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Optimal Adaptive Control—Contradiction in Terms or a
Matter of Choosing the Right Cost Functional?

Miroslav Krstic

Abstract—Approaching the problem of optimal adaptive control as “op-
timal control made adaptive,” namely, as a certainty equivalence combi-
nation of linear quadratic optimal control and standard parameter esti-
mation, fails on two counts: numerical (as it requires a solution to a Ric-
cati equation at each time step) and conceptual (as the combination actu-
ally does not possess any optimality property). In this note, we present a
particular form of optimality achievable in Lyapunov-based adaptive con-
trol. State and control are subject to positive definite penalties, whereas
the parameter estimation error is penalized through an exponential of its
square, which means that no attempt is made to enforce the parameter con-
vergence, but the estimation transients are penalized simultaneously with
the state and control transients. The form of optimality we reveal here is
different from our work in [Z. H. Li and M. Krstic, “Optimal design of
adaptive tracking controllers for nonlinear systems,” Automatica, vol. 33,
pp. 1459-1473, 1997] where only the terminal value of the parameter error
was penalized. We present our optimality concept on a partial differential
equation (PDE) example—boundary control of a particular parabolic PDE
with an unknown reaction coefficient. Two technical ideas are central to the
developments in the note: a nonquadratic Lyapunov function and a normal-
ization in the Lyapunov-based update law. The optimal adaptive control
problem is fundamentally nonlinear and we explore this aspect through
several examples that highlight the interplay between the non-quadratic
cost and value functions.

Index Terms—Adaptive control, backstepping, boundary control, dis-
tributed parameter systems.

I. INTRODUCTION

For high-dimensional systems, and for partial differential equations
(PDEs) in particular, solving Riccati equations—even once—is a chal-
lenging task. Doing so on a real-time basis, at each time step for each
new plant parameter estimate, is not feasible (the numerical difficulty
is independent of the dimension of the parameter vector—be it scalar
or infinite dimensional—and is associated with the high dynamic order
of the plant). Even if one is to indulge in solving a new Riccati equation
at each time step, one receives no reward for such excessive effort, as
the certainty equivalence combination of the standard parameter esti-
mation schemes with linear quadratic optimal control does not possess
any optimality property. In fact, even the transient performance of the
certainty equivalence adaptive linear-quadratic regulator (LQR) con-
trol can be unpredictably poor, with its stability proof being among the
most complicated of any adaptive control scheme [7]. Given the lack of
both optimality and numerical feasibility of combining Riccati-based
feedbacks with parameter adaptation, it is no surprise then that the vast
majority of adaptive control for distributed parameter systems [1]–[3],
[6], [8]–[10], [12], [14], [15], [17], [20]–[23] are not based on optimal
control ideas (with a notable exception of [4], in the stochastic setting).

The only achievement so far of true optimality in adaptive control has
been reported in [13]. This was an inverse optimality result, in the spirit
of the classical inverse optimality theory for nonlinear systems [16],
[18], stated in the context of a parameter-adaptive tracking problem for
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globally stabilizable nonlinear finite-dimensional systems with uncer-
tain parameters. The interesting aspect of this result was that the adap-
tive controller was truly a minimizer of a meaningful cost functional,
which included, besides the positive definite penalties on the state and
control (with complicated nonlinear scaling in terms of the parameter
estimate), a simple terminal penalty on the parameter estimation error.

In this note we revisit this problem, but in the context of adaptive
control of a linear PDE example considered in [12]. This example is
of conceptual significance, as it deals with an unstable plant, but for
which backstepping design yields an explicit formula for the feedback
law, which allows the main point of the note to be made particularly
clearly, without being buried under layers of notation. The idea can be
generalized to several other linear adaptive control problems but these
extensions are not pursued here.

The note’s organization and contributions are as follows. After intro-
ducing the plant and adaptive controller in Section II, and proving their
stability in Section III, the main result (inverse optimality) is stated in
Section IV. The optimality is achieved relative to a cost that penalizes
the infinite-time transient of the exponential of the square of the pa-
rameter estimation error, which in turn acts as a weight on the state and
control penalty. No such optimality result (despite being both desirable
and nearly obvious in retrospect) has been achieved before in adaptive
control. The key technical idea behind the result is that the parameter
estimator design is based on a particular form of Lyapunov function
(which is also the value function of the optimal control problem) that
combines the norms of the plant state and of the parameter error in
an unusual, non-additive manner. Such a Lyapunov function leads to
a normalization of the parameter update law, which is uncommon in
Lyapunov-based adaptive control design [11]. In Section V we discuss
the relative merits of normalized and unnormalized update laws by ex-
ploring different forms of penalty on control and parameter error, for
a particular scalar linear ODE example that is worked out explicitly.
In Section VI, we quantify the effect of update law normalization on
transient performance for the example from Section V.

II. AN ADAPTIVE CONTROL DESIGN FOR A PDE EXAMPLE

We consider the following plant:

ut(x; t) = uxx(x; t) + �u(x; t); x 2 (0; 1) (1)

u(0; t) = 0 (2)

ux(1; t) = U(t) (3)

where � is an unknown constant parameter that can have any real value
and U(t) is the boundary control input to be designed. Consider a
change of variable [19]

w(x; t; �) = u(x; t)�
x

0

k(x; y; �)u(y; t) dy (4)

k(x; y; �) = ��y
I1( �(x2 � y2))

�(x2 � y2)
(5)

and its inverse

u(x; t) = w(x; t; �) +
x

0

l(x; y; �)w(y; t; �)dy (6)

l(x; y; �) = ��y
J1( �(x2 � y2))

�(x2 � y2)
(7)
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where I1( � ) and J1( � ) are Bessell functions. The change of variable
(4), (5), with the unknown parameter � replaced by its real-time esti-
mate �̂(t), transforms the system into

d

dt
w(x; t; �̂(t)) = wxx(x; t; �̂(t))

+
_̂
�(t)

x

0

y

2
w(y; t; �̂(t))dy (8)

+ (�� �̂(t))w(x; t; �̂(t));

w(0; t; �̂(t)) = 0 (9)

wx(1; t; �̂(t)) = U(t)� k(1; 1; �̂(t))u(1; t)

�
1

0

kx(1; y; �̂(t))u(y; t) dy:

(10)

In [12], we showed that the adaptive controller

U�(t) = k(1; 1; �̂(t))u(1; t) +
1

0

kx(1; y; �̂(t))u(y; t)dy (11)

with the parameter update law

_̂
�(t) =

1

0

w(x; t; �̂(t))2dx

1 +
1

0

w(x; t; �̂(t))2dx

(12)

is globally stabilizing and achieves regulation of u to zero.
In this note we propose a very different controller and show its in-

verse optimality. This controller is given by

U�(t) = �(1 + 3j�̂(t)j+ j�̂(t)j2)
�(u(1; t)�

1

0

k(1; y; �̂(t))u(y; t)dy): (13)

III. STABILITY

Before we state our results, we introduce the following functional:

L(u; �̂)(t)
= 2

1

0

wx(x; t; �̂(t))
2dx

�
1

0
w(x; t; �̂(t))2dx

1 +
1

0
w(x; t; �̂(t))2dx

�
1

0

w(x; t; �̂(t))
x

0

yw(y; t; �̂(t))dy dx

+ 2l(1;1; �̂(t))w(1; t; �̂(t))2

+ 2w(1; t; �̂(t))
1

0

lx(1; y; �̂(t))w

� (y; t; �̂(t))dy

+ (1 + 3j�̂(t)j+ j�̂(t)j2)w(1; t; �̂(t))2: (14)

Lemma 1: For the functional (14), the following holds:

L(u; �̂)(t)
� 1� 2

�2
p
3

1

0

wx(x; t; �̂(t))
2dx

� 2
1

0
u(x; t)2dx

(1 + sup0�y�x�1 jl(x; y; �̂(t))j)2
: (15)

Proof: The first line of (15) is established by a lengthy but
straightforward calculation starting with

1

0

w(x)
x

0

yw(y)dy dx

� 1

2
p
3
kwk2 � 2

�2
p
3
kwxk2 (16)

(where the first inequality was established in ([12], Lemma A.1) and the
second inequality follows from the Wirtinger inequality ([5], p. 182)),
using the fact that 2l(1;1; �̂) = ��̂, and using the fact, proven in [19],
that 1

0
klx(1; y; �̂)jdy � �̂+1, and hence (with the help of the Agmon

and Young inequalities)

2w(1)
1

0

lx(1; y; �̂)w(y)dy � �kwxk2 � (1 + j�̂j)2w(1)2: (17)

The second line of (15) follows from (6), the Wirtinger inequality, and
using the fact that (�2=4)(1� (2=�2

p
3)) = 2:18 > 2.

Theorem 2: (Stabilization) The closed-loop system consisting of the
plant (1)–(3), parameter update law (12), and the controller (13) is glob-
ally Lyapunov stable in the sense of the norm 1

0
u(x; t)2dx+(�̂(t)�

�)2 and, furthermore, 1

0
u(x; t)2dx ! 0; �̂(t) ! �1 as t ! 1,

where �1 is some constant.
Proof: We use the Lyapunov functional

V (t) = 1 +
1

0

w(x; t; �̂(t))2dx e(�̂(t)��) � 1: (18)

An easy calculation yields

_V (t) = �e(�̂(t)��) L(u; �̂)(t)� e(�̂(t)��)

�(1 + 3j�̂(t)j+ j�̂(t)j2)w(1; t; �̂(t))2: (19)

By deriving an upper and lower bound on (18), from _V � 0 we get that

�(t) � e�(0) � 1 (20)

where �(t) =
1

0
w(x; t; �̂(t))2dx + (�̂(t) � �)2. The functions

k(x; y; �) and l(x; y; �) are continuous and zero at � = 0. Therefore,
there exist class-K functions � and  such that

sup
0�y�x�1

jk(x; y; �)j � �(j�j) (21)

sup
0�y�x�1

jl(x; y; �)j � (j�j): (22)
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Then a lengthy but routine calculation, starting from (20), (21), and
(22), yields


(t) � �(1 + (j�j +�)) (23)

where


(t) =
1

0

u(x; t)2dx+ (�̂(t)� �)2
1=2

(24)

�(
0) = e(1+�(j�j+
 )) 
 � 1
1=2

(25)


0 = 
(0): (26)

Since (23) is a class-K function of �, and � is a class-K function of

0, this proves global stability in the norm 
(t). The regulation result
is argued in a similar way as in [12] (despite the fact that the Lyapunov
function is different), using (19) and (15).

IV. INVERSE OPTIMALITY

Theorem 3 (Inverse Optimality): Consider the system consisting of
the plant (1)–(3) with the parameter update law (12). The controller
(13) minimizes the cost functional

J = lim
�!1

e(�̂(�)��) � 1 +
�

0

e(�̂(t)��) �M(u;U; �̂)(t)dt

(27)

where

M(u;U; �̂)(t) = L(u; �̂)(t) +
U(t)2

1 + 3j�̂(t)j+ j�̂(t)j2
: (28)

The minimum of the cost functional is

J
� = 1 +

1

0

w(x; 0; �̂(0))2dx e(�̂(0)��) � 1: (29)

The cost on the state and controlM(u;U; �̂)(t) is positive definite and
underbounded by the following functional:

M(u;U; �̂)(t) � e�3j�̂(t)j 2
1

0

u(x; t)2dx+ U(t)2 :

(30)

Proof: A straightforward calculation yields(31), shown at the
bottom of the page, from which the results in the first two statements
follow. To prove the third statement we note from [19, Theor. 3] that

sup0�y�x�1 jl(x; y; �̂)j � j�̂je2j�̂j and then use Lemma 1 and a
simple calculation to obtain a lower bound in terms of an exponential
of j�̂(t)j.

The cost functional (27), which is optimized by the controller (13),
provides a clue as to what form of cost penalties in state, control, and
parameter error are meaningful to pursue in possible developments
of direct (rather than inverse) optimal adaptive control. Parameter
estimation transients are penalized (through an exponential-of-square
penalty) but they are not penalized in a way that would demand
convergence of the parameter estimate to the true parameter. This is
consistent with the fact that parameter convergence requires persis-
tence of excitation, which is normally not present in problems where
the state is being regulated to zero. The cost on the plant state and
control are quadratic and positive definite, as indicated by (30), but
it also involves scaling by the parameter estimate �̂, which is to be
expected, and which is not removable without the actual knowledge
of the unknown parameter �.

We want to emphasize the difference between “adaptive inverse op-
timal control” ([19, Sect. VII]) and “inverse optimal adaptive control”
in this note. In [19, Sect. VII], only a case with known plant parameters
was considered and adaptation was used to deal with the conservative-
ness in the inverse optimal design, namely to tune a control gain to a
sufficient (but non-conservative) value. Hence, in [19, Sect. VII], an in-
verse optimal design was made adaptive. In this note, we deal with an
unknown parameter case and design an adaptive controller which is in-
verse optimal. This is clearly a stronger result, for a more challenging
problem, and optimality holds for the entire parameter-adaptive non-
linear system.

V. VARIATIONS OF INVERSE OPTIMALITY

Compared to the cost functional in [13] which imposes only a
terminal penalty on the parameter error, this note adds the transient
penalty on the parameter error in the cost functional (27). This inno-
vation is closely linked with the choice of Lyapunov function (18).
To provide further insight into the interplay between the designer’s
choices of Lyapunov function, control and update law, and ultimately
the inverse optimal cost function, we revisit a simple scalar adaptive
control example worked out in [13] and provide several new inverse
optimal designs that incorporate different weights on the state and
control. (The quantity �̂1 denotes limt!1 �̂(t), which is easily
shown to exist in all of the results stated in this section.)

Theorem 4 (True Optimality of Pointwise Optimal Feedback Law):
Consider the system

_x = u+ �x (32)

and the associated adaptive feedback law

u = �(�̂ + �̂2 + 1)x (33)

J = V (0) +
1

0

e(�̂(t)��)
U(t) + (1 + 3j�̂(t)j+ j�̂(t)j2)w(1; t; �̂(t))

2

1 + 3j�̂(t)j+ j�̂(t)j2
dt (31)
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where �̂(t) is the estimate of the unknown constant parameter �. With
the update law

_̂
� = x

2 (34)

the control law (33) is optimal relative to the following cost functional
and value (Lyapunov) function:

J(34) = (�̂1 � �)2 +
1

0

x(t)2 + u(t)2

�̂(t) + �̂(t)2 + 1
dt (35)

V(34) = x
2 + (�̂ � �)2 (36)

whereas with the update law

_̂
� =

x2

1 + x2
(37)

the control law (33) is optimal relative to the following cost functional
and value (Lyapunov) function:

J(37) = e(�̂ ��) � 1

+
1

0

e(�̂(t)��) x(t)2 + u(t)2

�̂(t) + �̂(t)2 + 1

dt (38)

V(37) = (1 + x
2)e(�̂��) � 1: (39)

Proof: By direct verification.
The first half of Theorem 4 was proven in [13], whereas the second

one is new. Note the interesting form of the Lyapunov derivative,
_V(37) = �2x2e(�̂��) �̂2 + 1, which, even though dependent on the

parameter error, is only negative semidefinite, so, as usual, we only
get x(t) ! 0 as t ! 0.

Next, we explore some variations in the forms of the Lyapunov func-
tions like (39) and the cost functionals like (38). The following two
theorems give such examples, where slight changes in the update law
and the Lyapunov function result in considerably simplified weights on
u(t) in the cost functional.

Theorem 5 (Simpler Weight on Control Effort): Consider the system
(32) with a parameter estimator given by

_̂
� =

(�̂ + �̂2 + 1)x2

1 + (�̂ + �̂2 + 1)x2
: (40)

The feedback law

u = �4(�̂ + �̂2 + 1)x (41)

is the minimizer of the cost functional

J = e(�̂ ��) � 1

+
1

0

e(�̂(t)��)

� (�̂ + �̂2 + 1)2(1 + q(x(t); �̂(t)))x(t)2

+
1

4
u(t)2 dt (42)

where q(x; �̂) is a non-negative function given by

q(x; �̂) =
1

2

�̂2 + 1

�̂ + �̂2 + 1
+1�

x2

�̂2 + 1(1 + (�̂ + �̂2 + 1)x2)
� 0:

(43)

Global stability and regulation of x(t) to zero are achieved relative to
the Lyapunov function

V = (1 + (�̂ + �̂2 + 1)x2)e(�̂��) � 1 (44)

_V = �(�̂ + �̂2 + 1)(5 + q(x; �̂))x2e(�̂��)
: (45)

Proof: By direct verification.
Theorem 6: (Simpler weight on control effort, with simpler control

law) Consider the system (32) with a parameter estimator given by

_̂
� =

(1 + j�̂j)x2

1 + (1 + j�̂j)x2
: (46)

The feedback law

u = �2(1 + j�̂j)x (47)

is the minimizer of the cost functional

J = e(�̂ ��) � 1

+
1

0

e(�̂(t)��)

� (1 + q(x(t); �̂(t)))x(t)2 +
1

2
u(t)2 dt (48)

where q(x; �̂) is a non-negative function given by

q(x; �̂) = 2(j�̂j � �̂) + 1�
x2 sgn �̂

1 + (1 + j�̂j)x2
� 0: (49)

Global stability and regulation of x(t) to zero are achieved relative to
the Lyapunov function

V = (1 + (1 + j�̂j)x2)e(�̂��) � 1 (50)

_V = �(1 + q(x; �̂) + 2(1 + j�̂j)2)x2e(�̂��)
:

(51)

Proof: By direct verification.
In the designs in Theorems 5 and 6, the price paid for the reduced

complexity in the weight on u(t) is in the increased complexity in the
Lyapunov function, which translates into the increased complexity of
the update law and of the weight on x(t) in the cost functional.

The designs in Theorems 5 and 6 both attempt to eliminate the
scaling of the costs on x and u in terms of �̂ but neither succeeds. It is
possible in principle to eliminate this scaling, however, the redesigned
feedback would have to employ the knowledge of the unknown �. This
obstacle is probably fundamental, and related to the fact that adaptive
stabilization is not a full-state stabilization problem (the parameter,
which can be treated as a constant state, is unmeasured).
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We emphasize that all three control laws, (33), (41), and (47), as well
as the simpler, non-optimal control law

u = �(1 + �̂)x (52)

are all globally stabilizing also with the update law (34), relative to the
Lyapunov function (36), as well as with the update law (37), relative to
the Lyapunov functions (39) and V = ln(1 + x2) + (�̂ � �)2.

The above inverse optimality results in Theorems 4, 5, and 6 inspire
an attempt to approach a direct optimal control problem for the plant
(32). In inverse optimal designs, the order in which choices are made
is as follows: (i) Lyapunov/value function, (ii) feedback law, (iii) cost
functional. We now approach a direct optimal control problem where
we start with a cost functional

J = lim
t!1

V (x(t); �̂(t)) +
t

0

e(�̂(t)��) [x(t)2 + u(t)2]dt (53)

and a postulated form of a value function

V = (1 + p(x; �̂)x2)e(�̂��) � 1 (54)

where p(x; �̂) is a positive, continuously differentiable function to be
found, and then derive the optimal adaptive controller. We first find that
the function p(x; �̂) satisfies the nonlinear partial differential equation

p+
x

2
px

2

�
2�̂ + x2(2�̂p+ p

�̂
)

1 + x2p
p+

x

2
px = 1

(55)

with an additional condition that p(0; �̂) = �̂ + �̂2 + 1. Then the
optimal adaptive controller is given by

u
� = � p+

x

2
px x (56)

_̂
� =

p+ x

2
px x2

1 + px2
: (57)

Obviously, the big open questions are the global existence and the nu-
merical computation of the solution to the nonlinear PDE (55).

VI. TRANSIENT PERFORMANCE EFFECT OF

UPDATE LAW NOMALIZATION

Theorem 4 highlights the difference between normalized and unnor-
malized update laws. While update law normalization is a common
(and in some cases an essential) tool in swapping (or estimation error/
certainty equivalence) based approaches to adaptive control, within the
framework of Lyapunov-based adaptive control [11] normalized up-
date laws are uncommon. The form of Lyapunov function in this paper
lends justification to the use of normalization with Lyapunov update
laws.

Even though it is useful to have one more tool in the design toolkit for
adaptive feedback systems, we are not necessarily claiming that there
is absolute advantage in using update law normalization. To understand
the tradeoff, consider again the scalar ODE plant (32) but with the sim-
pler (non-optimal) control law (52). The Lyapunov functions (36) and
(39), respectively, yield the update laws (34) and (37). For the two re-
spective closed-loop systems one can find that the solutions satisfy the

following two relations. Under the update law (34) the trajectories sat-
isfy

x(t)2 + (�̂(t)� � + 1)2 = x
2
0 + (�̂0 � � + 1)2 (58)

whereas under the update law (37) the trajectories satisfy

ln(1 + x(t)2) + (�̂(t)� � + 1)2 (59)

= ln(1 + x
2
0) + (�̂0 � � + 1)2 (60)

where (x0; �̂0) is the initial condition. Using (58) and (59), the fol-
lowing is obtained.

Theorem 7: (Normalized versus unnormalized update law) Con-
sider the closed-loop systems consisting of the plant (32), the controller
(52), and respectively, the update laws (34) and (37). Let � � 1 and
�̂0 = 0. The following is true:

inf
x 6=0

sup
t�0

x(t; x0)
2

(34)

= (� � 1)2 (61)

inf
x 6=0

sup
t�0

x(t; x0)
2

(37)

= e(��1) � 1: (62)

Proof: By observing that in both (58) and (59) the peak in x(t)
(in the phase space) is achieved at time t for which �̂(t) = � � 1.

This theorem says the following. When the instability parameter �
is positive and large, and when the initial parameter estimate �̂0 is zero
and thus clearly not of stabilizing value, then, the adaptation transient
that the system undergoes, as measured by the peak of the state x, is
larger with the normalized update law than with the unnormalized up-
date law. This advantage of the unnormalized update law is not un-
expected. The absence of normalization allows the update law to act
more aggressively and to deliver stabilizing values of the control gain
in a shorter period of time, resulting in a smaller peak of the state tran-
sient.
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The iISS Property for Globally Asymptotically
Stable and Passive Nonlinear Systems

Chen Wang and George Weiss

Abstract—This paper investigates the integral input-to-state stability
(iISS) property for passive nonlinear systems. We show that under mild
technical assumptions, a passive nonlinear system which is globally
asymptotically stable is also iISS. Moreover, the integral term from the
definition of the iISS property has a very simple form (like an norm).
We illustrate the result by proving that the drive-train of a wind turbine
with quadratic torque control is iISS.

Index Terms—Globally asymptotically stable, integral input-to-state sta-
bility (iISS), wind turbine.

I. INTRODUCTION

The concept of passivity is important in control theory because it is a
property shared by many physical systems and it is related to stability
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(see Moylan [1], Hill and Moylan [2], Byrnes et al. [3]). Consider a
dynamical system S described by

_x = f(x; u)

y = h(x; u) (1.1)

where f : n � m ! n is locally Lipschitz continuous and
h : n � m ! m is continuous. Here x(t) is the state at time
t, which is in n; u is the input signal and y is the output signal. Under
these assumptions, for every initial state x(0) and for every bounded
input signal u, (1.1) has a unique solution on some time interval [0; "),
with " > 0. S is said to be passive if there exists a continuously differ-
entiable storage function or Hamiltonian H : n ! [0;1) such that

_H � u
T
y; where _H =

@H

@x
f(x; u)

for all (x; u) 2 n � m. To investigate the Lyapunov stability of the
equilibrium points of S corresponding to u = 0 we may use H as a
Lyapunov function (see Willems [4] or Khalil [5]).

The notion of input-to-state stability (ISS), as introduced in Sontag
[6], implies that f(x; 0) = 0 iff x = 0 and for any initial state, if the
input becomes uniformly very small after some time, then also the state
becomes uniformly very small after some time (see Sontag [7]). Sontag
and Teel [8] gives a characterization of supply rates for ISS systems.
A strictly weaker variant of ISS is the concept of integral input-to-state
stability (iISS), where the uniform smallness of the input is replaced
by the smallness of a certain integral depending on the input, see An-
geli, Sontag and Wang [9]. The formal definition of iISS is given in
Section II.

In this paper, we investigate the iISS property for a class of passive
nonlinear systems. In our main result (stated in Section III), we show
that under mild assumptions, a passive nonlinear system which is glob-
ally asymptotically stable (GAS) is also iISS. By combining our result
with a recent result in Jayawardhana et al. [10], we can actually prove
that under mild technical assumptions, a passive and GAS system sat-
isfies the iISS type estimate with a very simple (L1 norm type) integral
term. We will illustrate the result by proving the iISS property (with a
simple integral term) for the drive-train of a wind turbine, in Section IV.

II. BACKGROUND CONCEPTS

In this section, we recall the background about the iISS property
following [9].

Some commonly used terminology: A function H : n ! [0;1)
is called positive definite if H(x) = 0 iff x = 0. H is called proper
if H(x) ! 1 when kxk ! 1. A continuous function � : [0; a) !
[0;1) belongs to the class K if it is strictly increasing and �(0) = 0.
Such a function � is in the class K1 if a = 1 and �(r) ! 1 as
r !1. A continuous function � : [0; a)� [0;1)! [0;1) belongs
to the class KL if, for each fixed s; �(�; s) belongs to K and, for each
fixed r, the mapping �(r; �) is decreasing and �(r; s)! 0 as s!1.

Given any measurable and bounded control u and any � 2 n, there
is a unique solution of (1.1) with x(0) = �. This solution (or state
trajectory) is defined on some maximal interval [0; �), and it is denoted
by x(�; �; u).

Definition 2.1: The system (1.1) is integral input-to-state stable
(iISS) if there exist a class K1 function �, a class KL function � and
a class K function  such that for every � 2 n and for every measur-
able and bounded function u, the state trajectory x(t; �; u) is defined
for all t � 0 and
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