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a b s t r a c t

We consider LTI finite-dimensional, completely controllable, but possibly open-loop unstable, plants,
with arbitrarily long actuator delay, and the corresponding predictor-based feedback for delay
compensation. We study the problem of inverse-optimal re-design of the predictor-based feedback law.
We obtain a simplemodification of the basic predictor-based controller, which employs a low-pass filter,
and has been proposed previously by Mondie and Michiels for achieving robustness to discretization
of the integral term in the predictor feedback law. The key element in our work is the employment
of an infinite-dimensional ‘‘backstepping’’ transformation, and the resulting Lyapunov function, for the
infinite dimensional systems consisting of the state of the ODE plant and the delay state. The Lyapunov
function allows us to quantify the Lyapunov stability properties under themodified feedback, the inverse
optimality of the feedback, and its disturbance attenuation properties. For the basic predictor feedback,
the availability of the Lyapunov function also allows us to prove robustness to small delay mismatch (in
both positive and negative directions).

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

We consider control systems of the form

Ẋ(t) = AX(t)+ BU(t − D), (1)
where X ∈ Rn, (A, B) is a completely controllable pair, and the
scalar-valued input signal U(t) is delayed by D units of time.
We allow A to be unstable and the delay D to be arbitrarily
large. In Artstein (1982), Kwon and Pearson (1980) and Manitius
and Olbrot (1979) the following controller was developed which
achieves asymptotic stabilization for any D > 0:

U(t) = K
[
eADX(t)+

∫ t

t−D
eA(t−θ)BU(θ)dθ

]
. (2)

and which is viewed as a ‘‘delay-compensated’’ version of the
‘nominal controller’1

U(t) = KX(t), (3)

where the expression eADX(t)+
∫ t
t−D e

A(t−θ)BU(θ)dθ in (2) should
be understood as a D-seconds ahead predictor of X(t), starting

I This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editor Lihua Xie under
the direction of Editor Roberto Tempo. This work was supported by NSF and Ford
Motor Company.
E-mail address: krstic@ucsd.edu.
1 The nominal control gain K may be designed by a LQR/Riccati approach, pole

placement, or some other method that makes A+ BK Hurwitz.
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from X(t) as an initial condition, and driven by the control history
over the D-second window (the effect of using the predictor
is that, after a transient lasting for D seconds, the system’s
closed-loop response is perfect, as if there were no actuator
delay). The controller (2) is infinite-dimensional due to its use
of the history of the input U(t) over the last D time units.
The‘‘predictor-based controller’’ (2) is known in the literature
also as a ‘‘finite-spectrum assignment’’, ‘‘Smith predictor (Smith,
1959) for unstable systems’’, and ‘‘reduction-based controller’’.
The properties of this controller have been widely studied
(Gu & Niculescu, 2003; Mondie & Michiels, 2003) and it has been
extended to the parameter-adaptive case (Evesque, Annaswamy,
Niculescu, & Dowling, 2003; Niculescu & Annaswamy, 2003).
In Krstic and Smyshlyaev (2007), using the backstepping

method for PDEs, we have constructed the Lyapunov function for
the closed-loop systems (1) and (2), which is in the form

V (t) = X(t)TPX(t)+
a
2

∫ t

t−D
(1+ θ + D− t)W (θ)2dθ, (4)

where P is the solution of the Lyapunov equation

P(A+ BK)+ (A+ BK)TP = −Q , (5)

P and Q are positive definite and symmetric, the constant a > 0 is
sufficiently large, andW (θ) is defined as

W (θ) = U(θ)− K
[∫ θ

t−D
eA(θ−σ)BU(σ )dσ + eA(θ+D−t)X(t)

]
, (6)

with−D ≤ t − D ≤ θ ≤ t .

http://www.elsevier.com/locate/automatica
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In this note we highlight some of the benefits of constructing
the transformation (6) and of the Lyapunov function (4). The first
benefit is the ability to derive an inverse-optimal controller, which
incorporates a penalty, not only on theODE stateX(t) and the input
U(t), but also on the delay state. Inverse optimality, as an objective
in designing controllers for delay systems,was pursued by Jankovic
(2001, 2003). The inverse-optimal feedback that we design in the
note is of the form (where, for brevity and conceptual clarity, we
mix the frequency and time domains, i.e., the lag transfer function
on the right should be understood as an operator):

U(t) =
c
s+ c

{
K
[
eADX(t)+

∫ t

t−D
eA(t−θ)BU(θ)dθ

]}
, (7)

where c > 0 is sufficiently large, i.e., the inverse-optimal feedback
is of the form of a low-pass filtered version of (2).
As it turns out, the low pass modification, proposed here

for inverse optimality, has already been proposed in Mondie
and Michiels (2003) as a tool for helping robustness in the
discretization of the integral term in (2). This low-pass filtering is
not required for robustness in discretization, as shown in Zhong
(2006, Chapter 11), and Zhong (2006) and Zhong and Mirkin
(2002), but it is helpful.
The second benefit of constructing the transformation (6) and of

the Lyapunov function (4) is that one can prove robustness of the
exponential stability of the predictor feedback to a smallmismatch
in the actuator delay, both in the positive and in the negative
direction.
In Section 2 we establish inverse optimality of the feedback

law (7) and its stabilization property for sufficiently large c. In
Section 3 we consider the plant (1) in the presence of an additive
disturbance and establish the inverse optimality of the feedback
(7) in the sense of solving a meaningful differential game problem
and we quantify its L∞ disturbance attenuation property. Finally,
for the basic predictor feedback, in Section 4 we use our Lyapunov
function to prove robustness to small delay mismatches.

2. Inverse optimal re-design

In the formulation of the inverse optimality problem we will
consider U̇(t) as the input to the system, however U(t) is still
the actuated variable. Hence, our inverse optimal design will be
implementable after integration in time, i.e., as dynamic feedback.
Treating U̇(t) as an input is the same as adding an integrator,
which has been seen to be beneficial in the control design for delay
systems in Jankovic (2001).

Theorem 1. There exists c∗ such that the feedback system (1) and (7)
is exponentially stable in the sense of the norm

N(t) =
(
|X(t)|2 +

∫ t

t−D
U(θ)2dθ + U(t)2

)1/2
(8)

for all c > c∗. Furthermore, there exists c∗∗ > c∗ such that, for any
c ≥ c∗∗, the feedback (7)minimizes the cost functional

J =
∫
∞

0

(
L(t)+ U̇(t)2

)
dt, (9)

whereL is a functional of (X(t),U(θ)), θ ∈ [t−D, t], and such that

L(t) ≥ µN(t)2 (10)

for some µ(c) > 0 with a property that µ(c)→∞ as c →∞.
Fig. 1. Linear system Ẋ = AX + BU(t − D)with actuator delay D.

Proof. We start by writing (1) as the ODE-PDE system

Ẋ = AX + Bu(0, t). (11)
ut(x, t) = ux(x, t) (12)
u(D, t) = U(t), (13)

where u(x, t) = U(t + x − D) and therefore the output u(0, t) =
U(t − D) gives the delayed input (see Fig. 1).
Consider the infinite-dimensional backstepping transformation

of the delay state (Krstic & Smyshlyaev, 2007)

w(x, t) = u(x, t)−
[∫ x

0
KeA(x−y)Bu(y, t)dy+ KeAxX(t)

]
. (14)

It is readily verified that

Ẋ = (A+ BK)X + Bw(0, t) (15)
wt(x, t) = wx(x, t). (16)

Let us now considerw(D, t). It is easily seen that

wt(D, t) = ut(D, t)− K
[
Bu(D, t)+

∫ D

0
eA(D−y)Bu(y, t)dy

+ AeADX(t)
]
. (17)

Note that ut(D, t) = U̇(t), which is designated as the control input
penalized in (9). The inverse of (14) can be derived as2

u(x, t) = w(x, t)+
∫ x

0
Ke(A+BK)(x−y)Bw(y, t)dy

+ Ke(A+BK)xX(t). (18)

Plugging (18) into (17), after a lengthy calculation that involves a
change of the order of integration in a double integral, we get

wt(D, t) = ut(D, t)− KBw(D, t)− K(A+ BK)

×

[∫ D

0
M(y)Bw(y, t)dy+M(0)X(t)

]
, (19)

where

M(y) =
∫ D

y
eA(D−σ)BKe(A+BK)(σ−y)dσ + eA(D−y)

= e(A+BK)(D−y) (20)

is a matrix-valued function defined for y ∈ [0,D]. Note that N :
[0,D] → Rn×n is in both L∞[0,D] and in L2[0,D].
Consider now a Lyapunov function

V (t) = X(t)TPX(t)+
a
2

∫ D

0
(1+ x)w(x, t)2dx+

1
2
w(D, t)2, (21)

2 The fact that (18) is the inverse of (14) can be seen in various ways, including
a direct substitution and manipulation of integrals, as well as by using a Laplace
transform in x and employing the identity (σ I − A− BK)−1

(
I − BK(σ I − A)−1

)
=

(σ I − A)−1 , where σ is the argument of the Laplace transform in x.
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where P > 0 is defined in (5) and the parameter a > 0 is to be
chosen later. We have

V̇ = XT((A+ BK)TP + P(A+ BK))X + 2XTPBw(0, t)

+
a
2

∫ D

0
(1+ x)w(x, t)wx(x, t)dx+ w(D, t)wt(D, t)

= −XTQX + 2XTPBw(0, t)+
a
2
(1+ D)w(D, t)2 −

a
2
w(0, t)2

−
a
2

∫ D

0
w(x, t)2 dx+ w(D, t)wt(D, t) (22)

≤ −XTQX +
2
a
‖XTPB‖2 −

a
2

∫ D

0
w(x, t)2 dx

+w(D, t)
(
wt(D, t)+

a(1+ D)
2

w(D, t)
)
, (23)

and finally,

V̇ ≤ −
1
2
XTQX −

a
2

∫ D

0
w(x, t)2 dx

+w(D, t)
(
wt(D, t)+

a(1+ D)
2

w(D, t)
)
, (24)

where we have chosen

a = 4
λmax(PBBTP)
λmin(Q )

, (25)

where λmin and λmax are minimum and maximum eigenvalues of
the correspondingmatrices. Nowwe consider (24) alongwith (19).
With a completion of squares, we obtain

V̇ ≤ −
1
4
XTQX −

a
4

∫ D

0
w(x, t)2 dx

+
|K(A+ BK)M(0)|2

λmin(Q )
w(D, t)2 +

‖K(A+ BK)MB‖2

a
w(D, t)2

+

(
a(1+ D)
2

− KB
)
w(D, t)2 + w(D, t)ut(D, t). (26)

(We suppress the details of this step in the calculation but
provide the details on the part that may be the hardest to see:
−w(D, t)〈K(A+BK)MB, w(t)〉 ≤ |w(D)|‖K(A+BK)MB‖‖w(t)‖ ≤
a
4‖w(t)‖

2
+
‖K(A+BK)MB‖2

a w(D, t)2, where the first inequality is the
Cauchy–Schwartz and the second is Young’s, the notation 〈·, ·〉
denotes the inner product in the spatial variable ywhich bothM(y)
andw(y, t) depend on, and ‖ · ‖ denotes the L2 norm in y.)
Then, choosing

ut(D, t) = −cw(D, t), (27)

we arrive at

V̇ ≤ −
1
4
XTQX −

a
4

∫ D

0
w(x, t)2 dx− (c − c∗)w(D, t)2, (28)

where

c∗ =
a(1+ D)
2

− KB+
|K(A+ BK)M(0)|2

λmin(Q )

+
‖K(A+ BK)MB‖2

a
. (29)

Using (14) for x = D and the fact that u(D, t) = U(t), from (27)
we get (7). Hence, from (28), the first statement of the theorem is
proved if we can show that there exist positive numbers α1 and α2
such that

α1N2 ≤ V ≤ α2N2, (30)
where

N(t)2 = |X(t)|2 +
∫ D

0
u(x, t)2 dx+ u(D, t)2. (31)

This is straightforward to establish by using (14), (18) and (21), and
employing the Cauchy–Schwartz inequality and other calculations,
following a pattern of a similar computation in Smyshlyaev and
Krstic (2004). Thus, the first part of the theorem is proved.
The second part of the theorem is established in a manner very

similar to the lengthy proof of Theorem 6 in Smyshlyaev and Krstic
(2004), which is based on the idea of the proof of Theorem 2.8
in Krstic and Deng (1998). We choose c∗∗ = 4c∗ and

L(t) = −2cV̇
∣∣
(22) with (19) and (27),and c=2c∗ + c(c − 4c

∗)w(D, t)2

≥ c
(
1
2
XTQX +

a
2

∫ D

0
w(x, t)2 dx+ (c − 2c∗)w(D, t)2

)
.

(32)

We have that L(t) ≥ µN(t)2 for the same reason that (30) holds.
This completes the proof of inverse optimality. �

Remark 1. Wehave established the stability robustness to varying
the parameter c from some large value c∗ to ∞, recovering in
the limit, the basic, unfiltered predictor-based feedback (2). This
robustness property might be intuitively expected from a singular
perturbation idea, though an off-the-shelf theorem for establishing
this propertywould be highly unlikely to be found in the literature,
due to the infinite dimensionality and the special hybrid (ODE-
PDE-ODE) structure of the system at hand.

Remark 2. The feedback (2) is not inverse optimal, however the
feedback (7) is, for any c ∈ [c∗∗,∞). Its optimality holds for a
relevant cost functional, which is underbounded by the temporal
L2[0,∞) norm of the ODE state X(t), the norm of the control
U(t), as well as the norm of its derivative U̇(t) (in addition to∫ 0
−D U(θ)

2dθ which is fixed because feedback has no influence on
it). The controller (7) is stabilizing for c = ∞, namely, in its
nominal form (2), however, since µ(∞) = ∞, it is not optimal
with respect to a cost functional that includes a penalty on U̇(t).

Remark 3. Having obtained inverse optimality, one would be
tempted to conclude that the controller (7) has an infinite gain
margin and a phase margin of 60◦. This is unfortunately not true,
at least not in the sense of multiplicative (frequency domain)
perturbations of the feedback law. These properties can be claimed
only for the feedback law (27), i.e., U̇(t) = −cW (t). Themeaning of
the phase margin is that the feedback U̇(t) = −c(1+ P(s)){W (t)}
is also stabilizing for any P(s) that is strictly positive real. For
example, the feedback of the form (7) but with c

s+c replaced by
c(s+ν+ω)

s2+(c+ω)s+c(ν+ω)
, which may be a lightly damped transfer function

for some ν, ω, is stabilizing for all ν and ω and for c > c∗. This
result is not obvious but can be obtained by mimicking the proof
of Theorem 2.17 from (Krstic & Deng, 1998).

Remark 4. Here it is relevant to recall an important and elegant
result on direct optimal control in the presence of actuator
delay (Tadmor, 2000) (see also Zhong (2006, Chapter 7)). In
general, for infinite dimensional systems, direct optimal control
formulations lead to operator Riccati equations, which are infinite-
dimensional nonlinear algebraic problems that can be only
approached numerically, i.e., they cannot be simplified to finite-
dimensional problems. The class of delay systems is an exception
to this rule. For the class of systems (1) it was shown in Tadmor
(2000) that the predictor-based ‘nominally-optimal’ feedback law

U(t) = −BTΠ
[
eADX(t)+

∫ t

t−D
eA(t−θ)BU(θ)dθ

]
, (33)
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whereΠ is a positive definite and symmetric n× n solution to the
matrix Riccati equation

ΠA+ ATΠ −ΠBBTΠ + Q = 0 (34)

(for a a positive definite and symmetric matrix Q ), is actually the
minimizer of the cost functional

J =
∫
∞

0

(
X(t)TQX(t)+ U(t)2

)
dt. (35)

This is a striking and subtle result, since the control U(t)
is penalized in (35) as both the control input and as the
infinite-dimensional state of the actuator. Our inverse opti-
mality result, whose cost functional (9) is such that J ≥∫
∞

0

(
µ|X(t)|2 + µU(t)2 + U̇(t)2

)
dt , is far less general and its only

advantage is that the optimal value function (21) is actually a legit-
imate Lyapunov function that can be used for proving exponential
stability. In contrast, the optimal value function in Tadmor (2000)
is given by

V (X(0),U([−D, 0])) = X(D)TΠX(D)+
∫ D

0
X(t)TQX(t)dt (36)

where

X(t) = eAtX(0)+
∫ t−D

−D
eA(t−D−θ)BU(θ)dθ. (37)

It is clear that (36) is positive semi-definite, but in general it
is not clear (nor claimed in Tadmor (2000)) that it is positive
definite in (X(0),U([−D, 0])), i.e., that it is lower bounded in
terms of |X(0)|2 +

∫ 0
−D U(θ)

2dθ , hence, it may not be a valid
Lyapunov function. So, for the controller (33), the Lyapunov
function introduced in our work (Krstic & Smyshlyaev, 2007), that
is, the Lyapunov function defined by (4) and (6)with K = −BTΠ , is
the first Lyapunov functionmade available for proving exponential
stability. Note that in Tadmor (2000) exponential stability in a
strict Lyapunov sense, namely a characterization that involves a
dependence on the normof the infinite dimensional state for t ≥ 0,
is neither stated nor quantified. Only ‘exponential decay to zero’ (in
time) is claimed and argued qualitatively.

3. Disturbance attenuation

Consider the following system

Ẋ(t) = AX(t)+ BU(t − D)+ Gd(t), (38)

where d(t) is an unmeasurable disturbance signal andG is a vector.
In this section, the availability of the Lyapunov function (21) lets us
establish the disturbance attenuation properties of the controller
(7), which we pursue in a differential game setting.

Theorem 2. There exists c∗ such that, for all c > c∗, the feedback
system (7) and (38) is L∞-stable, i.e., there exist positive constants
β1, β2, γ1, such that

N(t) ≤ β1e−β2tN(0)+ γ1 sup
τ∈[0,t]

|d(τ )|. (39)

Furthermore, there exists c∗∗ > c∗ such that, for any c ≥ c∗∗, the
feedback (7)minimizes the cost functional

J = sup
d∈D

lim
t→∞

[
2cV (t)+

∫ t

0

(
L(τ )+ U̇(τ )2 − cγ2d(τ )2

)
dτ
]
,(40)

for any

γ2 ≥ γ
∗∗

2 = 8
λmax(PBBTP)
λmin(Q )

, (41)
whereL is a functional of (X(t),U(θ)), θ ∈ [t−D, t], and such that
(10)holds for someµ(c, γ2) > 0with a property that µ(c, γ2)→∞
as c →∞, andD is the set of linear scalar-valued functions of X.

Proof. First, with a slight modification of the calculations leading
to (28) we get that

V̇ ≤ −
1
8
XTQX −

a
4

∫ D

0
w(x, t)2 dx

− (c − c∗)w(D, t)2 + γ ∗∗2 d
2. (42)

From here, a straightforward, though lengthy, calculation gives the
L∞ stability result.
The proof of inverse optimality is obtained by specializing the

proof of Theorem 2.8 in Krstic and Deng (1998) to the present case.
The functionL(t) is defined as

L(t) = −2cΩ(t)+ 8c|PG|2
γ2 − γ

∗∗

2

γ2γ
∗∗

2
|X(t)|2

+ c(c − 4c∗)w(D, t)2, (43)

whereΩ(t) is defined as

Ω(t) = −X(t)TQX(t)+ 2X(t)TPBw(0, t)+
1
γ ∗∗2
X(t)TPGGTPX(t)

+
a
2
(1+ D)w(D, t)2 −

a
2
w(0, t)2 −

a
2

∫ D

0
w(x, t)2 dx

− (2c∗ + KB)w(D, t)2 − K(A+ BK)

×

[∫ D

0
M(y)Bw(y, t)dy+M(0)X(t)

]
w(D, t). (44)

It is easy to see that Ω(t) ≤ − 18X
TQX − a

4

∫ D
0 w(x, t)

2 dx −
2c∗w(D, t)2. Therefore,

L(t) ≥ c
(
γ2 − γ

∗∗

2 /2
γ2

λmin(Q )|X(t)|2

+
a
2

∫ D

0
w(x, t)2 dx+ (c − 2c∗)w(D, t)2

)
, (45)

which is lower-bounded by µN(t)2 as in the proof of Theorem 1.
To complete the proof of inverse optimality, one can then

show, by direct verification, that the cost of the two-player (U̇, d)
differential game (40), along the solutions of the system, is

J = 2cV (0)+
∫
∞

0

(
ut(D, t)− u∗t (D, t)

)2 dt
+ cγ2 sup

d∈D

{
−

∫
∞

0

(
d(t)− d∗(t)

)2 dt} , (46)

where u∗t (D, t) = −cw(D, t) represents the optimal control as in
(27), and d∗(t) represents the ‘‘worst case disturbance’’

d∗(t) =
2
γ2
GTPX(t). (47)

The choice d(t) = d∗(t) achieves the supremum in the last term in
(46), whereas the choice ut(D, t) = u∗t (D, t), i.e., the choice given
by (7), minimizes J . This completes the proof. �

Remark 5. Similar to the last point in Remark 2, the nominal
predictor feedback (2), though not inverse optimal, is L∞
stabilizing. This is seen with a different Lyapunov function, V (t) =
X(t)TPX(t) + a

2

∫ D
0 (1 + x)w(x, t)

2 dx, which yields dV (t)/dt ≤

−
1
4X
TQX − a

2

∫ D
0 w(x, t)

2 dx+ γ ∗∗2
2 d

2.



2934 M. Krstic / Automatica 44 (2008) 2930–2935
4. Robustness to delay mismatch

Predictor-based feedbacks are known to be sensitive to
errors in the knowledge of the value of actuator delay. This
problem is discussed in Gu and Niculescu (2003), Michiels and
Niculescu (2003) and Mondie and Michiels (2003) and other
references. Despite the sensitivity, the predictor feedbacks are an
‘irreplaceable and widely used tool’ (Richard, 2003).
The existing studies of robustness to delay mismatch are

frequency domain studies. We are not aware of robustness
analyses performed using Lyapunov techniques. The result in Teel
(1998) answers a similar question for ODE plants, however it does
not apply to the present case where the nominal case (without
delay mismatch) is infinite dimensional and the feedback law is
also infinite dimensional.
We consider the feedback system

Ẋ = AX + BU(t − D0 −∆D), (48)

U(t) = K
[
eAD0X(t)+

∫ t

t−D0
eA(t−θ)BU(θ)dθ

]
. (49)

The reader should note that the actual actuator delay has a
mismatch of∆D, which can be either positive or negative, relative
to the assumed plant delay D0 > 0, with the obvious necessary
condition that D0+∆D ≥ 0. Being in the possession of a Lyapunov
function, we are able to prove the following result.

Theorem 3. There exists δ > 0 such that for all ∆D ∈ (−δ, δ) the
system (48) and (49) is exponentially stable in the sense of the state
norm

N2(t) =
(
|X(t)|2 +

∫ t

t−D̄
U(θ)2dθ

)1/2
, (50)

where D̄ = D0 +max{0,∆D}.

Proof. We use the same transport PDE formalism as in Theorem 1
and the transformations (14) and (18). First, we note that the
feedback (49) is written as

u(D0 +∆D, t)

= K
[
eAD0X(t)+

∫ D0+∆D

∆D
eA(D0+∆D−y)Bu(y, t)dy

]
, (51)

which, using (14) for x = D0 +∆D, gives us

w(D0 +∆D, t)

= KeAD0
[(
I − eA∆D

)
X(t)−

∫ ∆D

0
eA(∆D−y)Bu(y, t)dy

]
. (52)

Then, employing (18) under the integral, and performing certain
calculations, we obtain

w(D0 +∆D, t) = KeAD0

×

[(
I − e(A+BK)∆D

)
X(t)−

∫ ∆D

0
e(A+BK)(∆D−y)Bw(y, t)dy

]
. (53)

We then show that

w(D0 +∆D, t)2 ≤ 2q1|X |2 + 2q2

∫ max{0,∆D}

min{0,∆D}
w(x, t)2dx, (54)

where the functions q1(∆D) and q2(∆D) are

q1 =
∣∣KeAD0 (I − e(A+BK)∆D)∣∣2 (55)

q2 =
∫ max{0,∆D}

min{0,∆D}

(
KeAD0e(A+BK)(∆D−y)B

)2
dy. (56)
Note that q1(0) = q2(0) = 0 and that q1 and q2 are both
continuous functions of ∆D (note that the two integral terms in
q2 are both zero at zero, and continuous in∆D).
The cases ∆D > 0 and ∆D < 0 have to be considered

separately. The case∆D > 0 is easier and the state of the system is
X(t), u(x, t), x ∈ [0,D0+∆D], i.e.,X(t),U(θ), θ ∈ [t−D0−∆D, t].
The case ∆D < 0 is more intricate, as the state of the system is
X(t), u(x, t), x ∈ [∆D,D0 +∆D], i.e., X(t),U(θ), θ ∈ [t − D0, t].
Case∆D > 0. We take the Lyapunov function

V (t) = X(t)TPX(t)+
a
2

∫ D0+∆D

0
(1+ x)w(x, t)2 dx. (57)

A calculation similar to that at the beginning of the proof of
Theorem 1 gives

V̇ = −XTQX + 2XTPBw(0, t)+
a
2
(1+ D)w(D0 +∆D, t)2

−
a
2
w(0, t)2 −

a
2

∫ D0+∆D

0
w(x, t)2 dx (58)

≤ −

(
λmin(Q )
2
− a(1+ D)q1(∆D)

)
|X |2

− a
(
1
2
− (1+ D)q2(∆D)

)∫ D0+∆D

0
w(x, t)2 dx, (59)

where a is chosen as in (25), andwherewe have denotedD = D0+
∆D for brevity. This proves exponential stability of the origin of the
(X(t), w(x, t), x ∈ [0,D0 + ∆D]) system. Exponential stability in
the normN2(t) is obtained using the standard procedures for over-
and under-bounding V (t) by a linear function of N22 (t).
Case∆D < 0. In this case we use a different Lyapunov function,

V (t) = X(t)TPX(t)+
a
2

∫ D0+∆D

0
(1+ x)w(x, t)2 dx

+
1
2

∫ 0

∆D
(D0 + x)w(x, t)2dx, (60)

and obtain

V̇ ≤ −
(
λmin(Q )
2
− a(1+ D)q1(∆D)

)
|X |2

−

(
a
2
−
D0
2
−
2|PB|2

λmin(Q )

)
w(0, t)2

−

(
1
2
− a(1+ D)q2(∆D)

)∫ 0

∆D
w(x, t)2dx

−
D
2
w(∆D, t)2 −

max{a, 1}
4

∫ D0+∆D

∆D
w(x, t)2dx. (61)

This quantity is made negative definite by first choosing a >

D0 +
4|PB|2

λmin(Q )
, and then choosing a sufficiently small δ > 0 as

the largest value of |∆D| so that λmin(Q )2 > a(1 + D)q1(∆D) and
1
2 > a(1 + D)q2(∆D). One thus gets exponential decay estimates
in terms of |X(t)|2 +

∫ D0+∆D
∆D w(x, t)2dx, and with some further

work also in terms of |X(t)|2 +
∫ D0+∆D
∆D u(x, t)2dx, i.e., in terms of

|X(t)|2 +
∫ t
t−D0

U(θ)2dθ . �

Remark 6. The result of Theorem 3 is fairly subtle. The case when
∆D > 0 is clear, the robustness to a ‘‘surplus’’ of actuator delay is
a result that already holds for ODEs (Teel, 1998). The case∆D < 0
is more tricky. The controller, which overestimates the delay to be
D0 > D0+∆D, introduces thedelayed inputs from the time interval
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[t − D0, t − D0 − ∆D] into the overall dynamic system, making
its state consist of control inputs U(θ) from the entire interval
θ ∈ [t − D0, t], even though the actual actuator delay D0 + ∆D
is shorter. This peculiarity results in a more complicated analysis
for ∆D < 0, with different weights on the Krasovskii functionals
for the different parts of the delay interval (with the lesser weight
on the subinterval that represents the delay ‘‘mismatch’’). The
greater difficulty in proving the result for ∆D < 0, leads us to
conjecture that the predictor-based controllersmay exhibit greater
sensitivity3 to delay mismatch in the cases where the delay is
‘‘over-estimated’’ (and thus ‘‘overcompensated’’) rather thanwhen
it is ‘‘underestimated’’. This means that, while there is no question
that predictor-based delay compensation is indispensable for
dealingwith long actuator delays, and thus, that ’’some amount’’ of
delay compensation is better than none, when faced with a delay
of uncertain length—if our conjecture is true—‘‘less’’ may be better
than ‘‘more’’, i.e., it may be better to err on the side of caution and
design for the lower end of the delay range expected.

The next result, for ∆D = −D0 > 0, shows that, even if the
system has no actuator delay, it is robust to a small amount of
predictor feedback.

Corollary 1. There exists δ > 0 such that for all D0 ∈ [0, δ) the
system

Ẋ = AX + BU(t), (62)

U(t) = K
[
eAD0X(t)+

∫ t

t−D0
eA(t−θ)BU(θ)dθ

]
(63)

is exponentially stable in the sense of the state norm (|X(t)|2 +∫ t
t−D0

U(θ)2dθ)1/2.

Proof. The closed loop system is Ẋ = (A + BK)X + Bw(0, t),
with wt = wx evolving over x ∈ [−D0, 0] and w(0, t) satisfying
the relations (53)–(56) for D0 + ∆D = 0. The Lyapunov function
V = XTPX+ 12

∫ 0
−D0
(D0+b+x)w(x)2dx, where b > 0, satisfies V̇ ≤

−

(
λmin(Q )
2 −Ωq1

)
|X |2 −

( 1
2 −Ωq2

) ∫ 0
−D0

w(x)2dx − b
2w(−D0)

2,

where Ω = 4|PB|
λmin(Q )

+ D0 + b. Then D0 can be chosen sufficiently
small to make q1 and q2 arbitrarily small and achieve exponential
stability. �

5. Conclusions

In this note we derived inverse optimality results for stabi-
lization and disturbance attenuation with the low-pass filtered
modification of the predictor-based feedback for actuator delay
compensation. Having also established robustness to small delay
mismatch, as the most critical form of robustness in the predictor-
feedback problem (as well as robustness to ‘bandwidth limitation,’
in the form of a low-pass filter), other forms of robustness are
worth studying next, using the Lyapunov functions, with the help
of the backstepping transformation and its inverse, (14) and (18).
It is worth noting that, due to the constructive character of the

proofs of the Theorems 1–3 and Corollary 1, all of the constants in
their statements (c∗, c∗∗, β1, β2, γ1, γ ∗∗2 , δ) can be given as explicit
(albeit conservative) estimates.
The robustness result for delay mismatch in Theorem 2 is best

appreciated if one is aware of the negative results on robustness
of infinite dimensional systems with actuator delay. In Datko
(1988) Datko revealed that exponentially stabilizing results for

3 This is to be ascertained by a separate study, which may be hard to conduct
analytically and may have to be mainly numerical, for select examples.
hyperbolic PDE systems (such as wave and beam equations) have
zero robustness to delay in the feedback loop—an arbitrarily small
D > 0 produces eigenvalues in the right half plane, no matter how
‘‘deeply’’ in the left half plane the closed-loop eigenvalues are for
D = 0 (note that the addition of the delay D > 0 introduces
more eigenvalues, i.e., this result contains no discontinuity in
the dependence of the eigenvalues on D). Due to this result for
hyperbolic PDEs, and given that the actuator delay in our problem
is also a hyperbolic (though first order) PDE system, at the start of
this research attempt we did not know, even at the intuitive level,
if the predictor feedbackwould actually have a positive robustness
margin to delay uncertainty.
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