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On Compensating Long Actuator
Delays in Nonlinear Control

Miroslav Krstic

Abstract—We are interested in finite-escape open-loop unstable plants
that are globally stabilizable in the absence of actuator delay but require
controller redesign in the presence of delay. The simplest such plant is
_ ( ) = ( ) + ( ), where is actuator delay of arbitrary

length. For this system we present a control law that compensates the delay
and achieves feedback linearization (of the entire ODE+delay infinite-di-
mensional cascade). However, even though exponential stability is achieved,
the result is not global because the plant can have a finite escape with an
initial condition (0) 1 before the feedback control “reaches” it at
= . We prove a stability result whose region of attraction is essentially
(0) 1 and for which we derive an asymptotic stability bound in

terms of the system norm ( ) + ( ) .

I. INTRODUCTION

Consider the scalar nonlinear control system

dZ(t)

dt
= Z(t)2 + U(t�D) (1)

where U is the input, delayed by D time units, and the objective is
stabilization to the origin. For D = 0 this is a trivial problem, solvable
by many different feedback laws, the simplest of them being

U(t) = �Z(t)2 � cZ(t); c > 0: (2)

In this paper we consider the problem of compensating for the delay
D in nonlinear control design. Such a problem has been considered
before for linear plants. For example, for the linear plant

_Z(t) = Z(t) + U(t�D) (3)

a stabilizing control law with delay compensation is

U(t) = �2eDZ(t)� 2
t

t�D

et��U(�)d� (4)

which is a D-compensated version of the static feedback law U(t) =
�2Z(t) that would achieve _Z = �Z for D = 0. This example is a
special case of the general compensator design in the setting of “finite
spectrum assignment” which has been pursued with great success for
linear plants [1], [3], [4], [10], [11], [14], [16], and for which a complete
Lyapunov function was recently provided in [9].

Control designs for nonlinear systems have been proposed by
Jankovic [5], [6] and Mazenc et al. [12], [13]. These designs address
systems in both strict-feedback and feedforward forms, with delays
appearing at various locations in the system. Adaptive versions of
predictor-based linear controllers were developed by Annaswamy
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et al. [2], [15]. Robustness of stability of nonlinear control systems
to sufficiently small D, with a region of attraction “proportional” to
1=D, was established by Teel [19, Theorem 3].

In this paper we introduce an idea that represents, to our knowledge,
the first attempt, for a nonlinear control system, at “actuator-delay-
compensation” design (i.e., a full-state feedback that incorporates both
the delay state and the ODE state, and recovers the nominal design
when the delay is zero), with no restriction on the length of the delay.
We start by stating our design first, and then “explain” it in the rest of
the paper

U(t) = � P (t)2 � cP (t) (5)

P (t) =
t

t�D

P (�)2d�+ Z(t) +
t

t�D

U(�)d� (6)

with an initial condition

P (�) =
�

�D

P (�)2d�+ Z(0) +
�

�D

U(�)d� (7)

defined for � 2 [�D; 0]. Note that the function P (t), the (D-seconds
ahead) “P redictor” of Z(t), is given implicitly, through the nonlinear
integral (6). Note also that for D = 0 this design specializes to the
“nominal” design (2). Alternative implementations of (6) as a DDE,
with initial condition defined in (7), are

_P (t) =P (t)2 � P (t�D)2 + Z(t)2 + U(t) (8)

= � cP (t)� P (t�D)2 + Z(t)2: (9)

As a first iteration in explaining the control design (5) and (6), we
point out that it can be proved that the feedback system (1), (5), and (6)
is equivalent to the system

_Z(t) = � cZ(t) +W (t�D) (10)

W (t) � 0; for t � 0 (11)

where the function W (�), which is possibly nonzero for � 2 [�D; 0],
is defined implicitly in terms of U(�) (understood as the “delay state,”
not as control) andZ(t) using the nonlinear “integral-operator” relation

W (�) = U(�) + P (�)2 + cP (�) (12)

where �D � t � D � � � t, and, most importantly, P (�) =
�

t�D
P (�)2 +Z(t) +

�

t�D
U(�)d�. The inverse of (12) is also non-

linear and given explicitly as

U(�) =W (�)

�

�

t�D

e�c(���)W (�)d�

+e�c(��t+D)Z(t)
2

� c
�

t�D

e�c(���)W (�)d�

+e�c(��t+D)Z(t) : (13)

The key result of the paper, besides the control design (5) and (6), is
the construction of the Lyapunov function

Z(t)2 + c
t

t�D

(1 + � +D � t)W (�)2d� (14)
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and the derivation of the stability estimates for the L2 norm of the
system state

Z(t)2 +
t

t�D

U(�)2d� (15)

[note the difference between (14) and (15), with W appearing in the
former and U appearing in the latter, and note that they are related
through a nonlinear, infinite-dimensional transformation (13)].

II. INFINITE-DIMENSIONAL “BACKSTEPPING

TRANSFORMATION” AND ITS INVERSE

A convenient way to study the problem (1) is using the representa-
tion where the delay state is modeled using the first order hyperbolic
(transport) PDE

_Z(t) =Z(t)2 + u(0; t) (16)

ut(x; t) =ux(x; t); x 2 (0;D) (17)

u(D; t) =U(t): (18)

Note that u(x; t) = U(t + x � D).
Consider the “spatially causal” (backstepping) state transformation

(u(x; t); Z(t)) 7! (�(x; t); Z(t)), given by

�(x; t) =u(x; t) + p(x; t)2 (19)

p(x; t) =
x

0

p(y; t)2dy +
x

0

u(y; t)dy + Z(t) (20)

where the variable p(x; t) is given implicitly in terms of u(x; t) and
Z(t). It can be shown that the transformation (19) and (20) converts
the plant (16) and (17) into

_Z(t) =�(0; t) (21)

�t(x; t) =�x(x; t); x 2 (0;D): (22)

The boundary condition for �(D; t) is yet to be designed (it is stated
below).

The Z-equation (16) has now been linearized but it is not asymp-
totically stabilized yet. To this end, we apply another transformation,
(�(x; t); Z(t)) 7! (w(x; t); Z(t))

w(x; t) = �(x; t) + c
x

0

�(y; t)dy + Z(t) (23)

where c > 0 will be used as a control gain. It can be shown that the
transformation (23) converts the system (21) and (22) into

_Z(t) = � cZ(t) + w(0; t) (24)

wt(x; t) =wx(x; t); x 2 (0;D) (25)

with a boundary condition w(D; t) to be specified below.
Remark 2.1: We apologize to the reader that the transformations

(19) and (20) and (23) may appear a bit like “magic.” Their choice is
guided by a general “backstepping” design procedure in [20] and [21],
which employs Volterra series in u as a function of x, and which sim-
plifies to the compact form here due to the special structure that exists
in the case of transport equations, but not in the case of parabolic PDEs.
The “predictor” ideas can also explain the choice of the controller (5)
and (6) but not the choice of the transformations (12) and (13).

Having brought the system (16) and (17) into the form (24) and (25),
it remains to ensure thatw(0; t) goes to zero, and, in fact, that the entire
infinite dimensional state w(x; t) goes to zero. This is achieved with

w(D; t) = 0; 8 t � 0 (26)

namely, by ensuring that the “transport PDE” (25) for w(x; t) is fed by
a zero input at x = D, and thus that its entire state will be “emptied
out” in D seconds. The condition (26) is met with the

�(D; t) = �c
D

0

�(y; t)dy + Z(t) (27)

which, in turn, is satisfied with the control law

U(t) = u(D; t) = �p(D; t)2 + �(D; t): (28)

In summary, the control law in (28) and (27), with the help of (19)
and (20), can be written as

U(t) = � p(D; t)2 � cp(D; t) (29)

p(D; t) =
D

0

p(�; t)2d� + Z(t) +
D

0

u(�; t)d� (30)

and it results in closed-loop behavior given by

_Z(t) = � cZ(t) + w(0; t) (31)

wt(x; t) =wx(x; t) (32)

w(D; t) = 0: (33)

Denoting P (t) = p(D; t), we get (5) and (6). From (20), for t = 0,
we get (7).

Before we discuss the transformation cascade u(x; t) 7! �(x; t) 7!
w(x; t) in (19), (20), and (23), we point out that its inverse is given by

u(x; t) =�(x; t)�
x

0

�(y; t)dy + Z(t)
2

(34)

�(x; t) =w(x; t)

� c
x

0

e
�c(x�y)

w(y; t)dy + e
�cx

Z(t) (35)

which can be simplified to

u(x; t) =w(x; t)

�
x

0

e
�c(x�y)

w(y; t)dy + e
�cx

Z(t)
2

� c
x

0

e
�c(x�y)

w(y; t)dy + e
�cx

Z(t) (36)

and is explicit and globally well defined [if w(x; t) and Z(t) are
bounded, u(x; t) is bounded]. It is from (36) that one gets (13).

While the inverse backstepping transformation w 7! u is well de-
fined, the situation is not so simple for the direct transformation u 7!
w given by (19), (20), and (23). The nonlinear integral (20) for the
p-system, with x as the running argument and x

0
u(y; t)dy+ Z(t) as

the input, is unfortunately not solvable globally, i.e., not solvable for
arbitrarily large values of x

0
u(y; t)dy + Z(t). This failure is consis-

tent with the fact that the system (1) is not globally stabilizable, i.e.,
for large initial conditions Z(0) and large positive initial values of the
delay state U(t); t 2 [�D; 0]. Hence, the lack of a global result is not
a failure of the method but inherent to the problem.
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III. STABILITY

From (31)–(33) it is clear that some form of exponential stability
(less than global, but more than infinitesimally local) holds for the
closed-loop system. In this section we provide an estimate of the re-
gion of attraction and an exponential stability bound. Since the gain
c presents us with too many agonizing choices in computing the esti-
mates, we provide a result simply for c = 1, in which those choices
(and various forms of conservativeness associated with them) are elim-
inated.

Theorem 1: Consider the system (1), (5) and (6). If

Z(0) + sup
�2[�D;0]

�

�D

U(�)d� <
1

D
(37)

then the following holds:

L(t) � 8 �+ 2�2 e�t=4 (38)

jU (t)j � 2
p
�+ 2� e�t=2 (39)

for all t � 0, where

L(t) =Z(t)2 +
t

t�D

U(�)2d� (40)

� =�0 +
1 +D

(1�D�)4
�2

0 (41)

�0 =4 (1 +D)L(0) (42)

� =Z(0) + sup
�2[�D;0]

�

�D

U(�)d�: (43)

Proof: By applying Lemmas 1–7 from the Appendix , in the exact
order given there.

IV. FAILURE OF THE UNCOMPENSATED CONTROLLER

Theorem 2: Consider the plant (1) under the nominal controller (2).
For a given D > 0, there exist initial conditions Z(0) satisfying the
condition (37), i.e., not causing finite escape before t = D in open loop
and being within the region of attraction in closed-loop with the com-
pensated controller (5), for which the solution of the uncompensated
closed-loop system (1) and (2) escapes to infinity before t = 3D=2.

Proof: Take U(�) = 0; 8 � 2 [�D; 0], and denote
Z0 = Z(0). During the time interval [0; D] the solution is
Z(t) = Z

1�Z t
. Over the interval [D; 2D] the system is gov-

erned by Z(t) =
t

D
Z(� )2d� + Z

1�Z D
+

t

D
U(� � D)d� , where

U(t�D) = � Z
1�Z (t�D)

2

� Z
1�Z (t�D)

. It can be easily shown

that t

D
U(� � D)d�= Z0 � Z

1�Z (t�D)
+ ln (1� Z0(t�D)).

It follows then that Z(t)2 � t

D
Z(� )2d� + 

2

, where

 = Z
1�Z D

+ Z0 � Z
1�Z D=2

+ ln (1� Z0D=2). The system
will have finite escape before t = 3D=2 if  > 2=D. Denote
� = 1 � Z0D. After some calculations the condition  > 2=D can
be written as

1

2�
>

2

1 + �
+

�

2
+

D

2
ln

2

1 + �
(44)

where, asZ0 increases towards 1=D, the left side goes to infinity, while
the right side goes towards 2 + D

2
ln 2, where D is fixed. Hence, the

condition  > 2=D is satisfied and Z(t) escapes to infinity before
t = 3D=2.

To help understand the importance of delay compensation, we con-
sider the plant (1) under the predictor-based controller (5) and (6), with
U(�) = 0; 8 � 2 [�D; 0] and Z0 < 1=D. The closed-loop solution is

Z(t) =
Z

1�Z t
; 0 � t < D

Z
1�Z D

e�(t�D); t � D
(45)

whereas the control is

U(t) = � Z0

1� Z0D
e�t

2

� Z0

1� Z0D
e�t: (46)

The expressions (45) and (46) are so clear that we find it unnecessary to
show them graphically. The initial condition Z0 2 (0; 1=D) is a par-
ticularly interesting case to study. According to (45), Z(t) grows ag-
gressively until t = D, and then decays exponentially to zero. The con-

trol starts with a large negative value U(0) = � Z

(1�Z D)
� Z

1�Z D
,

anticipating that it will need to bring Z(t) down from a large value
at t = D, and then decays exponentially. In contrast, the nominal
controller, studied in Theorem 2 , starts with a much more “modest”
U(0) = �Z2

0�Z0, not anticipating the size ofZ(D), and even though
U(t) grows over [0; D], this growth is “too little, too late” to prevent
finite escape.

V. CONCLUSIONS AND DISCUSSION

We presented a nonlinear infinite-dimensional control law for sta-
bilization of a scalar “prototype” nonlinear system with finite escape
instability in open loop, and with actuator delay of unrestricted length.
The problem is not globally stabilizable (because the plant can have
a blow up before any control signal has reached it), and, as shown in
Theorem 2 , the “uncompensated” nonlinear controller merely delays
the finite escape. In Theorem 1 we provide an estimate of the region of
attraction and a transient bound for the delay-compensated nonlinear
controller. The estimate of the region of attraction (37) is nonrestric-
tive compared to Z0 < 1=D.

One should not get sidetracked into thinking that this result requires
feedback linearization. The control (5) can be replaced by the less
“wasteful” feedback law U(t) = �P (t)2 � P (t) P (t)2 + 1, which
does not linearize the Z-system, and the qualitative result of the paper
would still hold. The main thing that would change is that, not only
would the direct backstepping transformation (12) be implicit, but the
inverse transformation (13) would also become implicit.

We want to explain our insistence on the “backstepping” analogy and
terminology. We consider the term “finite spectrum assignment” to be
somewhat misleading. It neglects the fact that the system wt = wx,
w(D; t) � 0, in (32) and (33), has its own spectrum, with complex
poles whose real parts are at negative infinity. At any rate, stability
characterization based on spectrum alone is imprecise. Instead, one
should note that it can be proved that kw(t)k � eb(D�t)kw0k for any
b > 0, where k � k can represent both L2[0; D] and L1[0; D] norms,
and that the stability of the entire infinite-dimensional state of the feed-
back system can be characterized in the Lyapunov sense, as we did in
Theorem 1 .

It is probably of interest to also elucidate the connection with the
“reduction” transformation [1, Eq. (5.2) for B0 = 0]. In the nonlinear
case, we would define this transformation as (6), and one would then
perform control design on (8), arriving at the controller (5) and the
closed-loop system (9), with�P (t�D)2+Z(t)2 = 0; 8 t � D. The
study of the closed-loop behavior would then proceed in a somewhat
convoluted way, studying the behavior of P (t) for t 2 [0; D] from (6)
and for t � D from the ODE _P = �cP , then interring the properties
of U(t) from (5), and finally deducing the properties of Z(t) from (6),
missing the benefits of the complete Lyapunov function (14).
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For a reader who may be new to the subject of predictor-based
controllers, we point out that there exist two basic configurations,
the original one by Smith [18] and the so called “modified Smith
predictor” which is essentially the method of “finite spectrum as-
signment” [11]. The original Smith predictor structure compensates
only for the predicted effect of the control input U(t), D seconds
in the future, without accounting for the future evolution of the
system state/output Z(t), and would be given in this nonlinear
problem as U(t) = �(Z(t) + �(t))2�c(Z(t) + �(t)), where
�(t) =

t

t�D
�(�)2d�+

t

t�D
U(�)d�, with initial condition

�(�) =
�

�D
�(�)2d� +

�

�D
U(�)d�; � 2 [�D; 0]. The “modified

Smith predictor” applied to our nonlinear problem is (5) and (6). The
original Smith predictor is effective only for open-loop stable plants,
whereas the modified Smith predictor also works for unstable plants.
Observe that, when U(�) = 0, � 2 [�D; 0], the original Smith
predictor feedback produces the same input signal for t 2 [0; D] as the
uncompensated feedback, U(t) = �Z(t)2 � cZ(t), therefore, based
on Theorem 2 , it can lead to finite escape over the interval [D; 2D].

The result of this paper seems generalizable to general nonlinear sys-
tems with actuator delay. Consider the system _Z(t) = f(Z(t); U(t�
D)), where Z is now a vector, and suppose that a function �(Z) is
known such that _Z = f(Z; �(Z)) is globally asymptotically stable at
the origin. Then the delay-compensating controller would be chosen as

U(t) =�(P (t)) (47)

P (t) =
t

t�D

f(P (�); U(�))d�+ Z(t) (48)

with P (�) = �

�D
f(P (�); U(�))d�+Z(0), � 2 [�D; 0]. The back-

stepping transformation and its inverse would be defined as

W (t) =U(t)� �(P (t)) (49)

U(t) =W (t) + �(�(t)) (50)

where

�(t) =
t

t�D

f(�(�); �(�(�)) +W (�))d�+ Z(t) (51)

with initial condition �(�) =
�

�D
f(�(�); �(�(�))+W(�))d� +

Z(0), � 2 [�D; 0]. Note that P = �, however they play different
roles because they are driven by different inputs (U versus W ). The
mapping (49) represents the direct backstepping transformation U 7!
W , whereas (50) represents the inverse backstepping transformation
W 7! U . Both transformations are nonlinear and infinite dimensional.
Note that the inverse transformation W 7! U will typically be glob-
ally well defined because (51) only requires a minor extra assumption
that the feedback �(�) be ISS stabilizing with respect toW , in addition
to being GAS stabilizing (the ISS assumption is readily satisfied with
backstepping controllers for strict-feedback systems, as well as for for-
warding controllers [7], [17]). The direct backstepping transformation
U 7! W will typically not be globally well defined, however, in the
case of feedforward systems, which are “forward complete,” it is ex-
pected to be globally well defined, and hence the delay compensation
design for feedforward systems is expected to be globally asymptoti-
cally stabilizing, which is consistent with the result of [12] achieved
with memoryless feedback.

APPENDIX

In what follows, we denote Z0 = Z(0), w0(x) = w(x; 0), etc. The
following notation is used: kw(t)k2 =

D

0
w(x; t)2dx. Occasionally

we will be suppressing the dependence on t to save space.

Lemma 1: The following holds for (31)–(33):

Z(t)2 + kw(t)k2 � 2 Z
2
0 + kw0k

2
e
�t=2

: (52)

Proof: Consider the Lyapunov functional 
(t) =
1
2
Z(t)2 +

D

0
(1 + x)w(x; t)2dx . Its derivative is

_
 =�Z2 + Zw(0; t)

+
D

0

(1 + x)w(x; t)wx(x; t)dx

=�Z2 + Zw(0; t)

+
1

2

D

0

(1 + x)d w(x; t)2

=�Z2 + Zw(0; t)

�
1

2
w(0; t)2 �

1

2

D

0

w(x; t)2dx

��
1

2
Z

2 �
1

2

D

0

w(x; t)2dx

��
1

2
Z

2 �
1

4

D

0

(1 + x)w(x; t)2dx

��
1

2

 (53)

so, 
(t) � 
(0)e�t=2. Noting that Z(t)2 + kw(t)k2 � 2
(t) and

(0) � Z2

0 + kw0k
2, the lemma is proved.

Lemma 2: The following holds for (36):

Z
2 + kuk2 � 4 Z

2 + kwk2 + Z
2 + kwk2

2
: (54)

Proof: We start by writing (36) as

u(x) = w(x)�  (x) + e
�x
Z �  (x) + e

�x
Z

2
(55)

where  (x) = e�x ?w(x) and ? denotes the convolution operator. By
squaring up (55), applying Young’s inequality, and integrating in x, we
get

kuk2 � 2kwk2 + 2k k2 + 4k 2k2

+ 2
D

0

e
�2x

dx Z
2

+ 4
D

0

e
�4x

dx Z
4

� 2kwk2 + 2k k2 + 4k 2k2

+ Z
2 + Z

4 (56)

From [8, Theorem B.2(ii)] it follows that k k2 � kwk2. It
remains to consider the term k 2k2. We have that k 2k2 �
k k2 supx2[0;D]  (x)

2. Noting that  0 = � + w, and that this
implies ( 2)0 � � 2 + w2, it follows from [8, Lemma B.6] that
supx2[0;D] (x)

2 � kwk2. Hence, k 2k2 � k k2kwk2 � kwk4

and we get

kuk2 � 4kwk2 + 4kwk4 + Z
2 + Z

4
: (57)

The (rather conservative) bound (54) follows.
Lemma 3: The following holds for (23):

kw0k
2 � 2(1 +D)k�0k

2 + 2DZ2
0 : (58)

Proof: Immediate, by noting that D

0

x

0
�0(y)dy

2
dx �

Dk�0k
2, which follows from the Cauchy–Schwartz inequality.
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Lemma 4: Denote

� = Z0 + sup
x2[0;D]

x

0

u0(y)dy (59)

and consider the transformation (20). Then

p0(x)
2 � �2

(1� �x)2
: (60)

Proof: We start by noting that

p0(x)
2 �

x

0

p0(y)
2
dy + �

2

(61)

which is true because v0(x) is defined as a nonnegative valued function.
We introduce the change of variable r(x) =

x

0
p0(y)

2dy; r0(x) =
p0(x)

2, which gives a nonlinear differential inequality r0 � (r + �)2,
with an initial condition r(0) = 0. By the comparison principle it fol-
lows that r(x) � �(x), where �(x) is the solution of the nonlinear
differential equation �0 = (� + �)2, �(0) = 0. Since �(x) = � x

1��x
,

it follows that x

0
p0(y)

2dy � � x
1��x

. By using the inequality (61), the
result of the lemma follows.

Lemma 5: Consider the transformation (u0(x); Z0) 7! �0(x)
defined by the expressions (19) and (20). It satisfies the following
bound:

k�0k2 � 2 ku0k2 + 4
(1 +D)2

(1� �D)2
Z

2
0 + ku0k2 2

: (62)

Proof: We start by observing from (19) that k�0k2 � 2ku0k2 +
2kp20k2. Using the estimate in Lemma 4 , we get kp20k2 � D �

(1��D)
,

which yields k�0k2 � 2 ku0k2 +D �
(1��D)

. From (59) it follows

that �4 � 4 Z2
0 +Dku0k2 2 � 4(1 + D)2 Z2

0 + ku0k2 2
. Com-

bining the last two inequalities, the lemma is proved.
Lemma 6: Denote�0 = 4(1+D) Z2

0 + ku0k2 . The following
holds:

Z
2
0 + kw0k2 � �0 +

1 +D

(1�D�)4
�2

0: (63)

Proof: Immediate, by substituting the inequality of Lemma 5 into
the inequality of Lemma 3 , and by applying the inequality 2DZ2

0 �
4(1 +D)2Z2

0 (which is extremely conservative but we use it for sim-
plicity of expression in the result of the main theorem).

Lemma 7: The following holds:

jU(t)j � 2
p
�+ 4� e

�t=2
: (64)

Proof: With w(D; t) � 0, from (36), we get that

u(D) = �  (D) + e
�D

Z �  (D) + e
�D

Z
2

(65)

where  (x) = e�x ? w(x), and hence, ju(D)j � j (D)j +
2j (D)j2 + e�DjZj + e�2DZ2. As we noted in the proof
of Lemma 2, j (D)j � supx2[0;D] j (x)j � kwk. Thus,
ju(D)j � kwk + 2kwk2 + e�DjZj + e�2DZ2, which implies
ju(D)j � p2 Z2 + kwk2+2 Z2 + kwk2 . From Lemma 1, we get
jU (t)j = ju(D; t)j � 2 Z2

0 + kw0k2e�t+4 Z2
0 + kw0k2 e�t=2.

With Lemma 6, we complete the proof.
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