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a b s t r a c t

In continuous-time system identification and adaptive control the least-squares parameter estimation
algorithm has always been usedwith regressor filtering, which adds to the dynamic order of the identifier
and affects its performance. We present an approach for designing a least-squares estimator that uses an
unfiltered regressor. We also consider a problem of adaptive nonlinear control and present the first least-
squares-based adaptive nonlinear control design that yields a complete Lyapunov function. The design is
presented for linearly parametrized nonlinear control systems in ‘normal form’. A scalar linear example is
includedwhich adds insight into the key ideas of our approach and allows showing that, for linear systems,
our Lyapunov-LS design with unfiltered regressor, presented in the note for unnormalized least-squares,
can also be extended to normalized least-squares.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Least-squares update laws, with update normalization, are
common in adaptive control of linear systems (Ioannou & Fidan,
2006; Ioannou & Sun, 1996; Tao, 2003). However, in adaptive
control of nonlinear systems, least-squares estimation has received
very little attention. The notable results in discrete time are (Guo,
1997; Kanellakopoulos, 1994), whereas in continuous time no
designs employing least-squares adaptation have appeared since
the early 1990s’ ‘heyday’ of adaptive nonlinear control (Krstic,
Kanellakopoulos, & Kokotovic, 1995; Krstic & Kokotovic, 1995,
1996; Praly, Bastin, Pomet, & Jiang, 1991).
The appeal of least-squares adaptation is that it has the

capability of automatically adjusting the adaptation gain matrix
(via a gain subsystem governed by a Riccati equation). The gain
decays rapidly in regressor channels with a strong signal, whereas
they do not decay as fast, or may even grow, in channels where the
signal is weak. Simply put, least-squares almost ‘magically’ adjusts
the adaptation rate so that all the parameter estimates converge
with approximately the same speed. This results in performance
and robustness advantages which have been well studied, see,
for example (Berghuis, Roebbers, & Nijmeijer, 1995) where this
advantage is elucidated through tests on a robotics experiment
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(the increased computational burden of the least-squares method
is also acknowledged).
The ability of least-squares to even out the adaptation rates

of different parameter vector components is not achievable with
gradient, passivity-based, Lyapunov-based, or any other types of
update laws, where the adaptation gains are constant—set by the
designer at the beginning of the estimation experiment, and prone
to a very poor guess on the part of the designer as to what the size
of the signal transients in different regressor channels might be.
This is particularly difficult in adaptive control applications, where
the transients are virtually impossible to predict before closing the
loop.
In all continuous-time applications of least-squares in adaptive

control, linear (Ioannou & Fidan, 2006; Ioannou & Sun, 1996; Tao,
2003) and nonlinear (Krstic et al., 1995; Krstic & Kokotovic, 1995,
1996; Praly et al., 1991), the parametric model is first filtered to
remove the time derivatives. This makes the dynamic order of
adaptive controllers with least-squares estimators very high. The
filtering may also make the estimators less responsive, and thus
affect the performance.
In this paper we pursue an idea with which we absorb the

time derivatives from the parametric model into the parameter
estimate, thus removing the need for filtering. This leads to
very interesting design modifications in both identification and
adaptive control.
Our approach extends the ideas developed in the immersion

and invariance approach in Astolfi and Ortega (2003), Astolfi,
Karagiannis, and Ortega (2007) and Karagiannis and Astolfi (2008),
where the parameter estimator employs not only an integrator but
also a ‘throughput’ term, andwhere the identifier-controller design
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is ‘modular’. We pursue least-squares adaptation which gives rise
to new technical issues.
The note is organized as follows. In Section 2 we present

identifier- and adaptive-controller designs with unnormalized
least-squares adaptation and without regressor filtering, for a
linearly parametrized nonlinear control system in ‘normal form’.
We do not know at this point if it is possible to extend this
result to the much broader class of strict-feedback systems without
employing overparametrization, as was done in Karagiannis and
Astolfi (2008). Overparametrization in the context of least-squares
adaptation would be unacceptable, as it would have to employ
multiple Riccati differential equations.
In Section 3 we consider a linear scalar example, which serves

two purposes, it presents the essence of the new algorithm on
a notationally easy example, and it allows us to present an
idea for extending the method from unnormalized least-squares
algorithms to normalized least-squares (which is feasible for linear
systems). Finally, in Section 4, we present a short parameter
estimation example, without a control input. This example is a Van
der Pol oscillator, with three unknown parameters. This example
lets the reader see what the key issues are in designing a least-
squares estimator for a multi-state, multi-parameter problem on
an example that is easy to follow.

2. Design for systems in normal form

Consider the nonlinear parametrically uncertain system in
‘normal form’,

ẋi = xi+1, i = 1, . . . , n− 1 (1)

ẋn = u+ φ(x)+ ϕ(x)Tθ, (2)

where θ ∈ Rp, u ∈ R, φ : Rn → R, ϕ : Rn → Rp, x =
[x1, x2, . . . , xn]T, andφ, ϕ are locally Lipschitz.We assume that the
full state x is available for measurement.

2.1. Parameter estimation

For the system (1), (2) we design a parameter estimator in the
form

α̇ = −Γ ϕ(x)ϕ(x)Tα

−Γ

n−1∑
i=1

xi+1

∫ xn

0

∂ϕ(x1, . . . , xn−1, σ )
∂xi

dσ

−Γ ϕ(x) (u+ φ(x)) (3)

Γ̇ = −Γ ϕ(x)ϕ(x)TΓ , Γ (0) = Γ (0)T > 0 (4)

θ̂ = α + Γ

∫ xn

0
ϕ(x1, . . . , xn−1, σ )dσ . (5)

Note that the estimate θ̂ (t) of the unknown θ is generated from
another system of the same dimension, α(t), which is paired with
a standard least-squares style Riccati equation (4).
We denote the parameter estimation error as θ̃ = θ − θ̂ and

state a stability/boundedness result for the identifier.

Lemma 1. Let the maximal interval of existence of solutions of the
system (1), (2) be [0, tf ). Then with any θ ∈ Rp, any α(0) ∈ Rp, and

any p × p matrix Γ (0) = Γ (0)T > 0, the functions
(
θ̂ (t),Γ (t)

)
generated by the system (3), (4), (5) are bounded and ϕ(x(t))Tθ̃ (t) is
square integrable, with the bounds independent of tf .
Proof. From (3) and (5) we first get

α̇ = Γ ϕ(x)ϕ(x)TΓ
∫ xn

0
ϕ(x1, . . . , xn−1, σ )dσ

−Γ

n−1∑
i=1

xi+1

∫ xn

0

∂ϕ(x1, . . . , xn−1, σ )
∂xi

dσ

−Γ ϕ(x)
(
u+ φ(x)+ ϕ(x)Tθ̂

)
. (6)

Then, taking a derivative of (5), and with the help of (4), we obtain

˙̂
θ = Γ ϕ(x)

(
ẋn − u− φ(x)− ϕ(x)Tθ̂

)
. (7)

From (7), using (2), we get

˙̃
θ = −Γ ϕ(x)ϕ(x)Tθ̃ . (8)

Consider now the Lyapunov function Vθ = θ̃TΓ −1θ̃ . A
straightforward calculation yields

V̇θ = −
(
ϕ(x)Tθ̃

)2
. (9)

By integrating this equation, the square integrability result follows.
As in the proofs of Krstic et al. (1995, Lemmas 6.1 and 6.5), we
can observe that 0 ≤ Γ (t) ≤ Γ (0),∀t ≥ 0. Hence,

∣∣∣θ̃ (t)∣∣∣ ≤∣∣∣θ̃ (0)∣∣∣ λmax(Γ (0))/λmin(Γ (0)) for all t ≥ 0, which establishes the
boundedness result. �

Remark 2. Similar to Karagiannis and Astolfi (2008), this least-
squares-based identifier absorbs the last term in (5) into a new
variable α. This is related to the appearance of the derivative term
ẋn in (7). The estimator (7) would not be implementable but (3),
(5) is.

2.2. Adaptive control

Let y = x1 be the system output and let the function yr(t)
be the reference trajectory which is n times differentiable. Denote

xr(t) =
[
yr(r), ẏr(t), . . . , y

(n−1)
r (t)

]T
. In this section we design an

adaptive control law for achieving asymptotic tracking.
Let 0n−1 = [0, . . . , 0]T ∈ Rn−1 and en = [0Tn−1, 1]

T
∈ Rn.

Denote A =
[
0n−1 In−1

0 0Tn−1

]
. Let K = [k1, . . . , kn] ∈ Rn be chosen

such that the polynomial sn + knsn−1 + · · · + k2s+ k1 is Hurwitz.
For any positive definite and symmetric matrix Q there exists a
positive definite and symmetric matrix P such that

P (A+ enK)+ (A+ enK)T P = −Q . (10)

We are now ready to state our control law,

u = y(n)r +
(
K −

λ

2
eTnP

)
x̃− φ(x)− ϕ(x)Tθ̂ , (11)

where x̃ = x − xr(t), and λ > 0, and to prove the closed-loop
stability.

Theorem 3. Consider the closed-loop system consisting of the plant
(1)–(5) and the controller (11). The equilibrium x̃ = 0, θ̃ = 0
is globally stable. Furthermore limt→∞ x̃(t) = 0, which implies, in
particular, that asymptotic tracking is achieved.
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Proof. We employ the simple Lyapunov function

V = λx̃TPx̃+ θ̃TΓ −1θ̃ (12)

and show that its derivative is

V̇ = −λx̃TQ x̃−
(
ϕ(x)Tθ̃ − λeTnPx̃

)2
. (13)

This establishes global stability and regulation of x̃(t). �

Remark 4. The incorporation of the term − λ
2 e
T
nPx̃ in the control

law allows constructing a complete Lyapunov function (12)
incorporating both the Lyapunov function Vθ of the least-squares-
based identifier and the Lyapunov function of the nonadaptive
problem, x̃TPx̃.

Another form of the control law and the parameter update law,

u = y(n)r +
(
K −

λ

2
eTnP

)
x̃− φ(x)− ϕ(x)Tα

−ϕ(x)TΓ
∫ xn

0
ϕ(x1, . . . , xn−1, σ )dσ (14)

α̇ = Γ ϕ(x)ϕ(x)TΓ
∫ xn

0
ϕ(x1, . . . , xn−1, σ )dσ

−Γ

n−1∑
i=1

xi+1

∫ xn

0

∂ϕ(x1, . . . , xn−1, σ )
∂xi

dσ

−Γ ϕ(x)
(
K −

λ

2
eTnP

)
x̃, (15)

allows us to observe the presence of an extra nonlinear term in the
control law, and to observe that, in the presence of the adaptive
controller, the update law is driven by x only.

3. Scalar example with an extension to unnormalized least-
squares

The general result in Section 2 is rather complicated. It is easy to
miss the main idea due to the notational overhead. In this section
we consider a scalar linear example,
ẋ = u+ θx, (16)
which we work out in detail.
We also take the opportunity in this section to present another

variant of the design, where a normalized version of the least-
squares algorithm is employed. This extension is not limited to the
scalar case, but it is limited to the linear case.
Before we start, we also acknowledge that the benefits of

the least-squares algorithm (over gradient or other algorithms,
such as passivity-based or Lyapunov-based) arise only when the
dimension of the parameter vector is two or higher. Hence,
we would not necessarily advocate the present approach (over
the simplest Lyapunov-based approach) for the one-parameter
example (16). The value of the example here is mainly educational,
as it clarifies the ideas behind the least-squares design without
regressor filtering, and also with normalization. (The real benefit
of the least-squares design would be evident in the example ẋ =
u+ θx+ d, where both θ and d are unknown constants, i.e., when
the system has an unknown parameter and an unknown constant
disturbance, however, we stick with the one-parameter example
in this section to preserve simplicity.)
We design the parameter estimator given as

α̇ = −γ
x2

1+ x2
α − γ

ux
1+ x2

(17)

γ̇ = −γ 2
x2

1+ x2
, γ (0) > 0 (18)

θ̂ = α +
γ

2
ln
(
1+ x2

)
. (19)
We stress the presence of normalization in (17) and (18), as well as
the presence of the logarithmic ‘throughput’ term in (19).

Lemma 5. Given the system (16)with a bounded input u(t) andwith
any θ ∈ R, any α(0), and any γ (0) > 0, the solutions (α(t), γ (t))
of (17), (18) are uniformly bounded and the quantities dθ̂ (t)/dt and
x(t)θ̃(t)/

√
1+ x(t)2 are uniformly bounded and square integrable

over t ∈ [0,∞). Furthermore, dθ̂ (t)/dt is absolutely integrable and
limt→∞ θ̂ (t) exists.

Proof. The proof begins by deriving the following sequence of
update law representations, similar to the proof of Lemma 1:

α̇ =
γ 2

2
x2

1+ x2
ln
(
1+ x2

)
− γ

(
u+ θ̂x

)
x

1+ x2
(20)

˙̂
θ = γ

(
ẋ− u− θ̂x

)
x

1+ x2
(21)

˙̃
θ = −γ

x2

1+ x2
θ̃ . (22)

Then, for the Lyapunov function Vθ = θ̃2/γ , we show that

V̇θ = −
(
xθ̃
)2
/(1 + x2). The results of the lemma follow using

arguments similar to those in the proofs of Krstic et al. (1995,
Lemmas 6.1 and 6.5). �

We are now ready to state our control law,

u = −
(
1+ θ̂

)
x (23)

(which preserves the simplicity of the certainty-equivalence
control for our simple example (16)) and to prove closed-loop
stability.

Theorem 6. Consider the closed-loop system consisting of (16)–(19),
(23). The equilibrium x = θ̃ = 0 is globally stable and limt→∞
x(t) = 0.

Proof. Consider the Lyapunov function

V = ln
(
1+ x2

)
+
θ̃2

γ
. (24)

Lyapunov functions of logarithmic form are common in discrete
time adaptive systems Johansson (1983, 1989, 1995) but not
in continuous-time adaptive control. The time derivative of the
Lyapunov function (24) is readily shown to be

V̇ = −
(
1+

(
θ̃ − 1

)2) x2

1+ x2
. (25)

The regulation result follows immediately. For the proof of global
stability, we first obtain

ln
(
1+ x(t)2

)γ (0)
+ θ̃ (t)2 ≤ ln

(
1+ x(0)2

)γ (0)
+ θ̃ (0)2 (26)

and then a more conservative class-K∞ estimate

v(t) ≤ eh(γ (0))v(0) − 1, (27)

where v = x2 + θ̃2 and the function h(·) is defined on R+ as

h(a) =


1
a
, 0 < a ≤ 1

a, a ≥ 1. �

(28)
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Fig. 1. Parameter estimates governed by (36)–(38). All the three true parameters
are equal, θ1 = θ2 = θ3 = 1, and so are all the three estimates, θ̂1(0) = θ̂2(0) =
θ̂3(0) = 0. Perfect convergence is achieved in less than 2 s, which is less then one
third of a period of oscillation of x(t).

Fig. 2. The six components of the matrix Γ (t), starting from initial condition
Γ (0) = diag{1000, 1000, 1000}. They decay to zero in the same amount of time
as the estimates converge to the true parameter values.

We summarize the complete adaptive compensator in themost
explicit and self-contained form (with θ̂ eliminated):

u = −
(
1+

γ

2
ln
(
1+ x2

)
+ α

)
x (29)

α̇ = γ
x2

1+ x2

(
1+

γ

2
ln
(
1+ x2

))
(30)

γ̇ = −γ 2
x2

1+ x2
. (31)

4. Parameter estimation for a Van der Pol system

We consider the Van der Pol oscillator example,

ẍ+
(
θ3x2 − θ2

)
ẋ+ θ1x = 0, (32)

where we denote θ = [θ1, θ2, θ3]T and assume that
θ1, θ3 > 0 (33)

to ensure boundedness of solutions. This system has a globally
attractive limit cycle.
The state space model of this system is

ẋ1 = x2 (34)

ẋ2 =
[
−x1, x2,−x21x2

]
θ. (35)

Following the construction in Section 2.1, the parameter
estimator is given by

α̇ = −Γ

 −x1x2
−x21x2

[−x1, x2,−x21x2]α + Γ
 x

2
2

0

x1x32

 (36)

Γ̇ = −Γ

 −x1x2
−x21x2

[−x1, x2,−x21x2]Γ (37)

θ̂ = α + Γ


−x1x2
1
2
x22

−
1
2
x21x

2
2

 . (38)

Lemma 7. Given the system (32) under the assumption (33) andwith
any θ2 ∈ R, any α(0) ∈ R3, and any 3 × 3 matrix Γ (0) =
Γ (0)T > 0, the solutions (α(t),Γ (t)) of (36), (37) are uniformly
bounded and the quantities dθ̂ (t)/dt and−x2(t)θ̃1(t)+x2(t)θ̃2(t)−
x1(t)x2(t)2θ̃3(t) are uniformly bounded and square integrable over
t ∈ [0,∞). Furthermore, dθ̂ (t)/dt is absolutely integrable and
limt→∞ θ̂ (t) exists.

Proof. The proof uses the Lyapunov function Vθ = θ̃TΓ −1θ̃ ,
the boundedness of (x1(t), x2(t)), and employs the standard
arguments as in Krstic et al. (1995); Praly et al. (1991). �

Figs. 1–4 show the simulation results for the estimator
(36)–(38). These simulations show excellent convergence, to the
true parameter values. Persistency of excitation is ensured due to
the fact that the plant is in a limit cycle, thus containing more than
one spectral component in the solution, and due to the fact that the
parametrization involves only three unknown parameters.
Fig. 2 displays the property that we discuss in the second para-

graph of Introduction, namely, that the least-squares estimator
automatically adjusts the relative values of the entries in the adap-
tation gain matrix, to balance out the convergence rates of the dif-
ferent entries of the parameter vectors, even in the presence of
vastly different signals strengths in the regressor vector (please ob-
serve the growth in the cross terms of the adaptation matrix Γ (t),
particularly of Γ23(t); this balances out the convergence rates of
θ̂2(t) and θ̂3(t)). All the entries ofΓ (t) eventually converge to zero,
as is always the case with the standard LS algorithm in the pres-
ence of persistent excitation. A standard remedy for this issue, if
perceived as undesirable (when the true parameters are expected
to change with time) is the ‘forgetting factor’ or ‘covariance reset-
ting’.

5. Conclusions

We have introduced an approach for designing least-squares
parameter estimators in continuous time which do not require
regressor filtering. We have also presented the first least-squares-
based adaptive control design that results in a complete Lyapunov
function.
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Fig. 3. Lyapunov function Vθ = θ̃TΓ −1θ̃ as a function of time. It decreases
monotonically to zero.

Fig. 4. Output x1(t), which is the same as the first component of the regressor
vector. Note that the response here is shown over a much longer time interval than
in Figs. 1–3.
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