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Technical Notes and Correspondence

Extremum Seeking With Stochastic Perturbations

Chris Manzie and Miroslav Krstic

Abstract—Extremum seeking (ES) using deterministic periodic pertur-
bations has been an effective method for non-model based real time opti-
mization when only limited plant knowledge is available. However, peri-
odicity can naturally lead to predictability which is undesirable in some
tracking applications and unrepresentative of biological optimization pro-
cesses such as bacterial chemotaxis. With this in mind, it is useful to in-
vestigate employing stochastic perturbations in the context of a typical ES
architecture, and to compare the approach with existing stochastic opti-
mization techniques. In this work, we show that convergence towards the
extremum of a static map can be guaranteed with a stochastic ES algorithm,
and quantify the behavior of a system with Gaussian-distributed perturba-
tions at the extremum in terms of the ES constants and map parameters.
We then examine the closed loop system when actuator dynamics are in-
cluded, as the separation of time scales between the perturbation signal
and plant dynamics recommended in periodic ES schemes cannot be guar-
anteed with stochastic perturbations. Consequently, we investigate how ac-
tuator dynamics influence the allowable range of ES parameters and ne-
cessitate changes in the closed loop structure. Finally simulation results are
presented to demonstrate convergence and to validate predicted behavior
about the extremum. For the sake of analogy with the classical methods of
stochastic approximation, stochastic ES in this technical note is pursued in
discrete time.

Index Terms—Extremum seeking (ES).

I. INTRODUCTION

A LTHOUGH sinusoid-based extremum seeking (ES) was popular
in the 1950s, the local stability results in [13] spawned renewed

interest within the theoretical control community and several applied
communities. The new developments included different classes of ES
schemes [1], extensions to discrete time [4] and semi-global stability
results [12]. As a consequence of these theoretical developments, nu-
merous applications from engine calibration [8] to plasma control in
Tokamaks [7] have been recently proposed.

Extremum seeking is a non-model based, real-time optimization
algorithm that uses zero-mean perturbations to develop a gradient
estimate. The gradient estimate is then used to shift the state variable
towards the extremum. A common thread in the published ES litera-
ture to date is a reliance on periodic perturbations. The predictability
associated with periodic perturbations can be disadvantageous for
some tracking applications (where a vehicle navigated by a periodic
extremum seeking algorithm can become a predictable target), while
certain biological systems (such as bacterial chemotaxis) do not utilize
periodicity in locating optima. Furthermore, if the system has high
dimensionality, the orthogonality requirements on the elements of the
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Fig. 1. First order ES system where � and � are the state of the system and
perturbation at time �, and ���� is a static map.

periodic perturbation vector pose an implementation challenge. Sto-
chastic perturbations may offer a potential solution to these problems.

The simplest sinusoidal ES architecture was proposed by Tan et al.
in [12]. This structure differs from the the earlier structures used in
[13] by the removal of the washout filter prior to the state update, and is
illustrated in discrete time form in Fig. 1. This first order scheme will be
used as the base architecture in the initial discussions in this technical
note, and allow the closed loop system in Fig. 1 to be expressed as the
vector difference equation

���� � �� � ������� � ���� (1)

Assumption 1.1: The elements of the stochastic perturbation vector,
�� , are sequentially and mutually independent such that ���� � �,
������� � ��� and ���������� � ��� �� �. Further, it is also assumed

that the p.d.f. of the perturbation vector is symmetric about its mean.
Of course, the concept of using stochastic perturbations in optimiza-

tion is not new and a rich and mature field of stochastic approximation
exists. Within this field there are some basic commonalities, fundamen-
tally the optimization is implicitly or explicitly derived from the clas-
sical gradient descent law whereby updates to the state variable, �� ,
of the form ���� � �� � 	��
������
��, are used to find the state,
��, minimizing the output �����. However since direct measurements
of the gradient are usually unavailable for applications involving real
systems, the optimization algorithms take the form of approximated
gradient descent, i.e. ���� � �� � 	��������, where ������� is the
gradient estimate determined by the specific algorithm.

Stochastic approximation methods for estimating the gradient are
often grouped into three basic classes—Finite Difference Stochastic
Approximation (FDSA) [3], [5]; Random Direction Stochastic Ap-
proximation (RDSA) [6] and Simultaneous Perturbation Stochastic
Approximation (SPSA) [9], [11].

In the FDSA algorithm, each element of the state vector is perturbed
one at a time, and each element of the gradient vector is estimated
according to ��������� � ����� � ����� � ���� � ������������ for
� � � 	 	 	 . While giving the best estimate of the gradient direction
at the current point, this algorithm requires � perturbations for every
state update in an  dimensional system, and consequently is not well
suited to fast implementation.

In the RDSA algorithm, all the elements of the state vector expe-
rience a perturbation at the same time but the effect on the output
is averaged across all the elements of the gradient vector, ������� �

������ � ��
��� ���� � ��
������� , where the elements of the
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perturbation vector �� � ����� � � � �����
� may have separate dis-

tributions. This approach guarantees a correct gradient traversal of the
static surface being optimized, and requires only two measurements
per update. Similarly, in the SPSA algorithm only two perturbations
and measurements are used per update, however in this case the mag-
nitude of the perturbation is used to normalize the gradient estimation
in the direction of the perturbation, i.e. ��������� � ����� � ������
���� � �������	������.

The random variables used in RDSA and SPSA must satisfy
certain conditions, although these are not identical in general and
typically more limiting for the SPSA algorithm—e.g. RDSA can
tolerate a perturbation ���� � 
 whereas SPSA clearly cannot. An
important point is that both the RDSA and SPSA algortihms contain
two perturbations in opposite directions, however a one-measure-
ment version of SPSA was investigated in [10] and shown to be
capable of locating the optimum of a static map, albeit typically
not as quickly or as smoothly as the two measurement version
of the algorithm. The one-measurement SPSA algorithm, with
���� � �� � ������� � �����������

��

��� � � � �������
�

repre-
sents the simplest form of stochastic approximation algorithm we
are aware of, and represents a more suitable implementation for a
dynamic system where the state may not remain constant between
two successive perturbations. It is not surprising then that one-mea-
surement SPSA shares some commonalities with the ES algorithm
of (1), although they are not equivalent except, just formally, in two
cases: 1) when �� is a scalar and �� � �������

� (which is not a
choice that would normally be made in the stochastic approximation
algorithms because �� should be deterministic and go to zero as �
goes to infinity); and 2) when �� is a vector and each element of 	�
is an unbiased Bernoulli-type variable from the set ���
���. On
the other hand, the appearance of the perturbation in the numerator
of (1) is reminiscent of the RDSA state update, however, we do not
consider classifying the stochastic ES as simply a one-measurement
RDSA algorithm due to the common presence of a washout filter in
the feedback loop when implementing ES. This modification has not
been used with a stochastic RDSA algorithm previously.

A further important point is the stochastic approximation algorithms
enforce �� � 
. Spall shows the bias in the gradient estimate is ������
in Lemma 1 of [11], thus bias in the gradient estimate can be totally
eliminated by �� � 
. While this may be acceptable for large dimen-
sional static problems, it is restrictive for online optimization when the
plant is subject to state disturbances, set point changes or drift in the
optimum. Thus the stochastic ES approach will utilize a constant step
size. A consequence of this is Proposition 1 of [11] cannot be used to
show convergence of �� to the extremum �� for the stochastic ES al-
gorithm.

II. CONVERGENCE OF THE FIRST ORDER STOCHASTIC ES ALGORITHM

The convergence of the first order stochastic ES algorithm illustrated
in Fig. 1 is addressed by finding the conditions for convergence of the
averaged system, then showing the difference between the averaged
and true systems are bounded almost surely in the limit � ��.

Assumption 2.1: The output mapping is quadratic (at least locally),
i.e.

����� � ��� � �������� � ��� � ���� (2)

where �� and ���� are unknown constants, and � �
������
 ��
 � � � 
 ��� � ����.

Without loss of generality, we further set �� � 
 as a simple change
of variable �� � �� �� �� can be used to achieve this. Since the algo-
rithm (1) contains an integrator, all uncertainty is thereby absorbed into

the initial condition, ��. Consequently, in the remainder of this tech-
nical note all measures relating to the state �� (e.g., mean and variance)
refer to the deviation of the state from the minimising value, �� � ��.
Note that the algorithm (as with all ES schemes) relies only on pertur-
bation and output measurements: knowledge of �� is not required for
implementation.

A. The Averaged System

The averaged system is obtained by taking the expectation of the
closed loop system (1) under Assumption 2.1

������ � ����� � 	��
�
���� � ����� �	��

�� 		�	
�
� ��� � � 	�	

�
� �	�  (3)

Since 	� and �� are independent, from Assumption 1.1 it follows
that �	��

�
����� � 
; �	�	

�
� �	�� � 
; and �	�	

�
� ���� �

�� ���� where �� � � 	 ������� � � ��
�
��. Thus (3) reduces to

������ � �� � 	���� ����.
Remark 1: Since � and ��� are all positive, the state of the aver-

aged system, ����, is exponentially convergent to the origin if � �

����������

�
� �.

Theorem 1: Given an initial condition ��, � � 
����������
�
� �

can be chosen sufficiently small that for all � � 
 there exists a constant
���� such that the difference between the solution of the true system
and the equilibrium of the averaged system obeys

��� ���
���

� �
��
 � �� � ���� ����� ����� 
 �� � � 
 (4)

Proof: The result follows from (2) and from Theorem 3, p44, in
Benveniste et al. [2].

III. PREDICTION OF BEHAVIOR AT STEADY

STATE FOR GAUSSIAN PERTURBATIONS

Since the step size, �, used in the ES algorithm is non-decreasing,
unlike in the SPSA approach, there will be variations about the ex-
tremum of the mapping as � ��. To investigate this behavior of the
system, we consider the special case where 	��� is a Gaussian sequence
satisfying Assumption 1.1. Gaussian perturbations are not intended to
represent an optimal perturbation sequence for all input-output maps,
but to allow quantitative results to be presented utilising the known
equalities �	������� � � 
, �		���� � ��	� and �	
���� � ���
� . A
similar analysis may be undertaken for other perturbations such as
Bernoulli ���
��� distributed sequences using �	������ � � and
�	������� � � 
.

A. Scalar Case

We begin with the state update (1), which for a scalar system is given
by

���� ��� � ��� (5)

where �� � 	��� � � 	�� � 	��	
�
� � ���	� � 	�����

� ���� � 	�����

Note that ���� is the value of �� if ���� � 
, and is defined only to
simplify some of the notational detail.

Assumption 3.1: ��	�� � ��
�� � ������.
Remark 2: This assumption is clearly restrictive, though it is not

unreasonable when ��, �� and � are small.
We now define ���
 �
 ����
 �� � ����� � � �����	 �

	������
���; ���
 �
�� � ������; ���
 �
 ����
 �� �

�������
 � !��������
	 � ��������

�; ���
 �
 ����
 �� �
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Fig. 2. Extremum seeking system with actuator, ����, and washout filter,
����. The relative degree of ���� is �.

Fig. 3. Scalar simulation: convergence of � to extremum at � � �� for two
different realizations of � .

�������� � ��������
�����������

���; and ���� �� ����� �� �
	���� � 
�	������ � 
������

���.

Assumption 3.2: The eigenvalues of the matrix

� � �

	 
� �
are inside the unit disc.

Theorem 2: Given Assumptions 2.1, 3.1 and 3.2 and Gaussian
perturbations satisfying Assumption 1.1, the variance in the state,
�
��� � ������� � �	�� � ���� as � � �.
Remark 3: For small �, we note that �� � ����, �	 � ����

and �� � ����. Hence it follows from Theorem 2 that �
��� �
��� � � as � � �.

Proof of theorem 2: By squaring (5) and taking the expectation it
follows that:


���	 � 
�� � ���
��
� � ����
�� � � �������
����

� ��������
�
� � � ��������
��� (6)

The first term on the right hand side of (6) is the variance for
���� � �, and is given by �
������
��
���

���
��� � �
�������

	������� �
��� � ������ �
��� � 
������. The remaining
terms in (6) are � ��������
����� � �����������

� � �� �
����;
���������

�
�� � ��������

� and � ��������
�� � �. Consequently,
it follows that the variance in 
� is given by:


���	 � �
� �� 
�� � � 
�� � �� (7)

Similarly, it can be shown �
���	� � ���� �
��� �
���� �
�����
 � 	���� � 
�	������ � 
�������

��� �
����� �
������������� � ��������

��� � ���������
� �

����� �
��� �����. Applying Assumption 3.1 to this expectation
leads to


���	 � 	����� 
��

� 
� � ����� 
�� ������ (8)

Equation (7) and the upper limit of (8) represent a (weakly) coupled
set of equations. Given Assumption 3.2, the �
��� sequence will ap-
proach the result of Theorem 2 as � ��.

Theorem 3: Given the system satisfies Assumptions 2.1, 3.1 and
3.2 and uses Gaussian perturbations satisfying Assumption 1.1, then
as � � �

�� � �������
��

�� � �	
� ��

������� � �� (9)

������ � �������� �	� ������

�� � �	
� ���

� �� ��

�� � �	
� ��

�

� ����� �� � � ��� (10)

B. Vector Case

The asymptotic value of the covariance matrix of 
� can be derived
for the non-scalar case. We begin by adjusting Assumptions 3.1 and 3.2
as follows:

Assumption 3.3: �
����� � �
����� and �
����� � �
����

�
����

��� �� �
Remark 4: Assumption 3.3 is more restrictive than the equivalent

assumption for the scalar case (Assumption 3.1). This will allow for
a concise formulation of the results when dealing with the non-scalar
state than would otherwise be the case.

We define ������ �� ����� �� � 
����
��

�
� �

����������
�
���

�������� � �����
�

��	�� ���
�����

�
� �

��������
�
� � ���

��
�
� �

�
� ��������

�

��	�� ���

��	

��	�� ���
�����

�
��

�
�;

������ �� ����� �� � �����
�
��
	����

��
�
����

����
�

��	�� ���
���

�
��

������������; ������� �� ����� �� � ����������
�
� �

����
��

�
� �

�
�������

��
�
� � ��������

�

��	�� ���
���; ��� � ��� and

��� � ����� ; and ��	 � � � �� �� � �
�	

���	 � � � ��� �� .
Assumption 3.4: The eigenvalues of the matrix � �� are inside the

unit disc.
Theorem 4: Given Assumptions 2.1, 3.3 and 3.4 and using

Gaussian perturbations satisfying Assumption 1.1 the covariance
matrix �
�


�
� �� ������	� � � � � �� � ����� as � � �.

Remark 5: Note that for the case � � 
 the covariance matrix limit
reduces to

����
���

������� � ���������

� � ���������
����� � 
	������ � ����������

����

�
�

�
���� (11)

as expected from (7) if Assumption 3.1 is replaced with Assumption
3.3.

Proof of theorem 4: From Assumption 1.1 the off diagonal terms
�� �� �� in the covariance matrix are �
����	
����	� � �
���
�����
� �
������������ �
����������. Given Assumption 2.1 for each
� and � it follows that �
���������� � ������ �
���
����. The
off-diagonal terms in the covariance matrix subsequently become
�
����	
����	� � �
���
�����
 � �����

�
� � �����

�
� �. For

� � �
����
�����
�
� �� (which follows from the small � con-

ditions of Assumptions 3.3–3.4) all off-diagonal terms are con-
vergent to zero as � � �. The diagonal terms in the covari-
ance matrix can now be addressed by substituting � � � into
�
�����	� � �
����� � �� �
���������� � �� �������

�
��. The final
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TABLE I
COMPARISON OF PREDICTED AND SIMULATION RESULTS FOR SCALAR SYSTEM

term on the right hand side of this equation can be expanded using
Assumption 2.1

�
�
����

�
� � �

�
��� ��� � ���

�
���� � ��� � ����

�

� �
�
���

�

���

�� �
�
��� � �

�
���

�

� ������

�

���

����������

�

� �
�
����

�
���

� ����������

�

���

�� �
�
��� � �

�
��� � (12)

Note the subscript “�” applies to every term on the right hand side of
(12) and so for brevity these subscripts will be omitted. Treating each
term in (12) individually leads to the following identities:

�
�
�

�

���

�� �
�
� � �

�
�

�

� ����

� ���

���� �
�
��

�
� � �

�
� �

�
�

��
�
� �

�
� � �

�
��

�
�

� �
�
� ����� � 	��� �

�
� � �

�
�
�
�

� �
�
�

�

�
�
� 
��� � �

�
� �

�
� � �

�
�

�

�

�
�
� ���� �

�
��

�
� � 	��� �

�
�

�	��� �
�
� � ���� �

�
� �

�
� (13)

����

�

���

������

�

� ����
��

�
� �

�
� � ����

�

�
�
��

�
� �

�
�

� �

� ���

���� ������ �
�
� �

�
� �

�
� (14)

���� ����

�

���

�� �
�
� � �

�
�

Fig. 4. Vector simulation: convergence of � to extremum at � � ������
of (solid) � and (dashed) � .

TABLE II
COMPARISON OF PREDICTED AND SIMULATION COVARIANCES

� ������
�
�

�

���

�� �
�
�

� ������
�
�

�

���
�
� � 	�������

�
� (15)

�
�
� �

�
��� � �

�
� �

�
���� (16)

Assumption 3.3 allows (13) and (14) to be simplified. The
subsequent equations, along with (15) and (16) can then be sub-
stituted into (12) to yield the coupled system ����    ��� �

�

�	�
�

� ����    ��� �
�

�
� ����    ��� �

�
. The result of Theorem 4 now

follows directly when Assumption 3.4 is satisfied.
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Fig. 5. Two stochastic iterations (left) without and (right) with washout filter for a scalar plant with slow dynamics.

Theorem 5: Given the system satisfies Assumptions 2.1, 3.3 and
3.4 and uses Gaussian perturbations satisfying Assumption 1.1, then
��� � ����� �

�

���
���

�
� as � � �� and � � �.

Remark 6: Theorems 2–5 allow some general design guidelines to
be proposed for the stochastic ES algorithm if some knowledge about
the mapping is available. First, the variances of the perturbation vector
should be chosen to maintain approximately equal ���

�
� products to

prevent one dimension dominating the output bias. The value of �
should then be chosen to provide the desired balance between the rate
of convergence and state covariance of the system.

IV. INCLUSION OF PLANT DYNAMICS AND WASHOUT FILTERS

The first order ES system discussed in Sections II and III is capable
of locating the extremum of a static map, but in many engineering ap-
plications the plant dynamics must be considered in the analysis of the
closed loop system. In the deterministic ES approaches of [13] the de-
sign procedure involves selecting the perturbation frequency to be of
a time scale slower than the plant dynamics—however if the only re-
quirement on the stochastic perturbations are Assumption 1.1 this time
scale separation cannot be guaranteed. The closed loop ES system is
modified by delaying the demodulating perturbation to allow conver-
gence to the extremum for some range of � in the presence of a general
actuator model, ����, of relative degree � and washout filter 	���.
The actuator dynamics require the introduction of an additional vari-
able, 
� , to represent the input to the static map, while �� represents
the state of the ES scheme as before. The complete closed loop struc-
ture is illustrated in Fig. 2.

For brevity, the analysis in this section will restrict discussion to
a stable, first-order linear actuator model, ���� � � ������� �
��� � �� (i.e. � � �) to illustrate how the inclusion of actuator dy-
namics in the system effects the allowable range of � for convergence
of the averaged system. Furthermore, while various possible washout
filter designs are possible, we restrict our discussion to a filter of the
form 	��� � � ��� ���� ��� � �� � ���� � ��.

The state equations for this system are ���� � �� � ������
���
� ,


��� � �
���������� and ����� � ��������� ��������. A new
state variable �� � ���� ����� ����� � ���� is proposed, leading
to the reformulated system equations ���� � �� � �������� � �� �
�����, ���� � ���� � �� � ���� � �� � ������ and 
��� �
�
� � ���� � ���.

Defining �� � 
� � ������ � ����� � �
��� leads to the dif-
ference equation ���� � �� � ���������� � ������

�������� �
���������� � �������� � ����	.

Now taking the expectation of this system and applying Assump-
tion 1.1 leads to ������ � � ���� � �� ������ and ������ �
����������

�� ������ �������. Incrementing the latter equation
and substituting the former yields the result ������ � ������ �
������� ���� � � �������� ����.

Remark 7: The averaged system containing actuator dynamics and
and a washout filter will be stable if the poles of the equation ��� ���
��� � �� � �������� lie inside the unit circle. From the root locus
� � ��������� � ���� � ��� it is clear that as � increases the max-
imum value of � for closed loop stability of the averaged system will
decrease monotonically. The pole of the washout filter does not affect
the stability of the averaged system and stability of the true system fol-
lows from Theorem 1.

Remark 8: The equilibrium point of the averaged system is
��� �� �		
 � ��� �� �����	.

V. SIMULATION RESULTS

A scalar state and output mapping �� � �������� are considered.
The initial value of the state is set to �� � ��, the ES update parameter
� � ���� and ���� �� perturbations are used. Fig. 3 illustrates con-
vergence to the extremum using two different realizations of the pertur-
bation sequence, �� . The sample variances were also found for single
runs using different ES parameter values and compared to theoretical
predicted values. The results are shown in Table I, and exhibit good
correlation between the theory and experiment, as well as showing As-
sumption 3.1 holds. A two dimensional input-output mapping given by
�� � 
����� � 
�� � ������ � 
�� � �� is then considered with the
state is initialized to �� � ����� ��	� . The ES parameters were set
to � � ���� and ���� � �

�
� 	
�

� ��� �	� . The convergence in the states
for one perturbation sequence is shown in Fig. 4. Table II shows good
agreement between the simulated and predicted results for a range of
ES parameters and maps.

Finally, slow actuator dynamics described by ���� � ���� �����
are included prior to the quadratic mapping ��
� � 
�. The ES param-
eters were set to �� � � and � � ����, and the initial condition of the
closed loop system was �� � ��. The behavior of the system for two
separate iterations of �� is shown in Fig. 5, with and without the inclu-
sion of a washout filter 	��� � �� � ����� ����. It is clear that the
inclusion of the washout filter slows down convergence but increases
the smoothness. This balance can be shifted by appropriately varying
� and �.

VI. FURTHER WORK

Future areas for investigation include continuous time results, inves-
tigating the behavior of the full system with a time varying extremum
and with different input-output mappings.
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Controllability of Spacecraft Attitude
Using Control Moment Gyroscopes

Sanjay P. Bhat and Pawan K. Tiwari

Abstract—This technical note describes an application of nonlinear con-
trollability theory to the problem of spacecraft attitude control using con-
trol moment gyroscopes (CMGs). Nonlinear controllability theory is used
to show that a spacecraft carrying one or more CMGs is controllable on
every angular momentum level set in spite of the presence of singular CMG
configurations, that is, given any two states having the same angular mo-
mentum, any one of them can be reached from the other using suitably
chosen motions of the CMG gimbals. This result is used to obtain sufficient
conditions on the momentum volume of the CMG array that guarantee the
existence of gimbal motions which steer the spacecraft to a desired spin
state or rest attitude.

Index Terms—Attitude control, controllability, control moment gyro-
scopes.

I. INTRODUCTION

M OMENTUM exchange devices such as reaction wheels and
control moment gyroscopes (CMGs) form an important class

of torque actuators for spacecraft attitude control. Unlike mass expul-
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Fig. 1. Schematic of a SGCMG.

sion devices which alter the total angular momentum of the spacecraft,
momentum exchange devices operate by changing the distribution of
the angular momentum inside the spacecraft. Momentum exchange de-
vices typically consist of spinning rotors which exchange momentum
with the rest of the spacecraft through mutual interaction torques that
either change the speed of rotation as in reaction wheels, or change the
orientation of the spin axis as in CMGs, or change both as in variable
speed CMGs.

CMGs are capable of producing significant torques and can handle
large quantities of momentum over long periods of time. Conse-
quently, CMGs are preferred in precision pointing applications and in
momentum management of large, long-duration spacecraft. See, for
instance, [1].

A CMG comprises of a rapidly spinning rotor mounted on one or two
gimbals, and is accordingly called a single gimbal CMG (SGCMG) or
a double gimbal CMG. Fig. 1 below shows a schematic of a SGCMG.
The rotor spins at a constant rate about the rotor axis which is fixed
to the gimbal. The gimbal itself can be rotated about the gimbal axis
which is fixed in the spacecraft frame. The angular momentum vector �
of the CMG rotor is a function of the gimbal angle �, but has a constant
magnitude that depends on the rotor speed and inertia. Any rotation
of the gimbal causes a change in the angular momentum vector of the
CMG, and gives rise to an equal and opposite change in the angular mo-
mentum of the spacecraft. The control torque acting on the spacecraft
is thus equal and opposite to the rate of change �� of the CMG angular
momentum, and depends on the constant magnitude of � as well as the
gimbal rotation rate ��. It is clear from the figure that the rotor angular
momentum has a constant magnitude, and is constrained to rotate on
a circle in a plane normal to the gimbal axis. Consequently, the rate
of change of angular momentum �� at any instant is orthogonal to the
angular momentum � and the gimbal axis. Hence, a SGCMG cannot
produce torques in all directions.

In order to obtain torques along three independent directions, as well
as for redundancy, CMGs are used in arrays consisting of multiple
CMGs. Unfortunately, every CMG array possesses singular configu-
rations [2]. For each singular configuration, there exists a singular di-
rection along which the CMG array is unable to produce torque. More
precisely, the mapping from gimbal angle rates to output torque be-
comes singular at singular configurations [3]. Fig. 2 shows a singular
configuration for a system of four CMGs arranged in a pyramid array.
The arrows ��, ��, �� and �� represent the angular momentum vectors
of the individual CMGs. Each of these vectors is constrained to rotate
in the plane of the pyramid face containing it. The dashed-dotted lines
are normal to the pyramid faces, and represent the gimbal axes of the
four CMGs. In the CMG configuration shown in Fig. 2, �� and �� are in
the �� plane, while �� and �� are parallel to the �-axis. The gimbal
rates ��� and ��� give rise to instantaneous angular momentum rates ���

and ��� along the � -axis. Similarly, the gimbal rates ��� and ��� give rise
to instantaneous angular momentum rates ��� and ��� in the � � plane.
Thus, in the configuration shown, no combination of gimbal rates can
produce a torque in the�-direction and hence, the configuration shown
is a singular configuration with its singular direction along the �-axis.

0018-9286/$25.00 © 2009 IEEE

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on March 31, 2009 at 20:43 from IEEE Xplore.  Restrictions apply.


