
Pergamon ooos1098(95)00179-4 
Auromarira, Vol. 32, No. 4, pp. 625-629, 1996 

Copyright 0 1996 Ekvier Science Ltd 
Printed in Great Britain. All rights reserved 

con5-lG98/% $15.00 + 0.00 

Brief Paper 
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Abstrad-A modular approach to adaptive control of 
nonlinear systems introduced previously is presented in a 
general framework. This approach abandons the certainty 
equivalence principle ubiquitous in the estimation-based 
approach. The adaptive stabilization problem is studied in 
the setting of control Lyapunov functions, and is reduced to 
the problem of input-to-state stabilization with respect to the 
parameter estimation error considered as the input. 

1. Introduction 
The estimation-based approach, which has been successful in 
adaptive linear control (Egardt, 1979; Goodwin and Mayne, 
1987), has been applied to nonlinear systems with only 
limited success. The stability phenomena in nonlinear 
systems can be faster than the convergence of standard 
parameter identifiers. The state can escape to infinity before 
the identifier is able to provide stabilizing values of 
parameter estimates. For this reason, estimation-based 
designs for nonlinear systems (Sastry and Isidori, 1989; Tee1 
et al., 1991) either assumed that the nonlinearities were 
linearly bounded or their results remained local. Only Praiy 
et al. (1991) went beyond linear growth conditions and 
characterized relationships between nonlinear growth 
constraints and controller stabilizing properties. 

These difficulties indicated that either the controllers 
should be stronger than those based on the certainty 
equivalence principle or the identifiers should be faster. In 
Krstic and Kokotovic (1995a) we introduced a modular 
design that finally removed the growth restrictions in the 
estimation-based approach. The modular design employs 
stronger controllers that guarantee boundedness whenever 
the parameter estimates and their derivatives are bounded. 

In this paper we propose a general framework for modular 
design, and provide further insight into the result of KrstiC 
and Kokotovic (1995a). We reduce the adaptive stabilization 
problem to the probem of input-to-state (Sontag, 1989a) 
stabilization (ISS) with respect to the parameter estimation 
error considered as the input. 

Our study is cast in the setting of control Lyapunov 
functions (Artstein, 1983; Sontag, 1989b). We employ the 
concept of an ISS-control Lyapunov function (is-elf), which 
is a particular form of a robust control Lyapunou function 
(rclf) introduced by Freeman and KokotoviC (1996). The 
iss-elf formalism is suitable for modular adaptive design, 
because it takes advantage of the fact that the system is affine 
both in the control input and in the disturbance input, and 
yields a simple Sontag-type formula for the control law. 
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We consider the problem of global feedback stabilization 
of systems of the form 

R=f(x)+F(x)B+g(x)u, XER”, UER, (1) 

where 6 is a constant unknown parameter vector in R”, the 
mappings f(x), F(x) and g(x) are smooth, and f(0) = 0, 
F(O) = 0. 

We say that the system (1) is globally adaptiuely 
stabilizable if there exists alfunction a(x, 0) continuous on 
(K!?~}) X RP with_ a(0, 0)-O, continuous functions 
5(x, 6, n) and H(x, 0, n), and a positive-definite symmetric 
p X p matrix F such that the dynamic controller 

u = o(x, 6) (2) 

B = Tt(x, e, r)), (3) 

i = H(x, 8, r)) (4) 

guarantees that the solution (x(t), 6(t), q(t)) is globally 
bounded, and x(t) + 0 as t -+ m, for all 8 E R!‘. 

We refer to (3) and (4) as an identifier, with (3) being its 
update law. 

In Section 2 we introduce basic concepts for modular 
adaptive design, and show that a system is adaptively 
stabilizable provided it is input-to-state stabilizable with 
respect to the parameter estimation error. In Section 3 we 
show how to use backstepping to construct input-to-state 
stabilizing control laws, which recovers our earlier design 
(Krstif and Kokotovic, 1995a). 

2. ISS-control Lyapunov functions 
We start by rewriting (l),with (2) as 

1 = f (x) + F(x)6 + g(x)a(x, 8) i- F(x)& (5) 

where e(t) = 0 -8(t). Suppose we know how to find a 
control law a(x, 6) that stabilizes this system with 6 = 0. In 
the presence of the disturbance input 8, this control law, in 
general, does not preserve stability, even if 8 is bounded and 
exponentially decaying. To preserve stability, we need a 
stronger controller. Since the standard parameter estimators 
guarantee that ti is bounded, we are interested in desiging 
controllers that ca_n guarantee input-to-state stability of (5) 
with respect to 6 as input. However, the time-varying 
garacter of the parameter estimate h(t) forces us to consider 
e(t) as another disturbance input, even though it is not 
explicitly present in;(5). As we shall see, the identifiers will 
also guarantee that O(t) is bounded. 

Our goal is to find a control law u(x, 8) continuous on 
(lR”\{O}) X Iwp with o(O, 0) -0, such that the following 
input-to-state stability (ISS) property is satisfied: 

where p is a class .%?’ function and y is a class .Y function 
(Sontag, 1989a). Lin et al. (1994, Theorem 3) proved that a 
necessary and sufficient condition for (6) is the existence of 
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an ISS-Lyapunou funcrion (sufficiency was proved by Sontag. 
1989a).t We say that a smooth function V:R” X R-t R,. 
positive definite and proper in .r for each 6. is an 
ISS-Lyapunov function for (1) if there exists a class yl, 
function p such that the following implication holds for all 

* f 0, all bounded 8,$ and all 6. 6 t 58”: 

If there exists such a triple (u, V. p). WC say that the system 

(1) is inpIt/-k-stare &tahilizahle with rerprcf to (6. 6). 
We adopt a control Lyapunov function setting for 

input-to-state stabilization. 

Drfinitiwz 2.1. A smooth function V: R” X F@+ R, . 
positive-definite and proper in .x for each 8. is called an 
ISS-control Lyapunou firnction (iwclf) for ( 1) if there exists 
a class X, function p such that the following implication 

holds for all x f 0. all bounded 8. and all 8. 6 E RJ’: 

We now show that the existence ot an iss-elf is a necessary 
and sufficient condition for input-to-state stabilizability. The 
proof of sufficiency is constructive-we design a control law 
starting from a given iss-elf. 

Lrmmu 2. I. (Inpu-lo-state stabilizarion.) The system (1) is 
input-to-state stabilizable with respect to (8, 6) if and only if 
there exists an iss-elf. 

Proof The ‘only if’ part is obvious, because (7) implies that 
there exists a particular control law II = (Y(x, 0) that satisfies 
(8). We shall now prove the ‘if’ part using Sontag (1989b). 
We show that the following control law achieves 
input-to-stage stabilization: 

where 

We first show that (Y) is continuous on (R”\{O}) X RJ’. Sontag 
(1989b) proved that the function (9) is smooth provided its 
arguments w and (dV/;tr)g are such that 

t To be precise, the proot of Sontag (l98Ya) can be easily 
extended to the time-varying case (note that E?(t) appears in 

(5)). 
$ The boundedness of 6 will be independently guaranteed 

by the parameter identifier (cf. Lemma 2.3). In fact. 
je(t)ls a(O)l. The uniform boundcdncss of r? is sufficient to 
guarantee the existence of class .K, functions F, and (Y? and a 
class x function (Y, such that (~,(l_rl) I V(x, 0) 5 ru&rl) and 
ri 5 -a&l) in (7). 

We show that V being an iss-elf implies that (11) is satisfied. 
By Definition 2.1, if x #O and (dV/dx)g = 0 then 

Let us consider the particular input 

- [EF $1’ 
[iI = i[dvF dv]T! p ‘(‘N. (13) 

This input satisfies the upper part of the implication (12): 

e 
P Q (!I II) = /xl. (14) 

Therefore. substituting (13) into the lower part of (12), we 
conclude that. if x f 0 and (dV/dx)g = 0 then 

that is. (11) is satisfied for * f 0. Therefore (9) is a smooth 
function of w and (dV/dx)g whenever x f 0. Since w(x, 13) is 
continuous and (dV/&)g(x, 0) is smooth, the control law (9) 
is continuous for x f 0. We note that the control law (Y(x. 6) 
given by (9) is also continuous at x = 0 if and only if the 
iss-elf V satisfies the following small control properr! (Sontag, 
1989b): for each 0 E Rp and for any F > 0, there is a 6 > 0 

such that. if .Y # 0 satisfies p 

some u with /rl/ 5 F such that 

i 1x1~ S then there is 

d v 
,x[,l.(s)+F(x)~+~(s)rr]+~l;(x)B+~Q<O. (16) 

We now show that the control law (9) achieves 
input-to-state stabilization. Along the solutions of (5) and 
(9). the derivative of V is 

In view of (15). this proves that i’ < 0. Vx f 0. whenever 

that is. V is an ISS-Lyapunov function, 

which. by Sontag (1989a. Claim on p. 441). establishes that 

(1) is input-to-state stable with respect to (8, 6). 0 

Global asymptotic stabilizability for each 0 is a necessary 
condition for the existence of an iss-elf. This becomes 

obvious on setting e(r) = 0. which implies e(t) = i(r) = 0. 
into (6). 

Next we give sufficient conditions under which r(r)+0 as 
f + =. Owing to the ISS property (6), one sufficient condition 

is that both 6 and 6 tend to zero. However, in general. 
identifiers cannot guarantee that 6 goes to zero. so the next 
lemma gives a less demanding condition. 

Lemma 2.2. (Regularion.) Suppose the control law I( = 
a(x.,e) guarantees that the system (I) is ISS with respect to 

(6. 6). If 6(f) and Q(I) are bounded and continuous, and 

both F(x(r))B(t) and Q(r) converge to zero as t-t J. then 
lim , ~_, x(t) = 0. 
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Proof Since the system 
^ 

1 = f(x) + F(x)@ + g(x)n(x, e) (18) 

is ISS with respect to (3, d), the same system with 8 = 6 = 0, 
namely the system 

^ ^ 
2 =f(x) + F(x)B + g(x)a(x, e), (19) 

is globally asymptotically stable. Therefore, by Sontag (1990, 
Theorem Z), there exist p E X2, y E SC, and a continuous 
function ff: Iw+--+Iw+, (T(S) >O for s >O, such that, for each 

A contjnuous and bounded input w(r) = C ~(x(r))~(r) * for 5(r) 1 
each x(Q E R” and for all t Z to ~0, the following 
implication holds: 

sup Iw(7)l=i 4le3)l) 
,,,STS, 

4 Gw 

lbm 5 mffo)l~ t - to) + T( ,gIJ* lw(7)lj. 

Since e and 6 are bounded, so is x(r). Let M be such that 
Ix(t)1 5 M for all t 2 0. Let E = min {u(r) 1 r 5 M}, and let 
T?O be such that /w(r)J c: E for all t-) 7’. Then, from (20), 
we obtain 

(21) 

for all t 2 to :, T. To complete the proof, we have to show 
that the 1% property (21) implies that x(t) + 0 as I --+ m. Our 
computations follow those in the proof of Sontag (1989a, 
Proposition 7.2). First, we note that there exists a 
monotonically decreasing to zero function 11 continuous on 
(T, m) such that 

Iw(r)[s7j(r-co) tlf~~r~?T. (221 

Then we have 

+y su 
( P (,+T)l crs, d7 - T, > . 

(23) 

Noting that for any class St function 6, s(n + b)s 
6(2a) + 6(2b) for any nonnegative a and b, we proceed from 
(23) with 

+P 33 i ( T-_rz:%)n dz - T, ) 9) + ~(~~~~) ’ 

424M. 33 L-r;T) + +(77(O)). 7) 

+ Y(q$)j> (24) 

which converges to zero as r -+ m. q 

Returning to the modular controller-identifier design, 
Lemma 2.2 serves as a list of conditions that an identifier has 
to satisfy: generate a bounded estimate 8 with aA bounded 
derivative 8, as well as ensure that f(x)fi and 6 tend to 
zero. 

2.1. ~denri~er. We give just one form among several 
possible identfiers with these properties. It employs the filters 

iZT = [A. - AF(x)F(x)~P]Q~ + F(x), (25) 

i4, = [A,, - A~(x)F(x)~JW~, - x) +0x) + g(xb, (26) 

where A 2 0, and A0 is an arbitrary constant matrix such that 
PA, + ATP = -I, P = PT> 0. The esrirnarion error is given 
by 

e=x-QQ-R%. (27) 

The update law for 6 is either the gradient, 

nc B=r------- 
1+ v la& 

I-=rT>o, vro, (28) 

or the least-squares, 

&yL.sc- 
1 + v iQl2,’ 

n&XT 
(29) 

$-=-I- ----r 
1+ v IQ/z, ’ 

r(o) = r(o)T>o, ~20, 

where l*lz denotes the Frobenius norm. The terms with 
coefficients A 2 0 in (25) and (26), and v z 0 in (28) and (29), 
are t\rlo alternative forms of slowing down the identifier so 
that 6 is kept bounded. We require that either A or v be 
nonzero. 

Lemma 2.3. The identifier (25)-(27) with either (28) or (29) 
guarantees that 

l e(r) and &I) are bounded; 

l if x(r) is bounded then F(x(r))t?(r) and G(r) converge to 
zero. 

Proo$ First, we note that (27) can also be expressed as 

s=@B+r, (30) 

where g = [A,, - AF(.x)F(x)~P]Z. With (30), the proof of 
boundedness of 8 is standard (Sastry and Bodson, .I989). So 
is the proof of boundedness and convergence of B(r) when 
v > 0. For the case A > 0, see KrstiC a_nd KokotoviC (1995a). 

Here we only prove that ~(x(r))~(r) converges to zero. 
The boundedness of x implies the boundedness of all other 
signals and their derivatives. It is straightforward to show 
that E is also in Jz$ (Sastry and Bodson, 1989). Hence, by 
Barbalat’s lemma, e(r) converges to zero. Therefore 

lim 
J- 

‘G(7) dz = lim g(r) - s(O) = -e(O) < w (31) f--r== 0 i-== 

Combining (25)-(271, we get 

i = [A, - AF(x)F(x)?]c + F(x)tS - id. (32) 

Owing to the smoothness of F, ii is bounded, and therefore 6 
is uniformly continuous. T@n, by Barbalat’s lemma, 
e(r)-+O. Since i(r), c(r) and_ e(r) converge to zero,;from 
(32) we conclude that F(x(r))B(t)-+O. Note that while 6’ is in 
& (Sastry and Bodson, 19891, F(x)8 may not be. cl 

Consider now the adaptive controller consisting of the 
control law (9), (IO) and the idenitfier (25)-(29). By 
combining Lemmas 2.1-2.3 the following conclusion is 
immediate.? 

Theorem 21. If there exists an iss-elf for the system (1) then 
the system is globally adaptively stabilizable. 

3. ISS backsrepping 
With Theorem 2.1, the problem of adaptive stabilization is 

reduced to the problem of finding an iss-elf. Using 
backstepping, an iss-elf for a higher-order system is 
recursively constructed starting with an iss-elf for a 
lower-order system. 

Lemma 3.1. If the system 

i =f(x) + F(x)e + g(x)td (33) 
is input-to-state stabilizable with respect to (8, 8) using 
LY E C’, and 6 is bounded, then the augmented system 

i = f(x) + F+x)e + g(x)@, 
(=&I (34) 

is also input-to-state stabilizable with respect to (& 8). 

t We have avoided the issue of existence of solutions, 
which was delat with in detail in KrstiE and KokotoviE 
(1995a). 
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Proof: Since (33) is input-to-state stabilizable with respect to 
(8, Q), there exists a triple (a, V, p) and a class Xfunction CL 
such that 

lx,+;]1, 

4 (35) 

g[f(X) + F(x)4 + g(x)& 8)] + gF(X)B + s B c -cL(Ixl). 

In fact, without loss of generality, we assume that p is class 
Sr;. It was shown by Sontag (1989a) that if k is only in class 
X then the given Lyapunov function V can be modified so 
that the new F be in class XX. For /* E SE,. it was shown by 
Sontag and Wang (1994) that (35) is equivalent to the 
following ‘dissipation’ type of characterization: 

$X) + F(x)6 +g(x)a(x, e)] + %F(X)B + $6 

s-/.L(/XI)+X B 
(!L 11, e 9 (36) 

where R is a class X function. Since the proof of the affine 
case considered here is simple, we give it for completeness. 
It is clear that (36) implies (35). To see the converse, one 

only needs to consider the case Ix/ 5 p 
e 

il[ Ii) 6 Since 6 is 

bounded, with Young’s inequality one obtains 

$(X, + F(x)6 +g(X)cu(X, e)] +$(X)8 + g B + fi(l.Tl) 

+[f(x) +F(x)6 +g(x)a(x, 8)] + cL(IXl) 

A e 
=K 

(I[ Ii) Q ’ (37) 

where ji is a class XZ function. This completes the proof of 
(36). We shall now use (36) to show that 

V,(X, &e) = V(x. 6) + $15 - Ly(X, e)]’ (38) 

is an iss-elf for (34). We do this by showing that the control 
law 

u=a,(x & 8)=-Sg-@ ) 8, (Y+ 
dX 

F(f 
rLK 

+I@+$& 

-IL 

II $Fyx) g II (5 -u) (39) 

achieves input-to-state stabilization of (34). Towards this 
end, consider 

Denoting n,(r) = n(r) + ir’ and picking a class SC, function 
p,(r) 5 min {p(r), r2}, because of the boundedness of 6, we 
get 

(41) 

where pLz is a class K function. Thus V, is an ISS-Lyapunov 
function. By Sontag. 1989a, Claim on p. 441) the system 
(34) with control law (39) is ISS with respect to (a, 8). 0 

The control law a,(~, 5, 0) in (39) is only one out of many 
possible control laws. Once we have shown that V, given by 
(38) is an iss-elf for (34) (with p = /*;I 02x,), we can use, for 
example. the C” control law Q, given by (9). 

Repeated application of Lemma 3.1, and then Theorem 
2.1. recovers our earlier result (KrstiC and Kokotovic, 1995a): 

Corollary 3.1. The following system is globally adaptively 
stabilizable: 

x,=x,+,+cp,(x I,..., x,) .Y. 8, i=l,..., n-l, 

,I = u + cp (x x ) T BI (42) 
n I. *n 

4. Conclusions 
The elf framework is convenient, because it eliminates 

adaptation from consideration, and reduces the problem of 
adaptive stabilization to the probem of (nonadaptive) 
input-to-state stabilization with respect to particular 
disturbance inputs. 

The elf framework for modular design parallels the elf 
framework for Lyapunov design that we introduced in KrstiC 
and Kokotovic (1995b). The problem of adaptive stabiliza- 
tion was approached there as a probem of (nonadaptive) 
stabilization of a modified system, and the tuning functions 
design of KrstiC et al. (1992) was recovered. 
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