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assessment. The main result lies in the development of a sufficient con-
dition from which convex semidefinite programming can be used by
bounding the terms transducing the noncoincidence between the mea-
surement and the reality. A numerical experiment supports the effi-
ciency of the results. Further developments could be made for various
types of parameter dependence, such as, for instance, the linear frac-
tional dependence.
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Nonlinear Stabilization of Shock-Like Unstable
Equilibria in the Viscous Burgers PDE

Miroslav Krstic, Lionel Magnis, and Rafael Vazquez

Abstract—We stabilize the unstable “shock-like” equilibrium profiles of
the viscous Burgers equation using control at the boundaries. These equi-
libria are not stabilizable (even locally) using the standard “radiation feed-
back boundary conditions.” Using a nonlinear spatially-scaled transforma-
tion (that employs three ingredients, of which one is the Hopf–Cole non-
linear integral transformation) and linear backstepping, we design an ex-
plicit nonlinear full-state control law that achieves exponential stability,
with a region of attraction for which we give an estimate. The region of
attraction is not the entire state space since the Burgers PDE is known not
to be globally controllable.

Index Terms—Burgers PDE.

I. INTRODUCTION

We study nonlinear stabilization for the viscous Burgers equation.
We consider a family of “shock-like” stationary profiles [9] which
are unstable and not stabilizable (even locally) by simple “radiation
boundary conditions.” We achieve exponential stabilization (in spatial
L2 norm) of the shock profiles using two control inputs (one at each
boundary) by full-state feedback.

Early effort on linear static collocated output feedback (a.k.a. “radia-
tion” boundary conditions) proved local L2 exponential stability in [6],
with extension toL1 in [20]. Semi-global version of [6] and regulation
to small boundary set points was proved in [7]. Global stabilization is
achieved in [13], using nonlinear boundary conditions, and extended
to KdV, Kuramoto–Sivashinsky, adaptive control, and other problems
in [1], [2], and [15]–[18]. Reference [10] derives bounds on minimal
time for null controllability with one and two inputs. In [3] stabilization
is approached using nonlinear model reduction, with in-domain actu-
ation. Control of the inviscid Burgers equation, a challenging problem
and different than the one studied here, was studied in [4].

Our design for nonlinear (non-convective) parabolic PDEs [23], [24]
is based on a feedback linearizing nonlinear Volterra series transfor-
mation. We follow a similar idea here and construct a nonlinear trans-
formation (based on three ingredients, one of which is the Hopf–Cole
[8], [11]), that transforms the system (with the help by one of the two
boundary controls) into a linear reaction-diffusion PDE, which is then
stabilized using linear backstepping [19], yielding a control that is non-
linear in the original state. We provide an estimate of the region of at-
traction, which is finite because the Burgers system unfortunately is not
globally controllable [10].

II. BURGERS EQUATION AND ITS SHOCK PROFILES

Consider the viscous Burgers equation

ut = uxx � uxu; x 2 [0; 1] (1)
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Fig. 1. Three example shock profiles for different values of �.

with u(x; t) as the state, with boundary conditions

ux(0; t) = !0(t); ux(1; t) = !1(t); (2)

and with !0(t) and !1(t) as the control inputs. To save space, we will
drop the arguments (x; t) whenever the context allows. We are inter-
ested in the family of symmetric “shock-like” stationary solutions [5]

U(x) = �2� tanh (� (x� 1=2)) (3)

parameterized by � � 0 (see Fig. 1). The result in this paper
can be derived for other equilibria, but (3) is of interest as
the “most unstable” case. While the Burgers PDE is often
studied as ut = "uxx � uxu, to reduce notation we focus
on " = 1, as U(x) = �2"� tanh (� (x� 1=2)) scales with
", so eigenvalues scale with " (and so does the estimate of
the region of attraction). Continuing with (3), we first ob-
serve that U 0(x) = �2�2 1� tanh2 (� (x� 1=2)) , hence
U 0(0) = U 0(1) = �2�2 1� tanh2(�=2) , so from (2) we obtain
that

!0 = !1 = �2�
2 1� tanh2 (�=2) � 0 (4)

produce the equilibrium (3). Let us denote the fluctuation variable
around the shock profile as ~u(x; t) = u(x; t) � U(x), along with
~!0(t) = !0(t)� U 0(0); ~!1(t) = !1(t)� U 0(1), which yields

~ut = ~uxx � U(x)~ux � U 0(x)~u� ~ux~u (5)

~ux(0; t) = ~!0(t); ~ux(1; t) = ~!1(t): (6)

III. INSTABILITY OF SHOCK PROFILES

To study the stability of the origin of the open-loop
system (5), we linearize it, obtaining �t = �xx +
2� (tanh(� (x� 1=2))�)

x
; �x(0) = �x(1) = 0, and then

eliminate the advection term in this PDE using the invertible
transformation �(x; t) = G(x)�(x; t), where

G(x) =
cosh (� (x� 1=2))

cosh (�=2)
(7)

Fig. 2. Value of the reaction coefficient in (8). The coefficient is positive and
large in the region around x = 1=2, potentially destabilizing the system.

obtaininig

�t = �xx + �2 2

cosh2 (� (x� 1=2))
� 1 � (8)

�x(0) = � � tanh (�=2) �(0) (9)

�x(1) =� tanh (�=2) �(1): (10)

For � = 0 the system is neutrally stable. For � > 0, the boundary
conditions are destabilizing and so is the reaction term in (8), in the
vicinity of x = 1=2, see Fig. 2. The larger �, the more positive the first
eigenvalue of (8)–(10). For example, for � = 15 the first eigenvalue is
+0:6.

IV. INSTABILITY UNDER “RADIATION FEEDBACK”

With “radiation boundary feedback” [6], [7]

~!0(t) = k~u(0; t); ~!1(t) = �k~u(1; t); k > 0 (11)

system (8)–(10) changes only in boundary conditions

�x(0) = (k � � tanh (�=2))�(0); (12)

�x(1) = � (k � � tanh (�=2))�(1): (13)

Stability of the system (8), (12), and (13) improves as k ! +1. How-
ever, eigenvalue computation shows that for � > ��, where �� � 10,
the system always has exactly one unstable eigenvalue, so no value of
k exists that stabilizes the system, see Fig. 3. Thus, semiglobal stability
in [7] holds for sufficiently small set points but not for large set points.
So, a more sophisticated feedback (full-state or dynamic) is needed to
stabilize shock-like equilibria (even locally).

V. FULL STATE FEEDBACK

We use a state transformation and feedback for ~!0 to linearize the
transformed PDE and its boundary condition at x = 0; then design a
feedback for ~!1 to stabilize the resulting linear system using backstep-
ping.

A. Linearizing Transformation and the Design of ~!0

Define v(x; t) = ~u(x; t)e
� [~u(y;t)+U(y)]dy , which is a new state

variable, written using (7) as

v(x; t) = G(x)~u(x; t)e
� ~u(y;t)dy

: (14)
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Fig. 3. Top: Seven rightmost eigenvalues of (8), (12), and (13) for growing k
and fixed � = 15. All are real and move leftward as k increases. Bottom: Detail
for first eigenvalue, positive for all k.

Transformation (14) is a composition of the Hopf–Cole [8], [11] trans-
formation on ~u(x; t) and the transformation @x, scaled by the “gauge”
transformationG(x). The transformation (14) from ~u to v is invertible:

~u(x; t) =
v(x; t)=G(x)

1� 1
2

x

0

v(y;t)
G(y)

dy
: (15)

Substituting (14) into (5)–(6), we obtain

vt = vxx � U 0(x) + �2 v

+
1

2
~!0 � U(0)~u(0)�

~u2(0)

2
v (16)

vx(0) = ~!0 �
1

2
(~u(0) + U(0)) ~u(0) (17)

vx(1) = ~!1 �
1

2
(~u(1) + U(1)) ~u(1)

� e
� [~u(y;t)+U(y)]dy

: (18)

Setting the feedback law

~!0 = U(0)~u(0) +
~u2(0)

2
= 2� tanh (�=2) ~u(0) +

~u2(0)

2
(19)

Fig. 4. Target system reaction coefficient in (24), compared with the coefficient
of the v plant in (20), for � = 15. Notice that the coefficient only has been
changed close to x = 1=2, where it was destabilizing. The new coefficient is
negative everywhere.

we obtain the following linear reaction-diffusion system akin to (8):

vt = vxx + �2 2

cosh2 (� (x� 1=2))
� 1 v (20)

vx(0) =� tanh (�=2)v(0) (21)

vx(1) =� tanh (�=2)v(1) + ~!1 �
~u(1)2

2

� 1�
1

2

1

0

v(y)

G(y)
dy : (22)

B. Design of ~!1 Using the Backstepping Method

To find the feedback ~!1 to stabilize (20)–(22), we use backstepping
parabolic PDEs [19]. We define a new state

w(x; t) = v(x; t)�
x

0

k(x; y)v(y; t)dy (23)

which we require to satisfy the target PDE

wt =wxx + �2 1

cosh2 (� (x� 1=2))
� 1 w

� cw (24)

wx(0) =� tanh (�=2)w(0) (25)

wx(1) = � � tanh(�=2)w(1) (26)

where c � 0 is a control parameter. In (24) we do not eliminate the re-
action term from the original system (20) but only lower it to eliminate
its positive part, without wasting control to change its negative part,
see Fig. 4. The coefficient c can be set to zero whenever � > 0. When
� = 0, we need c > 0 because the system wt = wxx, wx(0; t) =
wx(1; t) = 0 is only neutrally stable.

Following [19], we find that the kernel k has to verify

kxx = kyy + �2 1� 2 tanh2 (� (y � 1=2))

+ tanh2 (� (x� 1=2)) k + ck (27)

k(x; x) = �
�

2
[tanh (� (x� 1=2)) + tanh (�=2)]�

cx

2
(28)

ky(x; 0) =� tanh (�=2)k(x; 0) (29)
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which is a linear hyperbolic PDE in the domain T = f(x; y) : 0 �
y � x � 1g. In [19] it is shown that (27)–(29) is well-posed and that
k 2 C2(T ). The kernel k can be computed from (27)–(29) numerically
or symbolically using procedures outlined in [19].

From (26) and (23) we obtain the condition
vx(1) =

1

0
(kx(1; y) + � tanh (�=2)k(1; y)) v(y)dy +

(k(1;1)� � tanh (�=2))v(1). Substituting (22) we find the control
law

~!1(t) =
~u(1; t)2

2
+ (k(1;1)� 2� tanh(�=2)) ~u(1; t)

+
1

0

(kx(1; y) + � tanh (�=2)k(1; y))

�G(y)e
~u(�;t)d�

~u(y; t)dy (30)

where we have used (15) to express v in terms of ~u.
As in [19], the transformation (23) can be inverted to obtain an ex-

pression for v in terms of w as follows:

v(x; t) = w(x; t) +
x

0

l(x; y)w(y; t)dy: (31)

The inverse kernel l(x; y) satisfies a well-posed hyperbolic linear par-
tial differential equation like (27)–(29).

VI. STABILITY UNDER FULL-STATE FEEDBACK

Given a function f(x), we define the norm kfkL (0;1) =
1

0
f(x)2dx

1=2

and the space L2(0; 1) = ff : kfkL (0;1) < 1g.

Similarly we define the norms kfkH = kf 0kL + kfkL ,
kfkH = kf 00kL + kf 0kL + kfkL , and the function spaces
H1 = ff : kfkH < 1g and H2 = ff : kfkH < 1g, where
H2 � H1 � L2. For a function f(x; t), its time-varying spatial norms
kf(t)k are defined as above. Norms in time and space are given by

kfk
H

=
T

0
kf(t)k2H dt

1=2

, kfk
H

= kftkH + kfk
H

,

and we denote H2;0 = H2;0
1 and H2;1 = H2;1

1 We denote the initial
condition as ~u0(x) = ~u(x; 0), and define a class K1[12] function
g(r) = r

2
e .

Theorem 1: Assume that ~u0 2 H2 is such that

k~u0kL < g�1 1

m

�

sinh�
(32)

and that it verifies compatibility with feedback boundary conditions
(6), (19), (30). Then the equilibrium ~u � 0 of system (5)–(6) with
feedback laws (19) and (30) is exponentially stable in the L2 norm,
i.e., for all t > 0

k~u(t)k � 2� coth (�=2)
g (k~u0kL )

1
m

�
sinh�

� g (k~u0kL )
e��t (33)

where m = 1 +max(x;y)2T jk(x; y)j 1 +max(x;y)2T jl(x; y)j ,
and � = c + minf1=4; � tanh(�=2)g. Moreover, the solution ~u be-
longs to H2;1.

VII. PROOF OF THE MAIN RESULT

Lemma 1: Given ~u 2 L2 and v defined in terms of ~u as given in
(14), then v 2 L2 and kvkL � 2g (k~ukL ), where g(r) = r=2er=2.
Moreover, if ~u 2 H1 (resp. H2) then v 2 H1 (resp. H2).

Proof: From the transformation (14) we obtain

kvk2L � max
x2[0;1]

jG(x)jk~uk2L e
j~u(y;t)jdy

� k~uk2L ek~uk (34)

since maxx2[0;1] jG(x)j = 1. The last part of the lemma is proved
analogously, by taking derivatives of (14).

Lemma 2: Given v 2 L2 such that kvkL < 2 �= sinh� and ~u
defined in terms of v as given in (15), then ~u 2 L2 and

k~ukL �
cosh (�=2)kvkL

1� 1
2

sinh�
�

kvkL

: (35)

If v 2 H1 (resp. H2) then ~u 2 H1 (resp. H2).
Proof: We first show that, from the assumption kvkL �

2 �= sinh�, it follows that 1
2

x

0

v(y)
G(y)

dy < 1; which implies that
the denominator of (15) is nonzero, so ~u is well-defined. Using
Cauchy–Schwartz

1

2

x

0

v(y)

G(y)
dy �

1

2
kvkL

1

0

1

G(y)2
dy

=
cosh (�=2)

2
kvkL

1

0

1

cosh2 (� (y � 1=2))
dy

=
cosh (�=2)

2
kvkL

2 tanh (�=2))

�

=
1

2

sinh�

�
kvkL < 1: (36)

Hence ~u is well defined in (15) and

k~u(x)k2L =
1

0

v(x)=G(x)

1� 1
2

x

0

v(y)
G(y)

dy

2

dx

�
maxx2[0;1]

1
G (x)

kvk2L

1� 1
2
kvkL

1

0
1

G(y)
dy

2

=
cosh2 (�=2)kvk2L

1� 1
2

sinh�
�

kvkL

2 (37)

since the maximum of 1=G(x) is cosh�=2. The lemma’s last part
is proved analogously, by taking derivatives of (15), and noting that
the denominator is always the same, hence the condition kvkL <
2 �= sinh� is enough to guarantee that the derivatives of ~u are well-
defined.

We now establish Theorem 1. Consider the system (24)–(26) with
initial condition

w0(x) = G(x)~u0(x)e
� ~u (y)dy

�
x

0

k(x; y)

�G(y)~u0(y)e
� ~u (�)d�

dy: (38)
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Since ~u0 2 H2 and k 2 C2(T ), by taking twice the derivative with
respect to x in (38), ~w0 2 H2. Since w0 verifies the boundary con-
ditions (25)–(26), from [14],1 we obtain that there is a unique solu-
tion w 2 H2;1

T [i.e., the solution is defined at least for some interval
t 2 (0; T )]. Consider now the following Lyapunov functional L(t) =
1
2

1

0
w(x; t)2dx = 1

2
kw(t)k2L . We have that

_L = �
1

0

w2�2 tanh2 � x�
1

2
dx

+ hw;wxxi � ckwk2

� � q kwxk
2 +

1

4
(w(1)2 + w(0)2) � ckwk2 (39)

where q = minf1; 4� tanh(�=2)g. Since w(t) 2 H1 for some
T , we can use Poincare’s inequality [13], obtaining d

dt
L(t) �

� c+ q

4

1

0
w2dx = � c+ q

4
2L. Hence, for � = c + q=4 =

c +minf1=4; � tanh(�=2)g, we obtain that

kw(t)kL � kw0kL e��t: (40)

Similar estimates can be derived in the H1 and H2 norms (see [21]
for examples on how to obtain those estimates), which can be used to
deduce that w 2 H2;1, i.e., that the solution is defined for all t 2
(0;1).

From thew estimate of (40) we can derive estimates for v as follows.
The transformation (23) and its inverse (31) determine that

kw(t)kL � 1 + max
(x;y)2T

jk(x; y)j kv(t)kL (41)

kv(t)kL � 1 + max
(x;y)2T

jl(x; y)j kw(t)kL (42)

hence kv(t)kL � 1 + max(x;y)2T jl(x; y)j kw0kL e��t �
mkv0kL e��t. Note that since k; l 2 C2(T ), estimates in the H1 and
H2 norms are also derived [21], and it follows that v 2 H2;1.

From Lemma VII, we get that kv(t)kL � 2mg (k~u0kL ) e��t.
Using assumption (32) in the Theorem, we obtain that kv(t)kL <
2 �= sinh�, thus the conditions of Lemma VII are verified and ~u
belongs to L2 (and to H1 and H2, hence ~u 2 H2;1), and satisfies the
estimate

k~u(t)kL �
cosh (�=2)kv(t)kL

1� 1
2

sinh �
�

kv(t)kL

�
cosh (�=2)2mg (k~u0kL ) e��t

1� sinh�
�

mg (k~u0kL ) e��t
(43)

and from (43) the estimate (33) follows.

VIII. SIMULATIONS

The shock-like equilibrium of the open-loop system (1)–(2), (4) is
unstable for any � > 0. In Fig. 5 one can see it undergoing a finite
time blow-up for � = 3.

Before showing the results with our nonlinear design, we show the
results with a linearized full-state backstepping controller

~!0(t) = 2� tanh (�=2) ~u(0; t) (44)

1We use Theorem 9.2 on page 343, which is proved for Dirichlet boundary
conditions, but also stated to be valid under Robin boundary conditions (which
we have here) in [14, pp. 341 and 351].

Fig. 5. Finite time blow-up of open-loop system (with constant inputs (4)) for
� = 3 and u (x) = U(0) + 2 + (U(1)� U(0)� 4)x.

Fig. 6. The backstepping kernel ��(x) (left) and the closed-loop solution
under the linear backstepping feedback (right) for � = 15.

~!1(t) = � 3� tanh(�=2) +
c

2
~u(1; t)

�
1

0

�(y)G(y)~u(y; t)dy: (45)

The kernel ��(x) and a closed-loop solution with the controller (44)
and (45) are shown in Fig. 6. In Fig. 7 we show solutions from various
initial conditions under nonlinear controller (19), (30).
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Fig. 7. Convergence of closed-loop system under the nonlinear full-state feed-
back for various initial conditions and � = 15.
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