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Abstract—Our past work introduced source seeking methods for
GPS-denied autonomous vehicles using only local signal measure-
ment and operating in two dimensions. In this paper, we extend
these results to three dimensions. The 3-D extensions introduce
many interesting challenges, including the choice of vehicle models
in 3-D, sensor placement to allow probing-based gradient estima-
tion of an unknown signal field in 3-D, the question of what type
of pattern of vehicle motion can be produced in an underactuated
3-D vehicle to allow tuning by single-loop or multiloop extremum
seeking, and the shape of attractors, which become very complex in
3-D. We present two control schemes that address these questions.
The first scheme focuses on vehicles with a constant forward veloc-
ity and the ability to actuate pitch and yaw velocities. The second
scheme employs vehicles with constant forward and pitch velocities
and actuate only the roll velocity. Our results include convergence
analysis and simulation results.

Index Terms—Adaptive control, localization, nonholonomic mo-
tion planning, underactuated robots.

I. INTRODUCTION

A. Motivation

THE FIELD of study for autonomous vehicles operating
without GPS or inertial navigation is an area of rapidly

growing interest. In environments where GPS is unavailable and
inertial navigation is too costly, such as urban, underground, and
underwater environments, other methods must be employed to
navigate vehicles. Extremum seeking applied to source seeking
has been presented as a method for autonomous vehicles to lo-
cate a target that emits some sort of measurable signal [1]–[3].
This signal could be electromagnetic, acoustic, or the concen-
tration of a chemical or biological agent. The extremum seeking
method uses only the measurement of the signal from the vehi-
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cle’s sensor, and then employs a periodic probing movement for
the vehicle to navigate the field and locate the target. Results of
applying this method to vehicles operating in two dimensions
show its great potential for use in many applications [4].

B. Contribution

In this paper, we explore the use of extremum seeking for the
navigation of vehicles operating in three dimensions, and present
the first solution to the problem of localization and pursuit of
signal sources using only local signal measurement and without
position measurement in three dimensions. The extension of
source seeking from two dimensions to three is interesting for
several reasons, including the choice of vehicle models in 3-D,
sensor placement to allow probing-based gradient estimation
of an unknown signal field in 3-D, the question of what type of
pattern of vehicle motion can be produced in an underactuated
3-D vehicle to allow tuning by single-loop or multiloop (one pa-
rameter or multiparameter) extremum seeking, and the shape of
attractors that are challenging to characterize in 3-D. We choose
a model that is easy to relate to several different types of vehicles
and explore different types of actuation for these vehicles.

C. Literature

Other researchers have considered source seeking problems:
Porat and Neohorai [5] looked at using vehicles modeled as point
sources to track vapor emitting sources, Reddy et al. [6] explored
pursuit and evasion trajectories, and Ogren et al. [7] and Klein
et al. [8] looked at coordination of multiple vehicles for gradient
climbing and target tracking, respectively. This paper is different
in that the vehicle has no knowledge of its position or the position
of the source, there is no communication between it and other
entities, and it has nonholonomic dynamics. While we apply
the extremum seeking methods to autonomous vehicles, many
groups have used the extremum seeking method in their work
outside of this field, including [9] in the soft landing of valve
actuators, [10] and [11] in plasma current profiles for fusion
reactors, [12] in nonlocal stability properties, [13] in adaptive
flow control, [14] in separation control, [15] in active braking
systems, [16] in thermoacoustic coolers, and [17] in human
exercise machines.

D. Models and Control Schemes Designed

We present two control schemes for actuating an autonomous
vehicle operating in three dimensions whose task is to locate a
target that emits a signal that the vehicle can sense. The first
scheme addresses vehicles that have a constant forward veloc-
ity and can actuate both yaw and pitch velocities. We refer to
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this vehicle as the vehicle yaw and pitch actuated (VYPa). The
second scheme addresses vehicles that also have a constant for-
ward velocity, as well as a constant pitch velocity, but can only
actuate the roll velocity. We refer to this vehicle as the vehicle
roll actuated (VeRa).

E. Organization of the Paper

We start in Section II with an overview of the extremum seek-
ing method applied to source seeking and then continue with
Section III, in which the vehicle model is discussed. Sections
IV and VII detail the VYPa and VeRa control schemes, respec-
tively. Sections VI and VII present simulation results for each
scheme. The nonlinearities in these systems give rise to inter-
esting and complex behaviors. To analytically quantify some of
these, Section V includes a local stability result and Section VII
includes further analysis of the final trajectories seen in simula-
tions of the VeRa scheme. We continue with Section VIII where
we present the application of the method to level set tracing, a
problem studied in [18]. Section IX concludes the paper with
our intentions for future work.

II. OVERVIEW OF SOURCE SEEKING IN 2-D

Extremum seeking employs periodic forcing of a plant to
perform nonmodel-based gradient estimation [19]. In its ap-
plication to autonomous vehicles [1], the vehicles considered
are kinematically constrained and have no position information
available. It is assumed that a target creates some spatially dis-
tributed signal field whose shape is unknown, though its strength
is known to be maximal at the target and decreasing away from
it. Extremum seeking employs only a scalar measurement of the
signal at the tip of the vehicle, periodic probing to search the
vehicle’s surroundings, and a demodulating signal that produces
a bias input to turn the vehicle in the correct net direction. This
combination has a built-in gradient estimation capability. One of
the method’s successes is simultaneously solving nonholonomic
steering and adaptive optimization problems.

Our previous work was for vehicles in 2-D, modeled as
the nonholonomic unicycle, ṙc = vejθ , θ̇ = Ω, where rc is the
vector position of the vehicle center, θ is the vehicle orien-
tation, and v and Ω are the forward and angular velocity in-
puts [3], [4]. These vehicles are given a constant forward ve-
locity v = Vc , while the angular velocity is tuned by extremum
seeking, Ω(t) = aω cos(ωt) + c sin(ωt)(s/s + h)[J(t)], where
a, c, h, and ω are parameters of the control law, (s/s + h) is the
Laplace transform of a washout filter, and J(t) is the signal
reading from the vehicle sensor located at rs = rc + Rejθ . The
first term a cos(ωt) is a continuous periodic excitation of the
angular velocity that allows the vehicle to probe the area and
record differences in signal readings. The second term is a bias
that turns the vehicle in the correct net direction and it is, in fact,
an estimate of ∂J(rc , θ)/∂θ. The gain c is adjusted to make
the vehicle’s reaction to the signal field more or less aggressive.
The result of applying this control law to the unicycle model is
the exponential convergence of the vehicle to the vicinity of the
signal source [1], as seen in Fig. 1.

Fig. 1. 2-D vehicle employing extremum seeking to find a source.

III. VEHICLE MODEL

When extending the vehicle model from two dimensions to
three, we must consider how to accurately represent a kine-
matically constrained vehicle that could support different ve-
hicle configurations. We chose a kinematic model, depicted in
Fig. 2(a). This figure shows a vehicle whose actuators, shown
as cylinders with half arrows, can be used to impart surge, yaw,
pitch, and roll velocities. The center of the vehicle is labeled
rc and the front of the vehicle is labeled rf . The sensor, shown
as a small sphere, is located above rf at rs . Fig. 2(b) contains
a geometric interpretation of the drawing in Fig. 2(a). In the
coordinate system shown, R1 is the distance between the center
rc and the front rf , while R2 is the distance between the front
rf and the sensor rs . The vector between rf and rs is always
perpendicular to the vector between rc and rf . The pitch of the
vehicle is defined by α, the azimuthal angle. The yaw of the
vehicle is defined by θ, the polar angle. The third possible ve-
hicle rotation, roll, is defined by φ and is measured in the plane
containing rf QP relative to the plane containing rcAB. The
surge velocity Vc acts in the direction of rcrf , while the pitch
velocity V2 acts in the direction of rf rs . The angular rates α̇

and θ̇, or the angular rate φ̇, are available as control inputs.
The differential equation governing the center of the vehicle

model depicted in Fig. 2 is

ṙc = Vc




cos(α) cos(θ)
cos(α) sin(θ)

sin(α)


 (1)

where rc = (xc, yc , zc). The sensor position is

rs = rc + R1




cos α cos θ

cos α sin θ

sin α




+ R2



− cos φ sin α cos θ + sinφ sin θ

− cos φ sin α sin θ − sinφ cos θ

cos φ cos α


 (2)

where rs = (xs, ys , zs).
This model is used for both control schemes presented. The

similarities and differences will be summarized here and ex-
panded in the next sections. In both schemes, the surge velocity
Vc is set to a positive constant. In the first scheme, applied to the
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Fig. 2. (a) Pictorial drawing of the 3-D vehicle. (b) Graphical interpretation of vehicle in 3-D.

VYPa, the sensor is placed at the tip of the vehicle, i.e., R2 = 0,
so the roll velocity and angle play no role. Extremum seeking is
used to tune the two control inputs: the pitch and yaw velocities.
In the second scheme, applied to the VeRA, the pitch velocity
V2 is also set to a nonzero constant and extremum seeking tunes
only the roll velocity for control. The distance R2 between the
tip of the vehicle rf and the sensor rs must be nonzero in this
case.

IV. VYPA VEHICLES

The first scheme we address is for the VYPa. This vehicle
has a constant forward velocity Vc , a constant roll angle of
zero, and, as the name indicates, is equipped for actuation of its
pitch and yaw velocities. The sensor is located at the tip of the
vehicle, which equates to setting R2 = 0 and results in rf = rs .
Its position with respect to the vehicle center reduces to

rs = rc + R1




cos α cos θ

cos α sin θ

sin α


 . (3)

As the surge velocity is constrained to one axis in the body frame
and the angular velocity is always around an axis orthogonal to
that of the surge velocity, this is the 3-D analog of the unicycle.

Fig. 3 shows a block diagram of the control applied to the
VYPa, with extremum seeking used to tune the pitch and yaw
velocities. When the roll angle is not actuated, tuning the pitch
velocity is equivalent to tuning α̇ and tuning the yaw velocity
is equivalent to tuning θ̇. The designer is free to choose the per-
turbation amplitudes aα , aθ , the perturbation frequencies ωα ,
ωθ , the extremum seeking gains cα , cθ , dα , dθ , and the break
frequency h of the filter. It should be noted that ωθ can be the
same as ωα . The perturbation amplitudes aα and aθ can be in-
creased to achieve better performance with flat gradients. The
higher the perturbation frequencies, the more accurate the gra-
dient estimation becomes, however, with a slower convergence
rate. The VYPa model equations remain (1), while the control

Fig. 3. Block diagram of extremum seeking (ES) control applied to the pitch
and yaw velocities of the VYPa.

inputs, following from Fig. 3, are

α̇ = aαωα cos (ωαt) + sin (ωαt) (cαξ + dαξ2) (4)

θ̇ = −aθωθ sin (ωθt) + cos (ωθt) (cθ ξ − dθξ
2) (5)

φ̇ = 0 (6)

where (s/s + h)[J ] is a washout filter applied to the sensor
reading J .

As usual, the extremum seeking tuning consists of both:
1) periodic perturbations aαωα cos (ωαt) and −aθωθ sin (ωθt),
which continuously probe the signal field and 2) bias terms
sin (ωαt) (cαξ + dξ2) and cos (ωθt) (cθ ξ − dξ2), which turn
the vehicle in the correct direction. The bias terms are composed
of the sensor measurement that has been high-pass-filtered, de-
modulated, and multiplied by the appropriate gains.

V. CONVERGENCE OF VYPA VEHICLE

The dynamics of the closed loop are intricate. The complex-
ity comes from the trigonometric nonlinearities in the vehicle
model, the polynomial nonlinearity in the signal map, and the
time-varying forcing applied by extremum seeking. The com-
plexity of the system increases compared to the 2-D case as two
extra states must be added to account for the dynamics in the
extra dimension.
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We assume that the nonlinear map defining the distribution
of the signal field is quadratic and takes the form J = f(rs) =
f ∗ − qr |rs − r∗|2 , where r∗ is the unknown maximizer, f ∗ =
f(r∗) is the unknown maximum, and qr is an unknown positive
constant. We define an output error variable e = (h/s + h)[J ] −
f ∗, where (h/s + h)[J ] is a low-pass filter applied to the sensor
reading J , which allows us to express ξ, the signal from the
washout filter, as ξ = (s/s + h)[J ] = J − (s/s + h)[J ] = J −
f ∗ − e. As a consequence, ξ and ė take the following form

ξ = −(qr |rs − r∗|2 + e) (7)

ė = hξ. (8)

Before stating our main result, we introduce the set Tδ defined
by

Tδ =
{
ρ − δ ≤

√
(xc − x∗)2 + (yc − y∗)2 ≤ ρ + δ

}
×{|zc − z∗| ≤ δ} (9)

where

ρ =

√
VcJ0(

√
2a)√

2cθ qrR1J1(
√

2a)
(10)

and point out that all of the parameters cθ , cα , dθ , dα , h,
R1 , Vc , and qr are positive, the parameters ωα , and ωθ are
chosen such that ωα = ωθ = ω, and J0(a) and J1(a) are Bessel
functions of the first kind.

Theorem 1: Consider the system defined by (1), (3)–(5), (7),
and (8) where the parameter a is chosen such that

4Vc J0(
√

2a)

> hR1

(
4J0(

√
2a) −

(√
2J1(2a) + J1(2

√
2a)

)
J1(

√
2a)

)
. (11)

For sufficiently large ω, if (xc(0), yc(0), zc(0)) ∈ Tδ for suf-
ficiently small δ > 0, and if the quantities |α(0)|, |e(0) +
qrR

2
1 + [VcJ0(

√
2a)/

√
2cθR1J1(

√
2a)]|, and either |θ(0) −

arctan[(yc − y∗)/(xc − x∗)] + (π/2)| or |θ(0) − arctan(yc −
y∗)/(xc − x∗) − (π/2)|, are all sufficiently small, then the tra-
jectory of the vehicle center rc(t) exponentially converges to,
and remains in the set TO (1/ω ) , and the sensor reading J(t)
converges exponentially to a periodic function of period 2π/ω
within O(1/ω) of

f ∗ − qrR
2
1 −

VcJ0(
√

2a)√
2cθR1J1(

√
2a)

. (12)

Furthermore, the vehicle center locally exponentially converges
to a solution of the form

xattri
c (t) = x∗ + r̃attri

c (t) cos(θ∗attri (t)) cos(α∗attri (t)) (13)

yattri
c (t) = y∗ + r̃attri

c (t) sin(θ∗attri (t)) cos(α∗attri (t)) (14)

zattri
c (t) = z∗ + r̃attri

c (t) sin(α∗attri (t)) (15)

Fig. 4. Vehicle locating a static source that creates a signal field
with spherical level sets. Vc = 0.1, cθ = cα = 100, dθ = dα = 300, a =
0.5, ω = 40, R1 = 0.1, f ∗ = 1, qr 1 =, h = 1.

where i ∈ {0, 1} and

r̃attri
c (t) =

(
ρ + r̃eqi

µ + r̃(2π/ω )e q i
c0

(t)
)

(16)

θ∗attri (t) = (−1)i

(
Vc

ρ

(
1 + λeqi

µ

)
t +

Vc

ρ
β

(2π/ω )e q i

0 (t) + γeqi

)
(17)

α∗attri (t) =
(
α∗eqi

µ + α
∗(2π/ω )e q i

0 (t)
)

(18)

and where r̃
eqi
µ , α

∗eqi
µ are O(1/ω), r̃

(2π/ω )e q i

c0 (t), α∗(2π/ω )e q i

0 (t)
are periodic with frequency ω, zero mean, and O(1/ω), λeqi

µ is

O(a2) + O(1/ω), β
(2π/ω )e q i

0 (t) is periodic with frequency ω,
zero mean, and O(a2) + O(1/ω), and γeqi is a constant.

The 3-D attractor characterized in Theorem 1 is similar to
the attractor seen in the 2-D unicycle with a constant forward
velocity and tuned angular velocity. In the 2-D case, the vehicle
converges to within an annulus in R2 (of a particular radius
and thickness) around the source. In the 3-D case, the vehicle
converges to within the set TO (1/ω ) , which is inside a horizontal
torus of thickness O(1/ω) with major radius ρ.

VI. ILLUSTRATION OF VYPA VEHICLE BEHAVIOR

The behavior exhibited by the vehicle is very interesting in
terms of how it changes with the chosen parameters. We start
this section by illustrating the behavior predicted by Theorem
1. We then examine scenarios that have parameter combinations
that the theory does not address.

The following figures illustrate the behavior predicted in
Theorem 1. Fig. 4 shows the vehicle converging to a “pseu-
doorbit” around a static source that produces a signal field
with spherical level sets. Fig. 5 illustrates the different attractors
seen when the parameter c is varied within the assumptions of
Theorem 1. The radii of the attractors decrease as c increases,
as predicted by the inverse dependence of ρ on c. Fig. 5 also
shows the local residual behavior of the vehicle center that is
averaged out in the proof. Fig. 6 illustrates that adding measure-
ment noise to the simulation affects the performance, but does
not change the result qualitatively. In highly noisy experiments,
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Fig. 5. Attractors resulting from different parameter configurations. The inset
reveals the close-up behavior of the vehicle center. Vc = 0.1, a = 0.5, ω =
40, R1 = 0.1, f ∗ = 1, qr = 1, h = 1. Outer attractor: cθ = cα = 100, dθ =
dα = 300. Middle attractor: cθ = 200, cα = 100, dθ = 600, dα = 300. In-
ner attractor: cθ = 300, cα = 100, dθ = 600, dα = 300.

Fig. 6. Simulation from Fig. 4 with measurement noise (µ = 0, σ2 =
0.5) added to the simulation. Vc = 0.1, cθ = cα = 100, dθ = dα = 300, a =
0.5, ω = 40, R1 = 0.1, f ∗ = 1, qr = 1, h = 1.

one would replace the washout filter by a bandpass filter, as was
done in [20]. Fig. 7 shows the vehicle converging to an attractor
around a static source that produces a signal field with ellipsoidal
level sets. Though the theory presented here does not include el-
lipsoidal level sets, the convergence to an attractor in these cases
is similar to the convergence seen in the 2-D cases where the tar-
get signal field is made up of elliptical level set [1]. The control
law (4) and (5) also allows the vehicle to seek a moving source,
as seen in Fig. 8, where the source follows a saddle pattern and
produces spherical level sets that move with the source.

The proof of Theorem 1 relies on both dα and dθ being pos-
itive; however, convergent behavior is still seen when both are
negative and when dα is made negative. The fourth combina-
tion, when dθ is negative and dα is positive, results in unstable
behavior. Fig. 9 illustrates the convergent behavior when both
dα and dθ are negative. In this case, the attractor seen when both
parameters are positive rotates and is twisted slightly. The at-
tractor in this case is still similar to an “orbit.” This differs from
the third case, illustrated in Fig. 10, where the attractor is no

Fig. 7. Vehicle locating a target from a signal field with ellipsoidal level
sets. The attractor seen has elements similar to the attractors seen in
the 2-D case. Vc = 0.1, cθ = cα = 100, dθ = 300, dα = 200, a = 0.5, ω =
40, R1 = 0.1, f ∗ = 1, qx = 3, qy = 2, qz = 1, h = 1.

Fig. 8. Vehicle follows the moving source that creates a signal field
with spherical level sets that move with the target. The target moves
according to (xt (t), yt (t), zt (t)) = (cos(0.05t), sin(0.05t), 0.5 sin(0.1t).
Vc = 0.07, cθ = cα = 100, dθ = dα = 300, a = 0.5, ω = 10, R1 = 0.1,
f ∗ = 1, qr = 1, h = 1.

Fig. 9. Vehicle locates a source. Signal field has spherical level sets.
The final attractor is rotated compared to other cases, but is still of an
“orbit-like” form. Vc = 0.1, cθ = cα = 100, dθ = 300, = dα = −300, a =
0.5, ω = 40, R1 = 0.1, f ∗ = 1, qr = 1, h = 1.
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Fig. 10. Vehicle locates a source. Signal field has spherical level sets.
The attractor is O(1/ω) within the surface of a sphere instead of an “or-
bit” type. Vc = 0.2, cθ = cα = 100, dθ = 300, dα = −300, a = 0.5, R1 =
0.1, ω = 40, f ∗ = 1, qr = 1, h = 1.

longer of an “orbit” type. In this case, the vehicle moves around
the surface of a sphere, staying within an O(1/ω) distance from
the sphere.

VII. VERA VEHICLES

The second scheme presented is for the VeRa. We consider
this vehicle configuration to show both the broad applicability
of extremum seeking and its use for extremely underactuated
vehicles. This vehicle has both a constant forward velocity Vc

and a constant pitch velocity V2 . The only tunable input, as the
name indicates, is the roll velocity. In this case, the sensor must
be mounted off of the tip of the vehicle, which indicates R2 �= 0.
When the pitch velocity V2 is constant, the azimuthal and polar
velocities become

α̇ =
V2

R1
cos φ (19)

θ̇ = − V2

R1

sin φ

cos α
. (20)

The VeRa model dynamics remain (1) with (19) and (20) gov-
erning the angles α and θ, and where uφ is tuned by extremum
seeking. The sensor coordinates also remain (2).

Fig. 11 shows a block diagram of the control applied to the
VeRa, with extremum seeking used to tune the roll velocity
according to the following algorithm:

φ̇ = aω cos(ωt) + c sin(ωt)
s

s + h
[J ]. (21)

For a fuller understanding of the behavior displayed while em-
ploying the scheme (21), we look to averaging theory again.

Proposition 1: Over a finite time interval [0, O(ω)], the solu-
tions of the system (1), (19)–(21) remain within O(1/ω) of the
solutions of the following system:

dr̃ave
c

dτ
=

Vc

ω
(cos(αave) cos(α∗ave) cos(θ̃ave)

+ sin(αave) sin(α∗ave)) (22)

Fig. 11. Block diagram of ES control applied to the roll velocity of the VeRa.

dα∗ave

dτ
=

Vc

ω

1
r̃ave
c

(sin(αave) cos(α∗ave)

− cos(αave) sin(α∗ave) cos(θ̃ave)) (23)

dθ̃ave

dτ
=

−1
ω

(
V2J0(a)

R1

sin(φ̂ave)
cos(αave)

+
Vc

r̃ave
c

cos(αave)
cos(α∗ave)

sin(θ̃ave)

)
(24)

dαave

dτ
=

1
ω

V2J0(a)
R1

cos(φ̂ave) (25)

dφ̂ave

dτ
= − 2cqrR2J1(a)r̃ave

c

ω

× (cos(α∗ave) cos(φ̂ave) sin(θ̃ave)

− sin(φ̂ave)(sin(α∗ave) cos(αave)

− cos(α∗ave) sin(αave) cos(θ̃ave))) (26)

deave

dτ
= − hqr

ω
(r̃ave2

c + R2
1 + R2

2

+ 2R1 r̃
ave
c (cos(α∗ave) cos(αave) cos(θ̃ave)

+ sin(α∗ave) sin(αave))

+ 2R2J0(a)r̃ave
c (cos(φ̂ave)(sin(α∗ave) cos(αave)

− cos(α∗ave) sin(αave) cos(θ̃ave))

+ cos(α∗ave) sin(φ̂ave) sin(θ̃ave))) − h

ω
eave (27)

where r̃c =
√

(xc − x∗)2 + (yc − y∗)2 + (zc − z∗)2 , α∗ =
arctan(zc − z∗/

√
(xc − x∗)2 + (yc − y∗)2), θ∗ = arctan

((yc − y∗)/(xc − x∗)), θ̃ = θ − θ∗, and τ = ωt, φ̂ = φ −
a sin(ωt).

Proof: To prove this proposition, we start from the original
error system

˙̃rc = Vc(cos(α) cos(α∗) cos(θ̃) + sin(α) sin(α∗))

α̇∗ =
Vc

r̃c
(sin(α) cos(α∗) − cos(α) sin(α∗) cos(θ̃))
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Fig. 12. VeRa locates a static source. (a) Vehicle trajectory according to the full system equations is shown in a 3-D space, with 2-D projections shown on the
grid walls. (b) Distance from the vehicle to the source is shown according to both the full system equations and the average system equations. Vc = 0.04, V2 =
0.02, c = 800, a = 1, ω = 40, R1 = 0.1, R2 = 0.05, f ∗ = 1, qr = 1, h = 1.

˙̃
θ = −

(
V2

R1

sin(φ)
cos(α)

+
Vc

r̃c

cos(α)
cos(α∗)

sin(θ̃)

)

α̇ =
V2

R1
cos(φ)

φ̇ = aω cos(ωt) + c sin(ωt)ξ

ė = hξ

ξ = −qr (r̃2
c + R2

1 + R2
2

+ 2R1 r̃c(cos(α∗) cos(α) cos(θ̃) + sin(α∗) sin(α))

+ 2R2 r̃c(cos(α∗) sin(φ) sin(θ̃)

+ cos(φ)(sin(α∗) cos(α) − cos(α∗) sin(α) cos(θ̃)))) − e

and after shifting the variables by τ = ωt, φ̂ = φ − a sin(ωt),
and noting that the system equations are periodic in 2π, we find
the average system (22)–(27). �

We now use Proposition 1 to study approximately finite-time
behavior of the system. The equilibria[

ravee q i

c , α∗avee q i
, θ̃avee q i

, αavee q i
, φ̂avee q i

, eavee q i
]

=

[
VcR1

V2J0(a)
, 0, (−1)i π

2
, 0, (−1)(i+1) π

2
,

− qr

(
V 2

c R2
1

V 2
2 J0(a)2 + R2

1 + R2
2 − 2R2

VcR1

V2J0(a)

)]
(28)

where i ∈ {0, 1} have a characteristic polynomial given by(
(ωs)2 +

V 2
2 J0(a)2

R2
1

)
(ωs + h)

×
(

(ωs)3 +
cVcR1

V2J0(a)
(ωs)2 + c

VcV2J0(a)
R1

)
= 0. (29)

As these equilibria are unstable, averaging theory does not yield
a full characterization of the system attractors. However, this
does not necessarily rule out a more complex attractor. We note

that the following form of exact solutions to the average system
(22)–(27):

θ̃ave(t) = mπ (30)

φ̂ave(t) = nπ (31)

αave(t) = (−1)n V2J0(a)
R1

t + c1 (32)

r̃ave
c (t) =

√√√√√
(
(−1)n+1 Vc R1

V2 J0 (a) cos(αave(t))+c2

)2

+
(
(−1)n+m Vc R1

V2 J0 (a) sin(αave(t))+c3

)2 (33)

α∗ave(t) = arctan

(
(−1)n+1(VcR1/V2J0(a)) cos(αave(t))+c2

(−1)n+m (VcR1/V2J0(a)) sin(αave(t))+c3

)

(34)

eave(t) = e−ht

( ∫ t

0
f(t̂)eht̂ dt̂ + c4

)
(35)

f(t̂) = −hqr

(
r̃ave
c (t̂)2 + R2

1 + R2
2 + 2R1((−1)m c3

× cos(αave(t̂)) + c2 sin(αave(t̂)))

+ 2R2J0(a)(−1)n

(
c2 cos(αave(t̂)) + (−1)m+1c3

× sin(αave(t̂)) − VcR1

V2J0(a)

))

(36)

where n, and m are integers and c1 , c2 , c3 , and c4 are constants,
are very close to solutions observed by simulation of the full
system. Fig. 12 shows the trajectory of the vehicle according
to the full system equations as well as the trajectory of r̃c ac-
cording to both the full system and average system equations.
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Fig. 13. VeRa distance to source. (a) and (b) Vehicle locating a static source. The different lines indicated different initial conditions. The runs appear to
be bounded by the quantity: 2V1 R1 /V2 J0 (a), which is shown as the black line above the distance oscillations, enforcing the observation that the ratio of
Vc : V2 determines tight or wide turns. For all runs, c = 800, a = 1, ω = 40, R1 = 0.1, R2 = 0.05, f ∗ = 1, qr = 1, h = 1. (a) Vc = 0.01, V2 = 0.02. (b)
Vc = 0.04, V2 = 0.02.

Fig. 14. VeRa tracking a static source. For both runs, c = 400, a = 1, ω = 30, R1 = 0.1, R2 = 0.05, f ∗ = 1, qx = 1, qy = 0.5, qz = 0.75, h = 1. (a) Tight
curly trajectory of the vehicle center is a result of Vc < V2 . Vc = 0.028, V2 = 0.055. (b) Wide turns of the vehicle center trajectory are a result of Vc > V2 .
Vc = 0.04, V2 = 0.02.

The solution (30)–(36) defines a single repeating “loop” with
radius VcR1/V2J0(a) and unknown center. The drifting of these
loops that is seen in the full simulation is presumably due to the
system dynamics that are averaged out, similar to the drifting
in the VYPa and 2-D solutions that lead to the attractors not
being periodic. The frequency of r2

c is predicted by the known
parameters V2J0(a)/R1 , while the point that the solution for
r̃2
c oscillates about (VcR1/V2J0(a))2 + c2

2 + c2
3 , and the ampli-

tude of these oscillations 2(VcR1/V2J0(a))
√

c2
2 + c2

3 depend
on unknown constants c2 , c3 . This leads to the question, is a
bound on c2 , c3 , and thus, the trajectories, seen in simulations?
Fig. 13 shows the path r̃c takes given different initial conditions.
Each trajectory appears to be bounded by 2VcR1/V2J0(a). This
explanation is enforced by the observation that when Vc < V2 ,
the vehicle trajectory is tight and curly, whereas when Vc > V2 ,
the trajectory consists of wide turns, as seen in Figs. 14 and 15.

Though in the case of a VYPa vehicle, the addition of a d
term to the control law changes the qualitative behavior of the
system (from having marginally stable attractor to having an

exponentially stable attractor), the addition of a d term to the
VeRa vehicle control law

φ̇ = aω cos(ωt) + sin(ωt)(cξ − dξ2)

ξ =
s

s + h
[J ]

does not have the same effect. The effect of this additional term
is seen only in the transient and is readily seen when Vc � V2 .
Fig. 16 highlights the difference. Without a d term, the point in
the middle of the vehicle, rf , makes an unusual but consistent
quadruple figure eight pattern, while the vehicle is on its way
to the source. With the d term, the pattern shrinks to a single
figure eight pattern. However, once the vehicle finds the source
and starts moving around it, the vehicle enters a fundamentally
different motion and the d term has no useful effect.

VIII. OTHER APPLICATIONS

The use of extremum seeking for navigation of vehicles in
three dimensions extends beyond source seeking. This method
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Fig. 15. Trajectory of the center of a VeRa vehicle tracking a moving source. The source moves according to (xt (t), yt (t), zt (t)) =
(at cos(ωt t), at sin(ωt t), atz sin(ωtz t)). For both runs, c = 400, a = 1, ω = 30, R1 = 0.1, R2 = 0.05, f ∗ = 1, qx = 1, qy = 0.5, qz = 0.75, h = 1.
(a) Vc = 0.028, V2 = 0.055, at = 0.7, atz = 0.6, ωt = 0.035, ωtz = 0.035. (b) Vc = 0.04, V2 = 0.02, at = 0.75, atz = 1, ωt = 0.0385, ωtz = 0.0385.

Fig. 16. Motion of vehicle front rf during transitive journey toward the source. The addition of the d term to the control law changes the pattern rf makes
as it moves. (a) d = 0. (b) d = 1200. The other system parameters are Vc = 0.002, V2 = 0.02, c = 400, a = 1, ω = 30, R1 = 0.1, R2 = 0.05, f ∗ = 1, qx =
1, qy = 0.5, qz = 0.75, h = 1.

Fig. 17. Trajectories of the center of vehicles tracing level sets are shown. For both runs, f ∗ = 1, qx = 1, qy = 1, qz = 0.5, Jd = 0.8. (a) VYPa tracing a level
set. V1 = 0.11, c = 50, a = 0.5, ω = 10, R1 = 0.1, h = 1. (b) VeRa tracing a level set. Vc = 0.07, V2 = 0.02, c = 500, a = 0.75, ω = 10, R1 = 0.1, R2 =
0.05, h = 1.
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can also be used to explore the domain of the signal field.
Other groups have looked at isoline/boundary/level set trac-
ing [21]. However, these methods require either multiple agents
that must communicate, or require multiple sensors on a sin-
gle agent. A potential difference (PD) control strategy for level
set tracing without position measurement in 2-D was analyzed
in [18].

By employing a simple modification to the extremum seek-
ing tuning, both the VYPa and VeRa can find and trace 3-D
level sets with only one sensor and without communication with
other entities. This modification changes the input to the con-
trol laws from the sensor reading J to the quantity −|J − Jd |,
where Jd is the desired level set value. The absolute value op-
erator is used to retain the shape of the original signal field,
as opposed to another operator, such as the square of the dif-
ference. The control law in each case then becomes uk (t) =
akωk cos(ωkt) + ck sin(ωkt)(s/s + h) [−|J(t) − Jd |] for k ∈
{θ, α, φ}. Fig. 17(a) and (b) shows the differences in how the
VYPa and VeRa trace out the same level set on the same signal
field. Note that the vehicles naturally move around the entire
3-D space instead of repeatedly tracing out the same curve
within the level set.

IX. CONCLUSION

We have shown how the extremum seeking method can be ex-
tended to vehicles with various actuating capabilities operating
in three dimensions for carrying out tasks, such as source seek-
ing and level set tracing. The stability results presented, which
are local, extend the 2-D work done previously, highlight the ar-
eas in which the 3-D schemes are more complex, and introduce
new challenges in analysis.

In case of the VeRa design, it seems very hard to prove stabil-
ity of an attractor for the motion of the vehicle near the source,
though the simulation evidence is overwhelming regarding the
existence of such an attractor, which is very complex, as the
vehicle performs “loop” motions near the source with varying
azimuthal and polar orientations and varying positions of the
center of the loop relative to the position of the source. The rea-
son for this complexity, compared to the VYPa system, is that
only a single input (roll rate) is used to pursue source seeking
with the six-state kinematic VeRA system. While the value of
the averaging method is in simultaneously determining the ex-
istence of a periodic solution for a (part of, or an entire) system,
for the VeRa system, it seems that the existence of an attractor
would require one to find an analytical periodic solution of the
entire nonlinear time-varying system (1), (2), (19)–(21) before
applying averaging.

The designs in this paper are suitable for the underwater en-
vironment, where position and attitude information is difficult
to obtain, especially over longer periods of time. The method
in this paper enables the vehicle to converge to a point/area
in space where a signal (chemical, thermal, electromagnetic,
and acoustic) is the highest. Adding a communication element,
such as relaying the location information back to a base sta-
tion, is a separate question, as it requires position awareness.
The methods in this paper are particularly compelling for ap-

plications where the primary objective is guiding a vehicle to a
source.

While a two-layer approach employing position awareness,
where path planning is decoupled from trajectory tracking,
might outperform the designs in this paper, the simplicity (and
effectiveness) of the approach makes it suitable as a candidate
strategy for large fleets of simple, small autonomous underwater
vehicles.

In the future, we plan to explore 3-D boundary/level set trac-
ing for processes governed by diffusion and/or convection.

APPENDIX

Proof of Theorem 1: We start the proof by defining the shifted
variables

r̂c = rc − r∗ (37)

α̂ = α − a sin(ωt) (38)

θ̂ = θ − a cos(ωt) (39)

τ = ωt (40)

and noting their dynamics

dr̂c

dτ
=

Vc

ω




cos(α̂ + a sin(τ)) cos(θ̂ + a cos(τ))

cos(α̂ + a sin(τ)) sin(θ̂ + a cos(τ))
sin(α̂ + a sin(τ))


 (41)

dα̂

dτ
=

1
ω

(cαξ sin(τ) + dαξ2 sin(τ)) (42)

dθ̂

dτ
=

1
ω

(cθ ξ cos(τ) − dθξ
2 cos(τ)). (43)

We now redefine rc by its spherical coordinates

r̃c = |r̂c | =
√

x̂2
c + ŷ2

c + ẑ2
c (44)

r̂c = r̃c




cos(α∗) cos(θ∗)
cos(α∗) sin(θ∗)

sin(α∗)


 (45)

tan(θ∗) =
ŷc

x̂c
(46)

tan(α∗) =
ẑc√

ŷ2
c + x̂2

c

. (47)

Using these new definitions, the expression for ξ is

ξ = −qr (r̃2
c + R2

1 + 2r̃cR1ξc) − e (48)

ξc = cos(α̂ + a sin(τ)) cos(α∗) cos(θ̂ − θ∗ + a cos(τ))

+ sin(α̂ + a sin(τ)) sin(α∗) (49)

and the resulting dynamics are

dr̃c

dτ
=

(dx̂c/dτ)x̂c + (dŷc/dτ)ŷc + (dẑc/dτ)ẑc

r̃c
(50)

=
Vc

ω
ξc (51)
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dα∗

dτ
=

(dẑc/dτ)
√

ŷ2
c + x̂2

c − ẑc(d
√

ŷ2
c + x̂2

c /dτ)
r̃2
c

(52)

=
Vc

ω

(
sin(α̂ + a sin(τ)) cos(α∗)

r̃c

− cos(α̂+a sin(τ)) sin(α∗)
r̃c

cos(θ̂−θ∗+a cos(τ))

)

(53)

dθ∗

dτ
=

(dŷc/dτ)x̂c − ŷc(dx̂c/dτ)
ŷ2

c + x̂2
c

(54)

=
Vc

ω

cos(α̂ + a sin(τ))
r̃c cos(α∗)

sin(θ̂ − θ∗ + a cos(τ)). (55)

The system order can be reduced from six to five by combining
θ̂ and θ∗ into the error variable

θ̃ = θ̂ − θ∗ (56)

resulting in

ξc = cos(α̂ + a sin(τ)) cos(α∗) cos(θ̃ + a cos(τ))

+ sin(α̂ + a sin(τ)) sin(α∗) (57)

and the error system

dr̃c

dτ
=

Vc

ω
ξc (58)

dα∗

dτ
=

Vc

ω

(
sin(α̂ + a sin(τ)) cos(α∗)

r̃c

− cos(α̂+a sin(τ)) sin(α∗)
r̃c

)
cos(θ̃+a cos(τ))

(59)

dα̂

dτ
=

1
ω

(
cαξ sin(τ) + dαξ2 sin(τ)

)
(60)

dθ̃

dτ
=

1
ω

(
cθ ξ cos(τ) − dθξ

2 cos(τ)
)

− Vc

ω

cos(α̂ + a sin(τ)) sin(θ̃ + a cos(τ))
r̃c cos(α∗)

(61)

de

dτ
=

h

ω
ξ. (62)

As the system equations are periodic in 2π, the average error
system is

dr̃ave
c

dτ
=

Vc

ω
ξave
c (63)

dα∗ave

dτ
=

Vc

ω

(
J0(a) sin(α̂ave) cos(α∗ave)

r̃ave
c

− J0(
√

2a) cos(α̂ave) sin(α∗ave) cos(θ̃ave)
r̃ave
c

)

(64)

dα̂ave

dτ
= −2qrR1 r̃

ave
c ξ

s in
av e
c

ω

(
cα− 2dα (qr(r̃ave2

c + R2
1)+ eave)

)

+
4dαq2

r R2
1 r̃

ave2

c ξ2
s in
av e

c

ω
(65)

dθ̃ave

dτ
= −2qrR1 r̃

ave
c ξ

c o s
av e
c

ω

(
cθ + 2dθ (qr (r̃ave2

c + R2
1)+ eave)

)

− 4dθq
2
r R2

1 r̃
ave2

c ξ2
c o s
av e

c

ω

− J0(
√

2a)
Vc

ω

cos(α̂ave) sin(θ̃ave)
r̃ave
c cos(α∗av e )

(66)

deave

dτ
= −h

ω

((
qr (r̃ave2

c + R2
1) + e

)
+ 2qrR1 r̃

ave
c ξave

c

)
(67)

where1

ξave
c = J0(

√
2a) cos(α∗av e

) cos(α̂ave) cos(θ̃ave)

+ J0(a) sin(α∗av e
) sin(α̂ave) (68)

ξ
s in
av e
c = −J1(

√
2a)√
2

cos(α∗av e
) sin(α̂ave) cos(θ̃ave)

+ J1(a) sin(α∗av e
) cos(α̂ave) (69)

ξ
c o s
av e
c = −J1(

√
2a)√
2

cos(α∗av e
) cos(α̂ave) sin(θ̃ave) (70)

ξ
s in

2 av e
c = −cos2(α∗av e

)
4

(
J1(2a) sin(2α̂ave)

+
J1(2

√
2a)√

2
sin(2α̂ave) cos(2θ̃ave)

)

+ J1(2a)
sin2(α∗av e

)
2

sin(2α̂ave)

+ 2
J1(

√
5a)√
5

sin(2α∗av e
)

2
cos(2α̂ave) cos(θ̃ave) (71)

ξ
c o s

2 av e
c = −cos2(α∗av e

)
4

(
J1(2a) sin(2θ̃ave)

+
J1(2

√
2a)√

2
cos(2α̂ave) sin(2θ̃ave)

)

− J1(
√

5a)√
5

sin(2α∗av e
)

2
sin(2α̂ave) sin(θ̃ave). (72)

The average system (63)–(67) has equilibria defined by[
r̃avee q i

c , α∗av e e q i

, α̂avee q i
, θ̃avee q i

, eavee q i
]

=
[
ρ, 0, 0, (−1)i π

2
,−qr

(
ρ2 + R2

1
)]

(73)

1Note that
∫ 2π

0
ea j sin(t)dt = 2πJ0 (a) and

∫ 2π

0
ea j sin(t)−j t dt =

2πJ1 (a).
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for i ∈ {0, 1}. The equilibria have the corresponding Jacobians

Aeqi

=
1
ω




0 0 0 (−1)i+1m14 0
0 −m22 −m23 0 0
0 m32 0 0 0

(−1)im41 0 0 −m44 (−1)im45

−m51 0 0 (−1)im54 −h




(74)

where

m14 = Vc J0(
√

2a) (75)

m22 =
dα qr R1Vc J0(

√
2a)

cθ J1(
√

2a)
(
√

2J1(2a) − J1(2
√

2a)) (76)

m23 = 2cα qr R1ρJ1(a) (77)

m32 = Vc J0(a)

√√
2

ρ
(78)

m41 = m41a + m41b (79)

m41a = 4 cθ qr R1
J1(

√
2a)√
2

(80)

m41b = 4
dθ qr Vc J0(

√
2a)

cθ
(81)

m44 =
dθ qr R1Vc J0(

√
2a)

cθ J1(
√

2a)
(
√

2J1(2a) + J1(2
√

2a)) (82)

m45 = 4 dθ qr R1ρ
J1(

√
2a)√
2

(83)

m51 = 2hqr ρ (84)

m54 = 2hqr R1ρJ0(
√

2a). (85)

The characteristic polynomial for these equilibria is

0 = ((ωs)2 + m22ωs + m32m23)((ωs)3 + (h + m44)(ωs)2

+ (hm44 + m41m14 − m54m45)ωs + hm14m41a).

The second-order polynomial has roots with negative real parts
as both m22 and m32m23 are positive. The third-order poly-
nomial has roots with negative real parts as, according to the
assumptions in Theorem 1, all the coefficients are positive and
the product of the s2 and s1 coefficients is greater than the s0

coefficient. Therefore, the Jacobians (74) are Hurwitz given the
assumptions in Theorem 1. As such, the equilibria (74) are ex-
ponentially stable. By applying [22, Th. 10.4] to this result, we
conclude that the error system (63)–(67) has distinct, exponen-
tially stable periodic solutions within O(1/ω) of the equilibria
(73) defined by

r̃attri
c (τ) = ρ + r̃2π e q i

c (τ) (86)

α∗attri (τ) = α∗2π e q i (τ) (87)

α̂attri (τ) = α̂2π e q i (τ) (88)

θ̃attri (τ) = (−1)i π

2
+ θ̃2π e q i (τ) (89)

eattri (τ) = −qr

(
ρ2 + R2

1
)

+ e2π e q i (τ) (90)

where r̃2π e q i

c (τ), α∗2π e q i (τ), α̂2π e q i (τ), θ̃2π e q i (τ), and
e2π e q i (τ) are periodic with period 2π and are O(1/ω).
This indicates that the angle α∗ remains within O(1/ω)
of mπ and the distance between the vehicle center rc and
the source r∗ converges to within O(1/ω) of the value

ρ =
√

VcJ0(
√

2a)/
√

2cθ qrR1J1(
√

2a). The set TO (1/ω )
defined in Theorem 1 can be derived from this set. As the
attractive solution of e is a periodic function within O(1/ω) of
−qrR

2
1 − [VcJ0(

√
2a)/

√
2cθR1J1(

√
2a)], the sensor reading

J(t) converges to a periodic function within O(1/ω) of
f ∗ − qrR

2
1 − [VcJ0(

√
2a)/

√
2cθR1J1(

√
2a)]. To prove the

last part of the theorem, we first note that while the error
system (63)–(67) has five states, the (shifted) physical system
from which the error system was derived has six, the three
state vector r̂c , the two angles α̂ and θ̂, and e. To study the
attractive solutions of r̂c and thus xc, yc , zc , we start by first
determining the θ∗ part of the attractor solution from dθ∗/dτ =
(Vc/ω)[cos(α̂ + a sin(τ)) sin(θ̃ + a cos(τ))/r̃c cos(α∗)]. We
substitute the attractor solution (86)–(90) of the error solution
and find

θ∗attri (t) = (−1)i

(
Vc

ρ

(
1 + λeqi

µ

)
t +

Vc

ρ
β

2 π
ω

e q i

0 (t) + γeqi

)

where γeqi is a constant, λeqi
µ = 1

2π

∫ 2π

0 λ2π e q i (τ)dτ is the
mean of2

λ2π e q i (τ) = − 2 sin2
( θ̃2π e q i (τ) + a cos(τ)

2

)

− 2 sin2
( α̂2π e q i (τ) + a sin(τ)

2

)
× cos(θ̃2π e q i (τ) + a cos(τ))

+
cos

(
α̂2π e q i (τ) + a sin(τ)

)
1 − 2 sin2

(
α∗2π e q i (τ)/2

)
× cos(θ̃2π e q i (τ) + a cos(τ))

×
(

2 sin2(α∗2π e q i (τ)/2) − r̃2π e q i

c (τ)
ρ + r̃2π e q i

c (τ)

)

and it is O(a2) + O(1/ω). The quantity λ
(2π/ω )e q i

0 (t) =
λ(2π/ω )e q i (t) − λeqi

µ is the zero-mean part of λ(2π/ω )e q i (t),

and β
(2π/ω )e q i

0 (t) is the integral of λ
(2π/ω )e q i

0 (t), is periodic

with frequency ω, and is zero mean. Both λ
(2π/ω )e q i

0 (t)
and β

(2π/ω )e q i

0 (t) are O(a2) + O(1/ω). By splitting

r̃
(2π/ω )e q i

c (τ) and α∗(2π/ω )e q i (τ) into r̃
eqi
µ + r̃

(2π/ω )e q i

c0 (t) and

α
∗eqi
µ + α

∗(2π/ω )e q i

0 (t), where r̃
eqi
µ = (1/2π)

∫ 2π

0 r̃2π e q i

c (τ)dτ

is O(1/ω) and the mean of r̃
(2π/ω )e q i

c (t), α
∗eqi
µ =

(1/2π)
∫ 2π

0 α∗2π e q i (τ)dτ is O(1/ω) and the mean of

2To avoid confusion between functions with period 2π , f 2π (τ ), and functions
with period 2π/ω, f (2π /ω ) (t), recall the transformation τ = ωt.
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α∗(2π/ω )e q i (t) and both r̃
(2π/ω )e q i

c0 (t) = r̃
(2π/ω )e q i

c (t) − r̃
eqi
µ

and α
∗(2π/ω )e q i

0 (t) = α∗(2π/ω )e q i (t) − α
∗eqi
µ are periodic, zero

mean, and O(1/ω), we find (13)–(15). �
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