-input–single-output system, with the
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displacement at the base as the input, and the same quantity at the
free-end as the output. A beam is a two-input–two-output system
with the displacement and deflection angle at the base as the in-
puts, and the same quantities at the free-end as outputs. Figure 1
shows a diagram representing the problem setup. Motivation for
this setup comes from a particular shake table control problem
where the table provides boundary actuation to a structure, mod-
eled here as a flexible beam, in order to impart a desired reference
trajectory at its free-end. This setup also applies directly to the
control of dynamic mode atomic force microscopy �AFM�, where
a cantilevered beam is actuated at the base to produce a sinusoidal
output at the free-end.

The shear beam design begins by writing the model in a strict-
feedback �spatially causal� form to which PDE backstepping tech-
niques can be applied �17–20�. The deflection angle boundary
controller is found as a result of this step, and a clever modifica-
tion of that controller produces the explicit deflection angle refer-
ence solution. PDE backstepping transformations—state transfor-
mations that relate one PDE and boundary condition�s� to
another—are used to relate the strict-feedback shear beam model
to the target system—a reference model used in control design,
governed by a wave equation with KV damping �see Sec. 2.2�.
The inverse state transformation is used to find the explicit beam
displacement reference solution given the target system reference
solution. The target system reference solution is found using the
direct transformation between the target and string states and the
explicit string reference solution. The explicit motion-planning
reference solution for the string model is found by postulating the
reference solution as a power series of the spatial variable with
time dependent coefficients �11–16,21–23�. The advantage of em-
ploying PDE backstepping techniques is that they provide a
means for the rather complicated shear beam reference solution to
be found using the relatively simple reference solution for the
string.

The motion-planning results in the presence of Kelvin–Voigt
damping for the string, target system, and especially for the shear
beam models are novel and nontrivial results. The KV damping

introduces a new complexity in propagating the control signal
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rom one boundary to the other boundary, and the shear beam
equires a two-stage construction of the motion-planning solution,
hich does not arise with simple wave equations and Euler–
ernoulli beams. Furthermore, explicit motion-planning results
re novel.

Aside from facilitating the motion-planning designs, the PDE
ackstepping approach is also used to combine the open-loop ref-
rence solutions with state-feedback boundary controllers to
chieve exponential convergence to the reference trajectories.
hese results are extensions of the stabilizing boundary controller
esigns for the string model, and the shear and Timoshenko beams
17–20,24,25�.

Section 2 presents the system models. Section 3 presents the
eference solutions for the string, target system, and shear beam.
ection 4 presents stabilizing tracking boundary controllers for the
tring and the shear beam. Section 5 presents simulation results
or the generation and tracking of sinusoids for the string and the
imoshenko beam. The Appendix defines the key terms used in

his work.

Plant Models

2.1 String. The string model is given by the wave equation

�utt = �1 + d�t�uxx �1�

ux�0,t� = 0 �2�

here u�x , t� is the displacement of the string along 0�x�1 at
ime 0� t��, with initial conditions u0�x�=u�x ,0� and u̇0�x�
ut�x ,0�, d is the KV damping coefficient, and � is the inverse of

he nondimensional string stiffness. Partial derivatives with re-
pect to space and time are denoted by subscripts x and t, respec-
ively. The boundary condition �2� at x=0 represents a free-end.
he boundary input ux�1, t� is used as a control input.

2.2 Target System. The target system is an exponentially
table reference model used in PDE backstepping control design.
he target system model used for string, shear beam, and Timosh-
nko beam designs �17–20,24,25�, shown in Fig. 2 as a string with
spring at x=0 and a damper at x=1, is given by the wave

quation

�wtt = �1 + d�t�wxx �3�

wx�0,t� = c0w�0,t� �4�

wx�1,t� = − c1wt�1,t� �5�

here w�x , t� is the displacement of the target system, and has
nitial conditions w0�x�=w�x ,0� and ẇ0�x�=wt�x ,0�. The param-

0 1

xu(x, t)

ig. 1 Diagram depicting a string/beam with transverse dis-
lacement u„x , t…: The goal is to generate and track a reference
rajectory at x=0. The arrows at x=1 represent actuation, and
he circle at x=0 represents the desired reference trajectory.

0 1
x

w(x, t)c0 c1
Fig. 2 Diagram representing the target system
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eters c0�0 and c1�0 are design gains representing the spring
stiffness and damping coefficient of the spring and damper located
at opposite ends of the string. The spring stiffness c0 should be
large to emulate a pinned boundary condition at x=0, and the
damping coefficient c1 should be chosen near �� to emulate a
tuned damper at the end x=1.

2.3 Flexible Beams. The Timoshenko beam model is written
as two coupled wave equations

�utt = �1 + d�t��uxx − �x� �6�

���tt = �1 + d�t����xx + a�ux − ��� �7�

ux�0,t� = ��0,t� �8�

�x�0,t� = 0 �9�

where u�x , t� denotes the displacement and ��x , t� denotes the
deflection angle, with initial conditions u0�x�=u�x ,0�, u̇0�x�
=ut�x ,0�, �0�x�=��x ,0�, and �̇0�x�=�t�x ,0�. The positive con-
stants a, �, and � parametrize the appropriate nondimensional
beam parameters as defined in Refs. �26,27�. The parameters a
and � are proportional to the nondimensional cross-sectional area,
and the nondimensional moment of inertia of the beam, respec-
tively. The parameter � is inversely proportional to the nondimen-
sional shear modulus of the beam. The beam has a free-end �8�
and �9� at x=0, and is actuated at the end x=1 through the bound-
ary inputs ux�1, t� and ��1, t�. Figure 3 shows the relationships
between the displacement u�x , t�, slope ux�x , t�, and deflection
angle ��x , t�.

The shear beam model can be written as a singular perturbation
��=0� of the Timoshenko beam model, and is given by a wave
equation coupled with a second-order-in-space ordinary differen-
tial equation �ODE�

�utt = �1 + d�t��uxx − �x� �10�

0 = ��xx + a�ux − �� �11�
This model also has free-end boundary conditions �8� and �9�, and
boundary inputs ux�1, t� and ��1, t�.

The shear and Timoshenko beam models are considered for this
work since they are the more physically relevant and complete
beam models. The Timoshenko beam model is the most accurate
of the four, accounting for transverse displacement, bending mo-
ment, shear distortion, and rotary inertia �26�.

3 Motion Planning
Motion planning for the displacement �string, target system,

and shear beam� and deflection angle �shear beam� is done for

centerline

perpendicular to face
tangent to centerline

Fig. 3 A differential element of length dx in the Timoshenko
beam: The diagram shows the relationship between the beam
displacement u„x , t…, the slope ux„x , t…, and the deflection angle
�„x , t…. This diagram has been adapted from a figure in Ref.
†28‡.
sinusoidal reference trajectories since they are relevant functions
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n the fields of shake table control and AFM, where reference
rajectories tend to be oscillatory, and since they can form a basis
or more complicated functions.

3.1 String. The solution to the motion-planning problem for
he string model �1� and �2� is found for the sinusoidal tip dis-
lacement reference trajectory

ur�0,t� = Au sin��ut� �12�

y postulating the reference solution ur�x , t� as a power series of
he spatial variable with time dependent coefficients, i.e., ur�x , t�
�i=0

� ai�t�xi / i!. Examples of applications of this approach can be
ound in Refs. �11,16,22,23�. The string reference solution is

ur�x,t� = −
jAu

2
�cosh�j	x�ej�ut − cosh�j	̄x�e−j�ut� �13�

ith the complex valued constant 	=�u
�� /�1+ j�ud. Equation

13� can be written as the purely real function

ur�x,t� =
Au

2
�e
̂��u�x sin��ut + 
��u�x� + e−
̂��u�x sin��ut − 
��u�x��

�14�

here the real functions 
�n� and 
̂�n� are defined as


�n� = n����1 + n2d2 + 1

2�1 + n2d2�
�15�


̂�n� = n����1 + n2d2 − 1

2�1 + n2d2�
�16�

The open-loop displacement �Dirichlet� control ur�1, t� is found
y evaluating Eq. �14� at x=1. The expression for the open-loop
lope/force �Neumann� control input ux

r�1, t�, found by evaluating
he partial derivative with respect to x of Eq. �14� at x=1, is

ux
r�1,t� =

Au

2
�
̂��u�e
̂��u� sin��ut + 
��u��

+ 
��u�e
̂��u� cos��ut + 
��u��

− 
̂��u�e−
̂��u� sin��ut − 
��u��

− 
��u�e−
̂��u� cos��ut − 
��u��� �17�
HEOREM 3.1. The string model �1� and �2� is satisfied by the state

eference trajectory �14�. The output of the system satisfies the tip
isplacement reference trajectory �12�, given the open-loop Neu-
ann control input �17�.
Proof. The reference solution �14� evaluated at x=0 satisfies the

esired reference trajectory �12�. Equation �14� substituted into
qs. �1� and �2� satisfies the string PDE and free-end boundary
ondition. �

3.2 Target System. The solution to the motion-planning
roblem for the target system model �3� and �4� is found using the
eference solution for the string model and a PDE backstepping
tate transformation. The string model �1� and �2� with boundary
ctuation ux�1, t�, and the target system �3�–�5� are related via the
irect backstepping transformation w�x , t�=u�x , t�+c0�0

xu�y , t�dy
24,25�, which when substituted into Eqs. �3� and �4� satisfies Eqs.
1� and �2�. Therefore, the target system reference solution
r�x , t�, found as a function of the string reference solution
r
�x , t�, is

ournal of Dynamic Systems, Measurement, and Control

aded 25 Mar 2009 to 132.239.1.231. Redistribution subject to ASME
wr�x,t� = ur�x,t� + c0�
0

x

ur�x,t�dy �18�

Backstepping transformations preserve values at the boundary x
=0, i.e., w�0, t�=u�0, t�, and so the target system tip displacement
reference trajectory

wr�0,t� = Au sin��ut� �19�

is equivalent to the string reference trajectory ur�0, t�. The refer-
ence solution, found by substituting Eq. �13� into Eq. �18� and
evaluating the integral, is

wr�x,t� = −
jAu

2
�cosh�j	x�ej�ut − cosh�j	̄x�e−j�ut�

−
c0Au

2
	
 1

	̄
�sinh�j	̄x�ej�ut − 
 1

	
�sinh�j	̄x�e−j�ut�

with the complex valued constant 	=�u
�� /�1+ j�ud. The ex-

pression for wr�x , t� can be written as the purely real function

wr�x,t� =
Au

2
�e
̂��u�x sin��ut + 
��u�x�

+ e−
̂��u�x sin��ut − 
��u�x��

−
c0Au

2
���u��e
̂��u�x cos��ut + 
��u�x�

− e−
̂��u�x cos��ut − 
��u�x��

− �̂��u��e
̂��u�x sin��ut + 
��u�x�

− e−
̂��u�x sin��ut − 
��u�x��� �20�

where the real valued functions 
�n� and 
̂�n� are defined in Eqs.
�15� and �16�, respectively, and ��n� and �̂�n� are defined as

��n� =
1

n��
��1 + n2d2 + 1

2
�21�

�̂�n� =
1

n��
��1 + n2d2 − 1

2
�22�

The open-loop displacement �Dirichlet� control wr�1, t� is found
by evaluating Eq. �20� at x=1. The open-loop slope/force �Neu-
mann� control wx

r�1, t� is found by evaluating the partial derivative
with respect to x of Eq. �20� at x=1.

THEOREM 3.2. The target system �3� and �4� is satisfied by the
state reference trajectory �20�. The output of the system satisfies
the tip displacement reference trajectory �19�, given the open-loop
Neumann control input wx

r�1, t�.
Proof. The reference solution �20� evaluated at x=0 satisfies the

reference trajectory �19�. Equation �20� substituted into Eqs. �3�
and �4� satisfies the target system PDE and x=0 boundary condi-
tion. �

3.3 Shear Beam. The solution to the motion-planning prob-
lem for the shear beam model has two parts. Figure 4 shows a
pictorial representation of the structure of the problem. A back-
stepping transformation is ultimately used to find the state refer-
ence trajectory; therefore the first part requires writing the shear
beam model �10�, �11�, �8�, and �9� in a strict-feedback �spatially
causal� form that makes PDE backstepping tools applicable. The
second part requires solving the simultaneous motion-planning
problem by first finding the reference solution for the free-end
deflection angle ��0, t�, and then using a backstepping transfor-
mation to find the reference solution for the free-end displacement

u�0, t�. Figure 5 shows the transformations relating the string, tar-
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et system, and strict-feedback shear beam used to relate the
tring displacement reference solution �easiest to find� to the
trict-feedback shear beam solution.

3.3.1 Strict-Feedback Shear Beam Model. The ODE in Eq.
11�, with the boundary condition �9� and ��1, t� available as the
ontrol input, constitutes a two-point-boundary-value problem.
he general solution �17–20� of that problem is ��x , t�
cosh�bx���0, t�+b sinh�bx�u�0, t�−b2�0

xcosh�b�x−y��u�y , t�dy,
=�a /�, which can be evaluated at x=1 and written as

��0,t� =
1

cosh�b�
��1,t� − b sinh�b�u�0,t�

+ b2�
0

1

cosh�b�1 − y��u�y,t�dy� �23�

ubstituting the appropriate partial derivatives of the solution for
�x , t� into Eqs. �10� and �8�, and using the expression for ��0, t�

n Eq. �23�, produces

�utt = �1 + d�t�	uxx + b2u − b2 cosh�bx�u�0,t�

+ b3�
0

x

sinh�b�x − y��u�y,t�dy

−
b sinh�bx�

cosh�b� 
��1,t� − b sinh�b�u�0,t�

+ b�
0

1

sinh�b�1 − y��u�y,t�dy�� �24�

αr(1, t) αr(0, t)

ur(0, t)ur(1, t)

find strict-feedback model

solve TPBVP for α

solve PDE for r(x, t)
and find ur(x, t)

using transformation

ig. 4 Pictorial representation of the structure of the input-
utput relationship ˆur

„1, t… ,�r
„1, t…‰¾ ˆur

„0, t… ,�r
„0, t…‰, and a

escription of the types of problems involved in solving the
imultaneous motion-planning problem: Finding �r

„1, t… in-
olves solving a two-point boundary-value problem „TPBVP…
or �„x , t…, then modifying the resulting boundary input �„1, t…
o satisfy both spatial causality of the shear beam and motion
lanning. Finding ur

„1, t… requires solving a PDE for the auxil-
ary system r„x , t…, then employing a direct transformation from

r
„x , t… to ur

„x , t….

u(x, t) w(x, t) u(x, t)

strict-feedback
shear beam

string target
−c0e

−c0(x−y)

−c0 l(x, y)

k(x, y)

ig. 5 The string of invertible transformations involved in
olving the shear beam motion-planning problem: The func-
ions above and below the arrows represent the appropriate

ransformation gains
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ux�0,t� =
1

cosh�b�
��1,t� − b sinh�b�u�0,t�

+ b�
0

1

sinh�b�1 − y��u�y,t�dy� �25�

Backstepping tools require that the plant model be in a strict-
feedback form; therefore Eqs. �24� and �25� cannot contain terms
that violate spatial causality, for example, �0

1sinh�b�1−y��u�y�dy.
The boundary control ��1, t�, present in Eqs. �24� and �25�, is set
to

��1,t� = b sinh�b�u�0,t� − b�
0

1

sinh�b�1 − y��u�y,t�dy �26�

simplifying Eqs. �24� and �25� into the strict-feedback shear beam
model �17–20�

�utt = �1 + d�t�
uxx + b2u − b2 cosh�bx�u�0,t�

+ b3�
0

x

sinh�b�x − y��u�y,t�dy� �27�

ux�0,t� = 0 �28�
to which backstepping tools can now be applied.

The strict-feedback shear beam model �27� and �28� with
boundary actuation ux�1, t�, and target system �3�–�5� are related
through the direct backstepping transformation �17–20� w�x , t�
=u�x , t�−�0

xk�x ,y�u�y , t�dy, with k�x ,y� satisfying the partial
integro-differential equation �PIDE�

kxx = kyy + b2k − b3 sinh�b�x − y�� + b3�
y

x

k�x,��sinh�b�� − y��d�

�29�

k�x,x� = −
b2

2
x − c0 �30�

ky�x,0� = − b2 cosh�bx� + b2�
0

x

k�x,y�cosh�by�dy �31�

which when substituted into Eqs. �3� and �4� satisfies Eqs. �27�
and �28�. The two systems are also related through the inverse
backstepping transformation

u�x,t� = w�x,t� +�
0

x

l�x,y�w�y,t�dy �32�

where l�x ,y� satisfies the PIDE

lxx = lyy − b2l − b3 sinh�b�x − y�� − b3�
y

x

sinh�b�x − ���l��,y�d�

�33�

l�x,x� = −
b2

2
x − c0 �34�

ly�x,0� = c0l�x,0� − b2 cosh�bx� �35�
LEMMA 3.1. The inverse backstepping transformation �32�, with

l�x ,y� satisfying Eqs. �33�–�35�, substituted into Eqs. �27� and
�28� satisfies Eqs. �3� and �4�.

Proof. Substituting Eq. �32� and its appropriate partial deriva-

tives into Eqs. �27� and �28�, and using the relationships in Eqs.
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3� and �4�, shows that l�x ,y� must satisfy Eqs. �33�–�35� in order
o satisfy the transformation from target to plant states. �

3.3.2 Simultaneous Motion Planning. The boundary control
ignal �26� satisfies the need for the shear beam model to be
patially causal, but it also forces ��0, t�=0 in Eq. �23� and elimi-
ates the opportunity to do motion planning for the tip deflection
ngle. However, for a given reference signal �r�0, t�, augmenting
he boundary control law �26� with the additive term
osh�b��r�0, t� produces the boundary condition ��0, t�=�r�0, t�
nd satisfies the desired tip deflection angle reference trajectory.
he strict-feedback shear beam model for motion planning is then

�utt = �1 + d�t�	uxx + b2u − b2 cosh�bx�u�0,t�

+ b3�
0

x

sinh�b�x − y��u�y,t�dy − b sinh�bx��r�0,t��
�36�

ux�0,t� = �r�0,t� �37�

he explicit deflection angle reference solution is given by

�r�x,t� = cosh�bx��r�0,t� + b sinh�bx�ur�0,t�

− b2�
0

x

cosh�b�x − y��ur�y,t�dy �38�

nd the boundary control for motion planning is

�r�1,t� = cosh�b��r�0,t� + b sinh�b�ur�0,t�

− b2�
0

1

cosh�b�1 − y��ur�y,t�dy �39�

here ur�x , t� is the state reference trajectory for the strict-
eedback shear beam model �36� and �37�, and can be found using
PDE backstepping transformation from the target system to the

trict-feedback shear beam model.
The strict-feedback shear beam model for motion planning �36�

nd �37� with boundary actuation ux�1, t�, and the target system
3�–�5� are related through the direct backstepping transformation

w�x,t� = u�x,t� −�
0

x

k�x,y�u�y,t�dy + r�x,t� �40�

here k�x ,y� satisfies Eqs. �29�–�31�, and r�x , t� is the state of an
uxiliary system satisfying the PDE

�rtt = �1 + d�t�	rxx + 
− b sinh�bx�

+ b�
0

x

k�x,y�sinh�by�dy��r�0,t�� �41�

r�0,t� = 0 �42�

rx�0,t� = �r�0,t� �43�

he auxiliary state r�x , t� is required to satisfy the transformation
rom target to plant when the reference solution for the tip deflec-
ion angle is introduced into the design. The two systems are also
elated through the inverse backstepping transformation

u�x,t� = w�x,t� − r�x,t� +�
0

x

l�x,y��w�y,t� − r�y,t��dy �44�

here l�x ,y� and r�x , t� satisfy Eqs. �33�–�35� and �41�–�43�.

LEMMA 3.2. The direct backstepping transformation �40�, with
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k�x ,y� satisfying Eqs. �29�–�31� and r�x , t� satisfying Eqs.
�41�–�43�, substituted into Eqs. �3� and �4� satisfies Eqs. �36� and
�37�.

Proof. Substituting Eq. �40� and its partial derivatives into Eqs.
�3� and �4�, using the relationships in Eqs. �36� and �37�, shows
that k�x ,y� and r�x , t� must satisfy Eqs. �29�–�31� and �41�–�43�.

�
LEMMA 3.3. The inverse backstepping transformation �44�, with

l�x ,y� satisfying Eqs. �33�–�35� and r�x , t� satisfying Eqs.
�41�–�43�, substituted into Eqs. �36� and �37� satisfies Eqs. �3� and
�4�.

Proof. Substituting Eq. �44� and its appropriate partial deriva-
tives into Eqs. �36� and �37�, and using the relationships in Eqs.
�3� and �4�, shows that l�x ,y� and r�x , t� must satisfy Eqs.
�33�–�35� and �41�–�43�, respectively. �

The explicit displacement reference solution for the strict-
feedback shear beam model for motion planning, found using the
inverse transformation �44�, is

ur�x,t� = wr�x,t� − r�x,t� +�
0

x

l�x,y��wr�y,t� − r�y,t��dy �45�

where wr�x , t� is given in Eq. �20�, and r�x , t� must be found for a
particular tip deflection angle reference trajectory �r�0, t�. The
shear beam tip displacement reference trajectory, found by evalu-
ating Eq. �45� at x=0, is given in Eq. �12�.

The open-loop displacement �Dirichlet� boundary control is
found by evaluating Eq. �45� at x=1. The open-loop slope/force
�Neumann� boundary control, found by evaluating the partial de-
rivative with respect to x of Eq. �45� at x=1, is

ux
r�1,t� = wx

r�1,t� − rx�1,t� + l�1,1��wr�1,t� − r�1,t��

+�
0

1

lx�1,y��wr�y,t� − r�y,t��dy �46�

where wr�1, t� is given by Eq. �20� evaluated at x=1, and wx
r�1, t�

is given by the partial derivative with respect to x of Eq. �20�
evaluated at x=1. The expressions r�1, t� and rx�1, t� can be de-
rived from the solution for r�x , t�.

To that end consider the sinusoidal tip deflection angle refer-
ence trajectory given by

�r�0,t� = A� sin���t� �47�

where A� and �� are the amplitude and frequency, respectively.
The solution to the auxiliary system r�x , t� is found by first taking
a Laplace transform in space of Eqs. �41�–�43�, which reduces the
PDE in space and time to the ODE in time

�R̈�s,t� − ds2Ṙ�s,t� − s2R�s,t� = ��s� − 1���r�0,t� + d�̇r�0,t��
�48�

where �s� denotes the Laplace transform of ��x�=−b sinh�bx�
+b�0

xk�x ,y�sinh�by�dy. The solution to Eq. �48�, ignoring tran-
sients, is assumed to be of the form

R�s,t� = A1�s�sin���t� + A2�s�cos���t� �49�

where A1�s� and A2�s� must be found.
Substituting Eqs. �47� and �49� into Eq. �48�, grouping terms

common in sin���t� and cos���t�, then solving the resulting lin-
ear algebra problem for A1�s� and A2�s� give A1�s�=A�F1�s��1
−�s�� and A2�s�=A�F2�s��1−�s��, where F1�s�= ��1+��

2d2�s2

+���
2� / ��1+��

2d2�s4+2���
2s2+ ����

2�2� and F2�s�=���
3d / ��1

+��
2d2�s4+2���

2s2+ ����
2�2�. The inverse Laplace transforms of

A1�s�, A2�s�, F1�s�, and F2�s� are

a1�x� = A�
 f1�x� −�x

f1�x − y���y�dy� �50�

0
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a2�x� = A�
 f2�x� −�
0

x

f2�x − y���y�dy� �51�

f1�x� =
1

2

1

�
sin��x� +

1

�̄
sin��̄x�� �52�

f2�x� =
j

2

1

�
sin��x� −

1

�̄
sin��̄x�� �53�

ith the complex valued constant �

��
����1+ j��d� / �1+��

2d2�. The expressions in Eqs. �52� and
53� can be written as the purely real functions

f1�x� = �����sin�
����x�cosh�
̂����x�

+ �̂����cos�
����x�sinh�
̂����x� �54�

f2�x� = − �����cos�
����x�sinh�
̂����x�

+ �̂����sin�
����x�cosh�
̂����x� �55�

here the real valued functions 
����, 
̂����, �����, and �̂����
re defined in Eqs. �15�, �16�, �21�, and �22�, respectively.

The solution to the auxiliary system, given by the inverse
aplace transform of Eq. �49� with a1�x� and a2�x� given in Eqs.

50� and �51�, is then

r�x,t� = A�
 f1�x� −�
0

x

f1�x − y���y�dy�sin���t�

+ A�
 f2�x� −�
0

x

f2�x − y���y�dy�cos���t� �56�

HEOREM 3.3. The shear beam model �10�, �11�, �8�, and �9� is
atisfied by the state reference trajectories �38� and �45� , where
�x ,y� satisfies Eqs. �33�–�35�, wr�x , t� is given in Eq. �20�, and
�x , t� is given in Eq. �56�. The outputs of the system satisfy the tip
isplacement and deflection angle reference trajectories �12� and
47� given the open-loop control inputs �39� and �46�.

Proof. The reference solutions �38� and �45� evaluated at x=0
atisfy the desired free-end displacement and deflection angle ref-
rence trajectories. Equations �38� and �45� substituted into Eqs.
10�, �11�, �8�, and �9� satisfy the shear beam PDE and free-end
oundary conditions. �

Reference Tracking
Reference tracking controllers combine the open-loop motion-

lanning reference solutions with stabilizing feedback controllers.
heir purpose is to stabilize the system and improve the rate of
onvergence to the reference solution when there exists a mis-
atch in initial conditions between the system state and reference

olution.
DEFINITION 4.1. The reference trajectory ur�x , t� is said to be

xponentially stable if there exist positive constants M and m such
hat

��u�t� − ur�t��2 + �ut�t� − ut
r�t��2�1/2

� Me−mt��u0 − u0
r�2 + �u̇0 − u̇0

r�2�1/2 �57�

here � · � denotes the norm of v, �v�= ��0
1v�x�2dx�1/2, u0�x�

u�x ,0�, u0
r�x�=ur�x ,0�, u̇0�x�=ut�x ,0�, and u̇0

r�x�=ut
r�x ,0�.

4.1 String. The tracking controller for the string is an exten-
ion of the stabilizing controller in Refs. �24,25�.
THEOREM 4.1. The state-feedback tracking controller
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ux�1,t� = − c0u�1,t� − c1ut�1,t� − c0c1�
0

1

ut�y,t�dy + wx
r�1,t�

+ c1wt
r�1,t� �58�

exponentially stabilizes the string system �1� and �2� about the
state reference trajectory �14�.

Proof. The expression for the boundary controller �58� is found
by writing the standard boundary controller in Refs. �24,25� in
terms of the reference tracking error ũ�x , t�=u�x , t�−ur�x , t�,
where wx

r�1, t�+c1wt
r�1, t�=ux

r�1, t�+c0ur�1, t�+c1ut
r�1, t�

+c0c1�0
1ut

r�y , t�dy.
The string reference solution �14� satisfies string model �1�, �2�,

and �58�, and therefore has the same dynamics. Therefore, the
tracking error dynamics can be written as

�ũtt = �1 + d�t�ũxx �59�

ũx�0,t� = 0 �60�

ũx�1,t� = − c0ũ�1,t� − c1ũt�1,t� − c0c1�
0

1

ũt�y,t�dy �61�

which resemble the closed-loop string dynamics. The direct and
inverse backstepping transformations w̃�x , t�= ũ�x , t�
+c0�0

xũ�y , t�dy and ũ�x , t�= w̃�x , t�−c0�0
xe−c0�x−y�w̃�y , t�dy relate

the tracking error dynamics �59�–�61� and the exponentially stable
tracking error target system

�w̃tt = �1 + d�t�w̃xx �62�

w̃x�0,t� = c0w̃�0,t� �63�

w̃x�1,t� = − c1w̃t�1,t� �64�

The state of the tracking error system ũ�x , t� can be bounded by
the state of the tracking error target system w̃�x , t� by �ũ�t��� �1
+c0��w̃�t��, and the same is true for the time derivatives, so the
closed-loop system �1�, �2�, and �58� is exponentially stable
around the reference solution �14�. �

The string boundary controller �58� requires slope/force actua-
tion at the base, but can also be written in a form that requires
displacement actuation. When combined with full-state observers
�24,25�, the output-feedback tracking controller requires sensing
of the free-end displacement and velocity.

4.2 Shear Beam. The tracking controllers for the shear beam
are extensions of the stabilizing controllers in Refs. �17–20�.

THEOREM 4.2. The state-feedback tracking controllers

ux�1,t� = k�1,1�u�1,t� +�
0

1

kx�1,y�u�y,t�dy − c1ut�1,t�

+ c1�
0

1

k�1,y�ut�y,t�dy + wx
r�1,t� + c1wt

r�1,t� − rx�1,t�

− c1rt�1,t� �65�

��1,t� = cosh�b��r�0,t� + b sinh�b�u�0,t�

− b2�
0

1

cosh�b�1 − y��u�y,t�dy �66�

exponentially stabilize the shear beam �10�, �11�, �8�, and �9�
about the state reference trajectories �38� and �45�. The tip dis-
placement and deflection angle track Eqs. �12� and �47�,
respectively.

Proof. The expression for the boundary controller �65� is found
by expressing the target system boundary condition �5� in terms of

r r
the tracking error �wx�1, t�−wx�1, t��=−c1�wt�1, t�−wt�1, t��, and
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sing the transformation �40� to substitute for wx�1, t� and wt�1, t�.
Application of the boundary controller �66� makes the shear

eam spatially causal. The shear beam reference solution �45�
atisfies the strict-feedback shear beam model for motion planning
36�, �37�, and �65�, and therefore has the same dynamics. The
racking error dynamics can therefore be written as

�ũtt = �1 + d�t�
ũxx + b2ũ − b2 cosh�bx�ũ�0,t�

+ b3�
0

x

sinh�b�x − y��ũ�y,t�dy� �67�

˜
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ig. 6 String simulation showing the state as snapshots in
ime
ux�0,t� = 0 �68�
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ũx�1,t� = k�1,1�ũ�1,t� +�
0

1

kx�1,y�ũ�y,t�dy − c1ũt�1,t�

+ c1�
0

1

k�1,y�ũt�y,t�dy �69�

which resemble the closed-loop strict-feedback shear beam model
dynamics. The direct and inverse backstepping transformations
w̃�x , t�= ũ�x , t�−�0

xk�x ,y�ũ�y , t�dy and ũ�x , t�= w̃�x , t�
+�0

xl�x ,y�w̃�y , t�dy relate the tracking error dynamics �67�–�69� to
the exponentially stable tracking error target system �62�–�64�.
The state of the tracking error system ũ�x , t� can be upper bounded
by the state of the tracking error target system w̃�x , t� by �ũ�t��
� �1+ �l�1,y�����w̃�t��, and the closed-loop system �10�, �11�, �8�,
�9�, �65�, and �66� is exponentially stable around the reference
solutions �38� and �45�. �

The shear beam boundary controllers �65� and �66� require ac-
tuation of the slope �or displacement� and bending moment at the
base. When combined with full-state observers �17–20�, the
output-feedback tracking controllers require sensing of the free-
end displacement and velocity.

The Timoshenko beam control design in Refs. �19,20� is done
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Fig. 7 String simulation results comparing the „a… tip displace-
ment u„0, t… and reference trajectory ur

„0, t…, „b… base displace-
ment u„1, t… and reference displacement ur

„1, t…, and „c… bound-
ary control input ux„1, t… and reference input ux

r
„1, t…
using a singular perturbation approach to reduce the Timoshenko
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eam to the shear beam model. The design is analogous to the
hear beam design �17,18�, and all results for the shear beam
pply approximately to the Timoshenko beam. Therefore the ref-
rence tracking results presented in Theorem 4.2 also apply ap-
roximately to the Timoshenko beam modulo an O��� residual in
he tracking error.

Simulation Results
Simulations employ finite-differences to resolve partial deriva-

ives in space, and the Crank–Nicolson method to march the equa-
ions forward in time.

5.1 String. This section presents simulation results for the
tring �1� and �2� in closed-loop with the boundary controller �58�.
he spatial and temporal step sizes used in the simulations are
x= 1

100 and �t= 1
100, respectively. The string parameters are d

0.08 and �=5, and the controller parameters are c0=100 and

1=0.99�5. The reference trajectory parameters are Au= 1
2 and
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ig. 8 Timoshenko beam simulation results showing snap-
hots of the beam state u„x , t…
u=�. The simulation was initialized with zero initial displace-
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ment and velocity.
Figures 6 and 7 present simulation results for the reference

trajectory ur�0, t�=Au�sin��ut�+sin��2�ut��. Generation and
tracking of two sinusoids are achieved by implementing the
boundary controller as a function of the linear combination of the
target system reference solutions for each sinusoid. Figure 6
shows the evolution of the string state u�x , t� as a sequence of
snapshots in time, with increasing darkness corresponding to in-
creasing time in each sequence. The reference trajectory at the
corresponding time is represented by a circle at x=0 of the same
shade. Figure 7�a� compares the tip displacement u�0, t� to the tip
reference trajectory ur�0, t�. Figure 7�b� compares the base dis-
placement u�1, t� to the reference displacement ur�1, t�. Figure
7�c� compares the boundary input ux�1, t� to the reference bound-
ary input ux

r�1, t�.

5.2 Timoshenko Beam. This section presents simulation re-
sults for the Timoshenko beam model �6�–�9� in closed-loop with
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Fig. 9 Timoshenko beam simulation results showing snap-
shots of the beam state �„x , t…
the state-feedback controllers �65� and �66�. The spatial and tem-
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Downlo
oral step sizes used in simulation are �x= 1
100 and �t= 1

50, respec-
ively. The beam parameters are a=5, d=0.1, �=20, and �
0.02. The controller parameters are c0=100 and c1=0.99�20.
he reference trajectory parameters are Au= 1

2 , �u= �

3 and A�= 1
4 ,

�=�. The beam is initialized with an initial displacement
�x ,0�=− 1

10�1−x�2, an initial deflection angle of ��x ,0�= 1
5 �1

x�, and zero initial velocity.
Figures 8–11 present results for the simultaneous tracking of

he sinusoidal tip reference trajectories ur�0, t�=Au sin��ut� and
r�0, t�=A� sin���t�. Figures 8 and 9 show the evolution of the
eam states u�x , t� and ��x , t�. Figures 10�a�–10�c� show the tip
isplacement tracking error u�0, t�−ur�0, t�, the base displacement
�1, t� and reference displacement ur�1, t�, and the boundary con-
rol ux�1, t� and reference control ux

r�1, t�, respectively. Figures
1�a� and 11�b� show the tip deflection angle tracking error
�0, t�−�r�0, t�, and the boundary control ��1, t� and reference
ontrol �r�1, t�. Both tracking error plots show a periodic steady
tate error on the order of �=0.02, with frequency ��.

Simultaneous tracking simulations have also been done for ref-
rence trajectories where either ur�0, t� or �r�0, t� are zero. Simu-
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ig. 10 Timoshenko beam simulation results showing „a… the
ip displacement tracking error u„0, t…−ur

„0, t…, „b… the base dis-
lacement u„1, t… and the reference displacement ur

„1, t…, and
c… the boundary control ux„1, t… and the reference control

x
r
„1, t…
ations with u �0, t�=0 and � �0, t�=A� sin���t� show how the
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approximate nature of the shear beam results applied to the Ti-
moshenko beam appear as a periodic disturbance to the u-system.
The ux�1, t� controller is not able to fully suppress the disturbance,
and u�x , t� exhibits O��� oscillations of frequency ��. Simula-
tions with ur�0, t�=Au sin��ut� and �r�0, t�=0 do not exhibit the
O��� tracking error, and the ��1, t� boundary controller stabilizes
��0, t� to zero.

Figures 12�a� and 12�b� show the control gains k�1,y� and
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Fig. 11 Timoshenko beam simulation results showing „a… the
tip deflection angle tracking error �„0, t…−�r

„0, t…, and „b… the
boundary control �„1, t… and reference control �r

„1, t…
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Conclusion
This paper has presented explicit reference solutions to the
otion-planning problem for the wave equation �string and target

ystem� and shear beam models with Kelvin–Voigt damping. The
isplacement reference solution was first found for the string,
hich is the simplest model being considered, then PDE backstep-
ing transformations were used to find the displacement solutions
or the target system and shear beam as a function of the string
olution. PDE backstepping techniques were also used to find the
eflection angle reference solution for the shear beam. Combining
DE boundary backstepping methods with classical trajectory
eneration methods simplified the problem of solving the motion-
lanning problem for the shear beam, described by coupled wave
quations, to finding the reference solution for the much simpler
arget system.

While this paper has focused on motion planning for periodic
rajectories, this approach extends to a far broader class of tem-
oral waveforms that includes polynomials, exponentials, sinuso-
ds, and products thereof as special cases. With a slight modifica-
ion one can obtain solutions to motion planning for all output
eference trajectories that can be written in the form ur�0, t�
CX�t� where X�t� is a solution of the autonomous linear “exo-

ystem” Ẋ=AX for a given initial condition X�0�. For example, if
he reference output is ur�0, t�= te−t sin t, the parameters of the
xosystem would be chosen as C= �1 0 0 0�,

A = �
0 1 0 0

0 0 1 0

0 0 0 1

− 4 − 8 − 8 − 4
� ,

�0�= �2 2 0 0�T, and finding the motion-planning solution
ould proceed using the matrix exponentials of A.
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ppendix: Key Terms
collocated control: control architecture with actuation and

ensing at the same location
Kelvin–Voigt damping: internal/material damping
motion planning: solving for an open-loop input that generates
desired output
noncollocated control: control architecture with actuation and

ensing at different locations
PDE backstepping transformation: infinite dimensional state

ransformation relating plant and target system states
reference solution: solution to a motion-planning problem
reference trajectory: desired trajectory to be generated and

racked
target system: exponentially stable reference model used in

DE backstepping control design
trajectory generation: see Sec. 3
trajectory tracking: combining reference solution with feed-

ack control to stabilize system to desired reference trajectory
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