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Abstract In this paper, we present a novel nonlinear ana-
lytical coupled trajectory optimization of a 7-DOF Baxter
manipulator validated through experimental work utiliz-
ing global optimization tools. The robotic manipulators
used in network-based applications of industrial units and
even homes, for disabled patients, spend significant lumped
amount of energy and therefore, optimal trajectories need to
be generated to address efficiency issues. We here examine
both heuristic (Genetics) and gradient-based (GlobalSearch)
algorithms for a novel approach of “S-Shaped” trajectory
(unlike conventional polynomials), to avoid being trapped in
several possible local minima along with yielding minimal
computational cost, enforcing operational time and torque
saturation constraints. The global schemes are utilized in
minimizing the lumped amount of energy consumed in a
nominal path given in the collision-free joint space except
an impact between the robot’s end effector and a target
object for the nominal operation. Note that such robots are
typically operated for thousands of cycles resulting in a
considerable cost of operation. Due to the expected com-
putational cost of such global optimization algorithms, step
size analysis is carried out to minimize both the com-
putational cost (iteration) and possibly cost function by
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finding an optimal step size. Global design sensitivity anal-
ysis is also performed to examine the effects of changes of
optimization variables on the cost function defined.
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1 Introduction

Autonomous and nonautonomous operations of any elec-
tromechanical system, in particular robots, have received
considerable attention with respect to both the stability and,
more importantly, efficiency issues. Both the autonomous
and nonautonomous methods, which utilize online and
offline/blind optimization and control schemes, respec-
tively, have revealed some advantages and disadvantages.
We here focus on the nonautonomous energy-efficient oper-
ation of the Baxter manipulator which would subsequently
be used in nonlinear control schemes as desirable trajecto-
ries. The offline optimization/control of the robot will be
gradually examined with respect to the autonomous practice
to yield the most reliable and optimal configuration.

Note that the robots are widely utilized in industry due
to their reliable, fast, and precise motions [11] although
they are not energy efficient and hence consume a signif-
icant lumped amount of energy. The energy consumption
and subsequently cost of operation considerably increase
when thousands of the robots work together, for example in
a factory, to carry out a network-based task for thousands
of cycles. Based on the recent statistics published, manufac-
turing industries are among the largest consumers of energy
in which the robots they employ take the biggest share of
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consumption [29]. It is worthy to mention that the robots
used in auto industry consume more than half of the total
energy required to produce a vehicle body.

The importance of the optimal operation can be visual-
ized through a network of robots operating simultaneously
to carry out a specific task defined; we have reported another
effort of the interconnected operational optimization in [36]
for the so-called “Smart Valves Network” [33–35]. The
robot manipulator, which is being analyzed in this research
work, is operated for thousands of cycles in industries and
even homes as a reliable servant for disabled patients. A
considerable lumped amount of energy is expectedly con-
sumed in a nominal trajectory given, as a part of the
network-based operation, and it hence needs to be min-
imized resulting in a significant reduction of operational
cost.

Therefore, the issue of energy consumed by robots has
become a major challenge for researchers and robot manu-
facturers [1–3, 6, 9, 10, 16, 19–25, 27, 28, 31, 37, 39, 41–43,
48–50, 52, 53, 55, 57]. The total mechanical energy con-
sumed by the robot is expectedly affected by the required
torque of each joint in addition to the joints’ angular veloc-
ities. The high level of energy consumption is typically
caused by jerky motions of robots. Many researchers have
mainly focused on the optimal design of robots [5, 14, 26],
path planning [17, 18, 30], and minimizing joints’ torques
[15, 54]. The geometrical constraints [32], dynamic char-
acteristics, energy consumed, and execution time [40] are
important issues which have been thoroughly addressed by
researchers to carry out optimization. Many efforts have
been reported in presenting optimal control schemes to
optimize operation time and energy consumption [45, 46,
51]. Nevertheless, the most approaches have focused on
minimizing the execution time, which may not necessar-
ily yield a minimal amount of energy consumption [7, 8,
12, 38]. From another aspect, the robot redundancy yields
motion dexterity which in turn would avoid harmful sin-
gularities and potentially workspace obstacles. We have
previously reported [5] the effects of redundancy on the
design optimization process.

Note that the operational optimization scheme, which
is being formulated here, needs three phases to be carried
out. First, we have a collision-free nominal trajectory which
will be discussed in detail except a collision between the
robot’s end effector and a target object due to the jerky
motion of the nominal operation. Based on the assump-
tion of collision-free motion, adding more points between
the initial and end points makes no sense and expectedly
only imposes significant computational cost by implement-
ing conventional polynomials of Spline and Beźier which
contain considerable additional constraints; this would lead
to tedious and gradually infeasible computational burden for
such a 7-DOF robot. Therefore, the contribution of this work

is to propose novel “S-Shaped” trajectories to overcome
the difficulties mentioned earlier. Then, the cost function
is formulated as the lumped amount of mechanical energy
consumption enforcing operational time and torque satu-
ration constraints. Finally, we utilize global optimization
schemes, the heuristic and gradient-based ones, in improv-
ing the dynamic characteristics of a given nominal trajectory
along with minimizing the energy consumption.

After deriving fourteenth-order dynamic equations using
the Lagrangian method, the results of experimental work
are presented to examine the accuracy of the modeling pro-
cess. We then utilize both the Genetic and GlobalSearch
(gradient-based method) algorithms to avoid being trapped
in several possible local minima with respect to the bounds
of optimization variables, which are determined based on
the operational time and torque saturation constraints. Opti-
mization of such interconnected nonlinear coupled equa-
tions needs step size analysis to improve an expected cum-
bersome computational cost (iteration). An optimal step
size is numerically calculated to avoid a significant com-
putational cost/time. The effects of changes of optimization
variables on the cost function defined are also studied using
global design sensitivity analysis. The gradient of cost func-
tion is calculated with respect to the optimization variables
to reveal the share of each variable in minimizing the
lumped energy consumption.

2 Mathematical modeling

The redundant manipulator, which is being studied here,
has 7-DOF as shown in Fig. 1. The mass, Coriolis, and

Fig. 1 The 7-DOF Baxter’s arm
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Table 1 Baxter’s Denavit-Hartenberg parameters

Link ai di αi θi

1 0.069 0.27035 −π/2 θ1

2 0 0 π/2 θ2 + π/2

3 0.069 0.36435 −π/2 θ3

4 0 0 π/2 θ4

5 0.010 0.37429 −π /2 θ5

6 0 0 π /2 θ6

7 0 0.3945 0 θ7

gravitational (stiffness) matrices are symbolically derived
using the Euler-Lagrange equation. The robot’s Denavit-
Hartenberg and dynamic parameters are shown in Tables 1
and 2, respectively, provided by the manufacturer. In gen-
eral, the Euler-Lagrange equation expectedly leads to a set
of n second-order ordinary differential equations:

d

dt

∂L

∂q̇i

− ∂L

∂qi

= τi i = 1, · · · , n (1)

where L denotes the Lagrangian and is obtained based on
kinetic and potential energies (L = K − P ). The kinetic
energy of an n-link manipulator, which has n degrees of
freedom, is a quadratic term of q̇ (the vector of joints’
angular velocities) as follows:

K = 1

2
q̇T

n∑

i=1

[miJvi
(q)T Jvi

(q)

+Jωi
(q)T Ri(q)IiRi(q)T Jωi

(q)]q̇

= 1

2
q̇T D(q)q̇ = 1

2

n∑

i,j

dij (q)q̇i q̇j (2)

where Jvi
and Jωi

are 3 × n matrices making the Jacobian
of mass center of i-th link and n×n “inertia matrix” (D(q))
is symmetric/positive definite for each q ∈ �n.

Note that the Baxter’s arm has a set of springs (Fig. 1)
acting as a damper to absorb harmful vibration of the jerky
motions as discussed earlier. The potential energy is hence

Table 2 The Baxter’s dynamic parameters

Link m(kg) Ixx Iyy Izz

1 5.7005 0.047091 0.037669 0.035959

2 3.2269 0.011752 0.027885 0.020787

3 4.3127 0.026617 0.028443 0.012480

4 0.007116 2.07206 0.013182 0.009268

5 2.2466 0.016677 0.016754 0.003746

6 1.6097 0.003876 0.007005 0.005527

7 0.6747 0.005142 0.005455 0.006109

obtained as the sum of both the gravitational and elastic
(spring) terms as follows:

P =
n∑

i=1

Pi + 1

2
keqx2

=
n∑

i=1

gT rci
mi + 1

2
keqx2 (3)

where Pi is the potential energy of the i-th link, g is
the gravitational acceleration, rci

indicates the coordinate
of mass center of link i, keq stands for the stiffness of
preloaded springs in joint S1, and x is the spring displace-
ment which is calculated as follows:

x =
√

a2 + b2 − 2abcos(θ) (4)

where θ = π
2 + ψ (ψ = −q2) as shown in Figs. 1

and 2. Using the energy terms presented in Eqs. 2 and 3,
the general form of the Euler-Lagrange equation becomes
as follows:

D(q)q̈ + C(q, q̇)q̇ + φ(q) = τ (5)

q4

q6

q2

q1

q5

q3

q7

Fig. 2 The joints’ configuration. a Sagittal view. b Top view
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where q̇ and q̈ indicate the vectors of angular velocity
and acceleration of the joints, respectively, τ is the driv-
ing torque vector, and φ(q) is the gravitational matrix as
follows:

φk = ∂P

∂qk

(6)

Utilizing the “Christoffel symbols” [47] would help us
derive the elements of the Coriolis matrix (C(q, q̇)) as
follows:

cijk = 1

2

{
∂dkj

∂qi

+ ∂dki

∂qj

− ∂dij

∂qk

}
(7)

where the k, j -th element of C(q, q̇) is calculated as
follows:

ckj =
n∑

i=1

cijk(q)q̇i

=
n∑

i=1

1

2

{
∂dkj

∂qi

+ ∂dki

∂qj

− ∂dij

∂qk

}
q̇i (8)

We implemented the symbolic formulations in MAT-
LAB and obtained the coupled fourteenth-order nonlinear
dynamic equations to be used in the optimization process.

3 Experimental validation

The experimental validation of such a coupled nonlinear
mathematical model is a necessity to be carried out in order
to examine the accuracy of the formulation and then possi-
bly refine the model. We hence recorded the joints’ torques
to be compared with the ones computed through the inter-
connected equations. The results are shown in Fig. 3a–d
for four different joints which, in particular, need signif-
icant higher and lower amounts of torques, respectively,
to be operated. Note that non-zero torques at the initial
point, t = 0, stand for holding torques against grav-
ity while the links are stationary leading to zero angular
velocities/accelerations at the initial point.

Shown in Fig. 3a–d are the experimental and analyti-
cally computed nominal torques used in driving the joints
S0, E0, W0, and W1, respectively, which reveal an accept-
able consistency giving us the confidence to utilize the
model developed in the optimization process. Note that the

Fig. 3 Comparison between
the experimentally measured
and nominal analytical torques
used in driving the joints a S0
and b E0, c W0 and d W1; the
non-zero torques at the initial
point (t = 0) stand for holding
torques against gravity
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negligible differences potentially root on the unmodeled
friction and backlash of the joints.

4 Trajectory optimization

The Baxter uses a simple PD controller and therefore, the
lack of I controller has caused the jerky motions, steady state
tracking errors, and subsequently inefficient operation of the
robot. The undesirable responses can be observed through
experimental work which we have carried out for a nominal
trajectory in our Dynamic Systems and Control Labora-
tory (Fig. 3a–d). It can be observed that the robot collides
with the target object. This is counted as a harmful dynam-
ical behavior for both the industrial and home applications.
Note that the Baxter, which is being analyzed here, has been
designed for research purposes and hence has no predefined
nominal trajectory. The robot operates using the PD con-
troller with respect to the initial and end points given in the
joints space, which in turn generates energy-inefficient tra-
jectories. The coupled trajectory optimization of the robot,
as a part of the nonautonomous approach, is a necessity to be
carried out in order to considerably reduce the mechanical
energy consumption along with removing the jerky motions
to avoid such a harmful collision discussed earlier.

Note that the optimization needs to be formulated enforc-
ing the operational time and torque saturation constraints
to avoid the expected singularities. The feasible joints’
ranges along with the initial and end points are listed in
Table 3. One of the physical constraints, which needs to
be implemented in the optimization formulation, is zero
angular velocity/acceleration at the initial and zero angular
velocity at the end points, indicating that the manipulator
would remain stationary at those points: 1 This con-
straint leads us to the well-known “S-Shaped” trajectories
which would yield the robot’s smooth dynamical behavior
by mitigating the effects of jerky motions. Such a smooth
trajectory obviously satisfies the initial/end points’ zero
angular velocity condition; 2 The conventional polynomi-
als, including Spline/Bézier ones, would yield considerably

Table 3 The ranges of joints’ angles (degree)

Joint’s name Range Initial point End point

S0 −97.5 to 90 −97.2070 29.5312

S1 −80 to 60 −71.1694 −21.5338

E0 −170 to 170 −10.3052 0.1099

E1 0 to 150 46.9775 50.2954

W0 −170 to 170 −29.2676 35.7935

W1 −90 to 115 19.1382 59.5459

W2 −170 to 170 −67.7417 −156.9287

more variables to be optimized with respect to the joint-
space optimization, which in turn would expectedly impose
cumbersome computational costs. 3 Note that adding
points between the initial and end points only imposes
additional constraints with cumbersome computational cost
which would be meaningless with respect to the collision-
free motion; except the collision between the robot’s end
effector and the target object for the nominal operation
due to the jerky motion. Note that we have previously
examined these trajectories (S-Shaped ones) for another
interconnected electromechanical system [34] enforcing the
geometrical and stability constraints [35]. We fit the follow-
ing nonlinear functions (nominal trajectories) to the joints’
real trajectories (shown in Figs. 5 and 6) which are gener-
ated with respect to the initial/end points given in Table 3
using the Baxter’s PD controller:

θi(t) = Ai tanh(Bit
Ci ) + Di i = 1, ..., 7 (9)

where A’s, B’s, C’s, and D’s are calculated utilizing the
least square method for the trajectory fitting process as
listed in Table 4. Note that the A’s and D’s are con-
stant/unique parameters for each joint and are easily cal-
culated as “End Points-Initial Points” and “Initial Points”,
respectively. The B’s and C’s are the optimization variables
which are subject to the following lower and upper bounds
determined through the following constraints:

γ1 = [B1S0, B2S1, B3E0 , B4E1 , B5W0 , B6W1 , B7W2] (10)

γ1min = [88, 89, 88.5, 89, 86.5, 89.3, 89] × 10−4 (11)

γ1max = [245, 261, 252, 248, 253, 260, 251] × 10−4 (12)

γ2 = [C1S0, C2S1 , C3E0, C4E1 , C5W0 , C6W1 , C7W2] (13)

γ2min = [2.35, 2.19, 2.36, 2.27, 2.18, 2.35, 2.29] (14)

γ2max = [4.09, 4.2, 4.10, 4.20, 4.20, 4.30, 4.11] (15)

The lower bound roots on the operational time indi-
cating that the robot’s motion will be within 12 s. Note
that decreasing the lower bound would yield much slower
motion which is not desirable and logical, in particular for
the industrial applications. The upper bound is determined

Table 4 The nominal trajectories’ coefficients

Joint’s name A B C D

S0 126.7382 0.0172 2.6530 −97.2070

S1 49.6356 0.0169 2.6480 −71.1694

E0 10.4151 0.0171 2.6476 −10.3052

E1 3.3179 0.0173 2.6390 46.9775

W0 65.0611 0.0168 2.6503 −29.2676

W1 40.4077 0.0170 2.6410 19.1382

W2 −89.187 0.0171 2.6515 −67.7417
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based on the Practical Torque Saturation issue such that
increasing the upper bound would yield abrupt torques
leading to both the motors’ failures and considerably fast
motion. The optimization problem is a constrained one,
enforcing the mentioned lower and upper bounds, with the
following cost function defined as the lumped amount of
mechanical energy consumed in the robot for a predefined
operational time:

minEtot =
7∑

i=1

tf∫

0

∣∣τi θ̇i

∣∣ dt (16)

Subject to :
The Interconnected Equations &

γ1min ≤ γ1 ≤ γ1max

γ2min ≤ γ2 ≤ γ2max

We hence need to optimize fourteen interconnected vari-
ables using global optimization schemes. Note that the
variables are not of the same order, which resulted in serious
numerical errors in our initial studies. We fixed this prob-
lem by conditioning them using a normalization scheme as
follows:

γ1n = γ1 × 104 (17)

γ2n = γ2 × 102 (18)

We utilize two global optimization schemes, including
genetic (GA) and GlobalSearch (GS) algorithms, to avoid
being trapped in several possible local minima. The genetic
method has been developed based on a heuristic search
to mimic the process of natural selection [4, 13, 44, 56].
The genetic algorithm [34] is typically more robust than
other conventional schemes. It does not break down easily
in the presence of slight changes of inputs, and noise. For
large-scale state-space equations, the algorithm may poten-
tially exhibit significantly better performance than typical
optimization techniques.

Table 5 Optimal trajectories’ coefficients

Joint’s name GA GS

B C B C

S0 0.009 2.4 0.009 2.4

S1 0.025 4.0959 0.025 4.0999

E0 0.009 3.5250 0.009 3.5228

E1 0.0202 2.9073 0.0091 3.3691

W0 0.025 4.1 0.025 4.1

W1 0.0102 2.9273 0.009 3.0361

W2 0.0115 2.4 0.009 2.4001

The GlobalSearch method searches more through the
possible trajectories, and computes the gradient of the cost
function along with width step for finding new points. We
have previously employed the GlobalSearch algorithm in
Matlab [34] which uses gradient-based method to return
local and global minima. The algorithm preliminary starts
with a local solver (here fmincon) from multiple starting
points and stores local and global solutions found during
the search process. The fmincon solver estimates gradi-
ents utilizing parallel finite differences. Note that the global
search solver uses a scatter-search pattern to generate mul-
tiple starting points which can be observed in figures shown
in results section for presenting the gradient-based method.
The function (TolFun) and constraints (TolCon) tolerances
used in the GS scheme are 10−6.

Note that for the GA method we have utilized (1) “Pop-
ulationSizn of 200 for the size of population, (2) “Gener-
ations” of 140 which indicates the maximum number of
iterations before the algorithm halts, (3) “MigrationFrac-
tion” of 0.2 specifying the fraction of individuals in each
subpopulation that migrates to a different subpopulation,
(4) “MigrationIntervan of 20 standing for the number of
generations that take place between migrations of individu-
als between subpopulations, and (5) Function (TolFun) and
constraints (TolCon) tolerances of 10−6.

Fig. 4 The optimized values
of B5 using a GA and b GS
algorithms
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Fig. 5 The nominal and optimal
trajectories using the GA and
GS algorithms. a S0. b S1. c E0

Fig. 6 The nominal and optimal
trajectories using the GA and
GS algorithms. a E1. b W0.
c W1. d W2
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Fig. 7 The global sensitivity
analysis with respect to the B’s
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Fig. 8 The global sensitivity
analysis with respect to the C’s
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Fig. 9 The energy optimized
using a GA and b GS algorithms

Note that the scatter-search pattern of the GS algo-
rithm needs random initial guesses to be employed via the
following formulations:

γ1rn = γ1min + (γ1max − γ1min) × rand(0, 1) (19)

γ2rn = γ2min + (γ2max − γ2min) × rand(0, 1) (20)

where rand (0,1) is a random number between zero and one.
We implemented the algorithms in MATLAB and captured
many interesting results.

5 Results

Figure 4 shows the optimization effort for B5 using both
the GA and GS algorithms, respectively. Note that we

intentionally present the variable of joint W0 which expect-
edly requires a low amount of torque to be operated
(Fig. 3c). The optimal values of the variables (B’s and C’s)
are listed in Table 5.

As discussed earlier, the GS scheme reveals the scatter-
search pattern although converges to both the optimal values
of variables and cost function satisfying the tolerances
defined in Section 4; we validate the crucial issue of con-
vergence by presenting the convergence histories. Figure 4
presents considerable computational costs (iterations) of
20400 and 87560 for both the GA and GS schemes, respec-
tively, which look logical with respect to the scale of the
coupled dynamic equations. Note that we have spent the
significant computational times of 11855 and 58020 s for
the GA and GS algorithms, respectively, which undoubtedly
need to be minimized using the so-called step size analysis.

Fig. 10 The experimental
nominal and optimal trajectories
using both the GA and GS
algorithms (check our DSCL
website) in sample times of
a t = 2s, b t = 5s, c t = 6s,
and d t = 7s; at t = 7s the
robot’s end effector through
the nominal trajectory collides
with the target object while
the optimal one avoids such a
collision throughout the whole
operational time. The shadow
frames present the nominal
trajectory
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It is straightforward to observe that, based on the nominal
and optimal variables listed in Tables 4 and 5, the optimal
values of B1, B3, B6, and B7 are lower than the nominal
ones. Note that the optimal values of C1 and C7, and C3 and
C6 are smaller and higher than the nominal values, respec-
tively. Shown in Figs. 5a, c and 6c, d reveal the effects of
such optimal values of the Bi and Ci (i = 1, 3, 6, 7) on
the trajectories of joints S0, E0, W1, and W2, respectively.
The optimal angular velocities of joints S0, W1, and W2 are
lower than those of the nominal ones, as expected, leading to
slower motions of the joints. Note that the joint S0 takes the
biggest share (Fig. 3a) among the other ones to consume the
lumped amount of energy and therefore, its lower angular
velocity would lead to a lower amount of the cost function
defined.

Note that the optimal values of B2, B4, and B5 are higher
than those of the nominal ones, except B4 of the GS method,
and their corresponding C’s have also higher values than the
nominal C’s. The effects of such higher values of the Bi and
Ci (i= 2, 4, 5) can be visualized in Figs. 5b and 6a, b by pre-
senting faster angular velocities of the optimal trajectories
than the nominal ones. Note that we can easily conclude that
the joint E1, for both the nominal and optimal cases with

respect to its small range of operation (θE1 ≤ 3.5◦), consid-
erably spends a lower amount of energy in comparison with
the other joints, particularly than that of the joint S0 which
we have previously addressed. Logically, the smooth opti-
mized motions shown in Figs. 5a and 6d, despite the robot’s
nominal jerky trajectories, would expectedly demand lower
driving torques to be used in the robot operation.

The negligible differences between the GA and GS
schemes (Figs. 5a and 6d) are expected to be observed as
they utilize different algorithms discussed in Section 4.

An interesting trade-off can be observed among the opti-
mal values of B’s and C’s with respect to their subsequent
effects on the optimal trajectories, which expectedly lead to
both the lower angular velocities of the joints and energy
consumption. A crucial issue of sensitivity of the optimiza-
tion process to the variables of B’s and C’s hence needs to
be carefully addressed. We discussed that even getting the
higher values of C’s, for the joints E0 and W1, yields almost
the same nominal and optimal motions of the joints. There-
fore, the roles of B’s seem to be more drastic than the C’s.
A global sensitivity analysis has to be carried out in order
to examine the roles of B’s and C’s on the optimization
process.

Fig. 11 The numerical
step size (SS) analysis for
the gradient-based algorithm
(Global Search). a SS = 10−8

(default value). b SS = 10−7.
c SS = 10−6. d SS = 10−5
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Typically, the local and global sensitivity analyses are
used in determining the effects of changes of the opti-
mization variables on the cost function defined. The local
sensitivity analysis (one-at-a-time (OAT) method) evaluates
the effect of one variable on the cost function at a time while
keeping the other variables constant. Although the global
sensitivity analysis utilizes set of random samples to search
the design space with respect to the bounds defined. The
global analysis would be an efficient approach as the change
of each variable affects the dynamic characteristics of all the
joints/links, through the interconnected dynamic equations,
and subsequently the lumped cost function.

To carry out the global sensitivity analysis, we need to
numerically calculate the gradient of the cost function with
respect to the optimization variables as follows:

∇E =
[

∂E

∂Bi

,
∂E

∂Ci

]T

i = 1, · · · , 7

Shown in Figs. 7a and 8g are the results of such a sen-
sitivity analysis. It is straightforward to conclude that the
changes of B’s significantly affect the cost function in com-
parison with the C’s variations such that the gradient of the
lumped energy consumption is too sensitive to the B’s. It
is also of a great interest to observe that the changes of B1

and B2, as expected, have drastic roles on the variations of
the cost function and subsequently the optimization process
(Fig. 7a, b). The physical interpretation of such dominant
variables of B1 and B2 can be explained through the dynam-
ics of the robot while, as discussed earlier, the joints S0
and S1 take the biggest shares of the torques needed to be
applied. Therefore, we expect to observe the high sensitivity
of the cost function to both the B1 and B2.

Shown in Fig. 9a, b are the energy consumptions mini-
mized using both the GA and GS algorithms, respectively.
Note that we have employed the heuristic and gradient-
based methods to examine the locality/globality of the cost
function minima. Figure 9a, b reveals a negligible difference
(less than 0.05%) for the energy savings of both the schemes
as follows:

ΔEGS =

29.771(J)︷ ︸︸ ︷
Enominal −

23.7268(J)︷ ︸︸ ︷
Eoptimal

Enominal

× 100 = 20.03% (21)

ΔEGA =

29.771(J)︷ ︸︸ ︷
Enominal −

23.7338(J)︷ ︸︸ ︷
Eoptimal

Enominal

× 100 = 20.027% (22)

The negligible higher amount of energy saving of the GS
method can be justified through its corresponding optimal

Fig. 12 The numerical step size
(SS) analysis for the
gradient-based algorithm
(Global Search). a SS = 10−4.
b SS = 10−3. c SS = 10−2
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Fig. 13 The experimental nominal and optimal instantaneous lumped
amount of energy consumed in the joints

values of B’s. We have previously discussed the significant
roles of B’s on the variation of the cost function via the
global sensitivity analysis.

We have carried out experimental validation of the non-
linear analytical approach examining both the nominal and
optimal trajectories. Figure 10a, d presents the experimen-
tal work, for sample operation times of 2s, 5s, 6s, and 7s,
revealing smoother and slower motions of the joints/links
for the optimal path than the nominal one. The jerky motion
of the nominal trajectory caused an undesirable collision
between the robot’s end effector and the target object which
needs to be smoothly picked up. It is interesting to observe
that at t = 7s the robot’s end effector through the nominal
trajectory collides with the target object while the optimal
one avoids such a collision throughout the whole opera-
tional time. Note that the shadow motions/frames stand for
the nominal operation. The AVI files of the experiment are

accessible via our Dynamic Systems and Control Labo-
ratory (DSCL) website. Note that the difference between
the energy savings of both the theoretical and experimental
approaches is almost zero (Figs. 11 and 12):

ΔEsaving =

23.7268(J)︷ ︸︸ ︷
Etheory −

23.7224(J)︷ ︸︸ ︷
Eexperiment

Etheory

× 100 ≈ 0% (23)

Figure 13 presents the experimental nominal and optimal
instantaneous lumped amount of energy consumed in the
joints validating the optimization efforts shown in Fig. 9.

Shown in Figs. 4 and 9 reveal cumbersome computa-
tional costs (iterations), in particular for the GS method.
The step size (SS) analysis is a necessity to be implemented
in determining an optimal step size to reduce the computa-
tional cost/time and possibly the lumped amount of energy
consumed.

Figures 11a and 12c present convergence histories of the
GS method vs. different step sizes of SS = 10−8 (default
value) to SS = 10−2. Shown in Fig. 14a reveals the decre-
mental computational cost using the incremental values of
the step size. Note that the minimal computational cost is
obtained at SS = 10−2 which yields upward of 80% reduc-
tion of the iteration. It is interesting to observe that the
iteration increases for SS = 10−5. From another aspect, the
effect of the step size has to be evaluated for the cost func-
tion defined. Figure 14b presents a negligible decrease for
the lumped amount of energy saved (less than 8.5 × 10−4

%) using the step size of SS = 10−2, which yielded the min-
imal computational cost. Therefore, it is straightforward to
conclude that the step size of SS = 10−2 is an optimal value
to reduce both the computational cost and time.

Note that the step size analysis shown in Figs. 11a–12c
indicates the convergence of the GS scheme despite its
scatter-search pattern which we have previously addressed
in Section 4. Figure 15 also shows the convergence of the
GA method (the best fitness value).

Fig. 14 The numerical step size
(SS) analysis. a Iteration vs. SS.
b Minimized energy vs. SS
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Fig. 15 The convergence history of the GA algorithm

6 Conclusion

In this effort, we presented the interconnected trajectory
optimization of a 7-DOF Baxter manipulator using both
the heuristic and gradient-based methods to avoid being
trapped in several possible local minima. The coupled
dynamic equations of the robot were derived utilizing the
Lagrangian method and then validated through the experi-
mental work. We then optimized the joints’ trajectories to
generate smooth/efficient paths to avoid being exposed to
the jerkymotions of the nominal ones. The design sensitivity
analysis was carried out to evaluate the effects of changes
of the optimization variables on the cost function defined. As
expected, the joints S0(B1) and S1(B2) play more significant
roles on the optimization process than the other ones.

We have also carried out the experimental work, for both
the nominal and optimal trajectories, to examine the accu-
racy of the analytical efforts. The step size analysis was
performed to determine an optimal step size in order to
reduce both the computational cost and time. We obtained
the optimal step size of SS = 10−2 which considerably
reduced the computational cost (80%).

The principal results of this research work can be sum-
marized as follows:

• A considerable amount of energy was saved (upward of
20%).

• The jerky motion and subsequently collision between
the robot’s end effector and the target object were
removed using the optimized trajectory of the robot.

• An optimal step size resulted in the significant reduc-
tions of both the computational cost (upward of 80%)
and time, in particular for the GS method.

• The experimental work validated the analytical
approach by presenting almost no difference between
the energy savings.

We are currently focusing our efforts on developing an
adaptive controller (to be validated experimentally) to carry

an unknown mass to a desired position using the optimal
trajectory which we have developed here.
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