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Multivariable Extremum Seeking
for Joint-Space Trajectory
Optimization of a High-Degrees-
of-Freedom Robot
In this paper, a novel analytical coupled trajectory optimization of a seven degrees-of-
freedom (7DOF) Baxter manipulator utilizing extremum seeking (ES) approach is pre-
sented. The robotic manipulators are used in network-based industrial units, and even
homes, by expending a significant lumped amount of energy, and therefore, optimal trajec-
tories need to be generated to address efficiency issues. These robots are typically operated
for thousands of cycles resulting in a considerable cost of operation. First, coupled
dynamic equations are derived using the Lagrangian method and experimentally validated
to examine the accuracy of the model. Then, global design sensitivity analysis is performed
to investigate the effects of changes of optimization variables on the cost function leading
to select the most effective ones. We examine a discrete-time multivariable gradient-based
ES scheme enforcing operational time and torque saturation constraints in order to mini-
mize the lumped amount of energy consumed in a path given; therefore, time-energy opti-
mization would not be the immediate focus of this research effort. The results are
compared with those of a global heuristic genetic algorithm (GA) to discuss the locality/
globality of optimal solutions. Finally, the optimal trajectory is experimentally implemented
to be thoroughly compared with the inefficient one. The results reveal that the proposed
scheme yields the minimum energy consumption in addition to overcoming the robot’s jerky
motion observed in an inefficient path. [DOI: 10.1115/1.4040752]

1 Introduction

Autonomous and nonautonomous operations of any electrome-
chanical systems, in particular robots, have received considerable
attention with respect to both the stability and, more importantly,
the efficiency issues. Both the autonomous and the nonautono-
mous methods, which utilize online and offline/blind optimization
and control schemes, respectively, have revealed some advantages
and disadvantages. We focus here on the non-autonomous
energy-efficient operation of the Baxter manipulator which would
subsequently be used in nonlinear control schemes. The offline
optimization/control of the robot will be gradually examined with
respect to the autonomous practice to yield the most reliable and
optimal configuration.

Robots are widely utilized in industry due to their reliable, fast,
and precise motions although they are not energy-efficient, and
hence, consume a significant lumped amount of energy. The
energy consumption and subsequently cost of operation consider-
ably increase when thousands of robots are working together, for
example, in a factory, to carry out a network-based task for thou-
sands of cycles. Based on the recent statistics published, industries
are among the largest consumers of energy in which the robots
take the biggest share of consumption [1]. It is worth mentioning
that the robots used in auto industry consume more than half of
the total energy required to produce a vehicle body.

The importance of the optimal operation can be visualized through
a network of robots operating simultaneously to carry out a specific
task defined. The robot manipulator, which is being analyzed in this
research work, is operated for thousands of cycles in industries and
even at homes as a reliable servant. A considerable lumped amount
of energy is expectedly consumed in a trajectory given, as a part of
the network-based operation, and it hence needs to be minimized
resulting in a significant reduction of operational cost. Therefore, the

issue of energy consumed by robots has become a major challenge
for researchers and robot manufacturers.

The total mechanical energy consumed by the robot is expect-
edly affected by the required torque of each joint in addition to
the joints’ angular velocities. The high level of energy consump-
tion is typically caused by jerky motions of robots. Many research
efforts addressed design optimization [2,3], path planning [4–12],
and minimizing joints’ torques [13–16].

Garg and Kumar [16] developed an optimum path requiring the
minimum amount of torque which expectedly leads to a minimal
amount of energy consumption. They utilized genetic and simu-
lated annealing algorithms by comparing their performance. Other
efforts reported in Refs. [17–19] investigated smooth and time-
optimal trajectories. Some researchers have focused on path smooth-
ness and/or minimizing the execution time, which may not necessar-
ily yield a minimal amount of energy consumption [20–22].

Extremum seeking (ES) is a model-free optimization approach
[23–25] for systems with unknown dynamics and with a measura-
ble output which has been applied to a wide range of technical
applications [26–30]. The first proof of stability for an extremum
seeking feedback scheme was provided by Krstić and Wang [24].
They utilized the tools of averaging and singular perturbations in
revealing that solutions of the closed-loop system converge to a small
neighborhood of the extremum of the equilibrium map. Note that the
ES approach can yield fast convergence, in spite of being simple to
implement by utilizing iterative (batch-to-batch) optimization of the
cost function. Frihauf et al. [31] carried out optimization of a single-
input discrete-time linear system using discrete-time ES.

Discrete-time extremum seeking with stochastic perturbation
was studied without measurement noise in Ref. [32]. Stanković
and Stipanović [33] investigated discrete-time extremum seeking
with sinusoidal perturbation including measurement noise. Liu
and Krstić [34] and Choi et al. [35] employed discrete-time ES for
one-variable static system with an extremum using stochastic and
sinusoidal perturbations, respectively.

Rotea [36] and Walsh [37] studied multivariable extremum
seeking schemes for time-invariant plants. Ariyur and Krstić [38]
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investigated, for the first time, the multivariable extremum seek-
ing scheme for general time-varying parameters. Li et al. [39] uti-
lized the multivariable ES in optimizing the cooling power of a
tunable thermoacoustic cooler. Other multivariable ES applica-
tions can be found in Refs. [40–42].

Through this research effort, the time-invariant multivariable
optimization of all joints’ trajectories is presented in detail. To the
best of our knowledge, the multivariable ES has not yet been uti-
lized for the minimization of the energy consumed by robotic
manipulators. Note that time-energy optimization would not be
beneficial by yielding, as expected, a lower amount of energy
saved; although the operation time may potentially decrease
which is not the immediate concern of this research work [17–19].

The contribution of our work is in employing the multivariable
gradient-based discrete-time ES scheme as follows:

(1) The scheme is being numerically applied for a seven
degrees-of-freedom (7DOF) manipulator and the results
implemented experimentally.

(2) The scheme’s computational burden is significantly less
than other optimization methods including genetic algo-
rithm (GA) which we examine here.

In order to carry out the operational optimization, 14th-order
dynamic equations using the Lagrangian method are derived and the
results of experimental work are presented to examine the accuracy
of the modeling process. Then, the cost function is formulated as the
lumped amount of mechanical energy consumption enforcing opera-
tional time and torque saturation constraints. The effects of changes
of optimization variables on the cost function are studied using
global design sensitivity analysis in order to select the most effective
ones, and a nominal “S-Shaped” trajectory is fitted for every joint for
a collision-free trajectory given. We utilize both extremum seeking
and genetic algorithms to improve the dynamic characteristics of the
fitted (nominal) trajectories along with minimizing the energy con-
sumption. The optimal trajectory is experimentally implemented and
thoroughly compared with the inefficient one.

2 Mathematical Modeling

The redundant manipulator, which is being studied here,
has 7DOF as shown in Figs. 1 and 2. The Baxter manipulator’s
Denavit–Hartenberg parameters are shown in Table 1 provided by
the manufacturer.

The Euler–Lagrange equation expectedly leads to a set of seven
second-order ordinary differential equations

MðqÞ€q þ Cðq; _qÞ _q þ /ðqÞ ¼ s (1)

where q, _q, and €q 2 R7 are rotation angles, angular velocities, and
angular accelerations of the joints, respectively, and s 2 R7 indicates
the vector of joints’ driving torques. Also, MðqÞ 2 R7�7; Cðq; _qÞ
2 R7�7, and /ðqÞ 2 R7 are the mass, Coriolis, and gravitational
matrices, respectively. This coupled nonlinear dynamic model of the
robot is used in the optimization process [43,44].

3 Experimental Validation

The experimental validation of such a coupled nonlinear mathe-
matical model is a necessity to be carried out in order to examine
the accuracy of the formulation and then possibly refine the
model. We hence recorded the joints’ torques to be compared
with the ones computed through the interconnected equations.
The results are shown in Fig. 3 for four different joints which, in
particular, need significant higher and lower amounts of torques,
respectively, to be operated. Note that non-zero torques at the ini-
tial point, t¼ 0, stand for holding torques against gravity, while
the links are stationary leading to zero angular velocities/accelera-
tions at the initial point.

Shown in Figs. 3(a)–3(d) are the experimental and analytically
computed torques used in driving the joints S0, E0, W0, and W1,

respectively, which reveal an acceptable consistency giving us the
confidence to utilize the model developed in the optimization pro-
cess. Note that the negligible differences potentially root on the
unmodeled friction and backlash of the joints.

4 Trajectory Optimization

Baxter uses a simple proportional–integral–derivative (PID)
controller for every joint with respect to the initial and end points
given in the joint space (while its gains are not adjustable), which
yields the jerky motions and subsequently, the inefficient

Fig. 1 The 7DOF Baxter’s arm

Table 1 Baxter’s Denavit–Hartenberg parameters

Link/Joint ai di ai hi

1/s0 0.069 0.27035 �p=2 h1

2/s1 0 0 p=2 h2 þ p=2
3/E0 0.069 0.36435 �p=2 h3

4/E1 0 0 p=2 h4

5/W0 0.010 0.37429 �p/2 h5

6/W1 0 0 p/2 h6

7/W2 0 0.3945 0 h7

Fig. 2 The joints’ configuration: (a) sagittal view and (b) top
view
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operation of the robot. The undesirable responses can be observed
through the experimental work which we have carried out in our
Dynamic Systems and Control Laboratory (DSCL). We observed
that the robot collides with other objects close to the end point
making the motion unreliable and inefficient. This is counted as a
harmful dynamical behavior for both the industrial and home
applications. As mentioned earlier, the robot operates using the
PID controller which in turn generates energy-inefficient trajecto-
ries. Note that Baxter, which is being analyzed here, has been
designed for research purposes, and hence, has no predefined
nominal trajectory. Therefore, the coupled trajectory optimization
of the robot, as a part of the nonautonomous approach, is a neces-
sity to be carried out in order to considerably reduce the mechani-
cal energy consumption along with removing the jerky motions to
avoid such a harmful collision discussed earlier.

The optimization needs to be formulated enforcing the opera-
tional time and torque saturation constraints to avoid the expected
singularities. The feasible joints’ ranges along with the initial and
end points are listed in Table 2. Note that one of the physical con-
straints, which needs to be implemented in the optimization for-
mulation, is zero angular velocity/acceleration at the initial and
zero angular velocity at the end points, indicating that the manipu-
lator would remain stationary at those points. This constraint leads
us to the well-known “S-Shaped” trajectories which would yield
the robot’s smooth dynamical behavior by mitigating the effects
of jerky motions. Such a smooth trajectory obviously satisfies the
initial/end points’ zero angular velocity condition.

Note that the immediate focus of this research work is on reduc-
ing cumbersome computational burden of optimization efforts
associated with high-DOF robots including Baxter. We hence pro-
pose and utilize the S-shaped trajectory (here tanhð:Þ), based on
our previous efforts for operational optimization of smart valves
network [45–48], which is highly compatible with the actual
motion of Baxter’s joints. From another aspect, using conven-
tional trajectories, including Spline and B�ezier in addition to poly-
nomials generating S-shaped ones, expectedly imposes more
variables to be optimized with respect to the joint-space optimiza-
tion; we inevitably need high-order polynomials to generate such
a smooth S-shaped trajectory. On the other hand, we only have to
provide initial and end points, for each joint, based on Baxter’s
operation configuration by employing the S-shaped trajectory.

Fig. 3 Comparison between the experimentally measured and nominal analytical torques used in driving the joints (a) S0,
(b) E0, (c) W0, and (d) W1; the non-zero torques at the initial point (t 5 0) stand for holding torques against gravity

Table 2 The ranges of joints’ angles (deg)

Joints’ name Range Initial point End point

S0 �97.5 to 90 �87.0532 �25.6510
S1 �80 to 60 �50.0156 5.0300
E0 �170 to 170 �10.1733 41.0350
E1 0 to 150 20.1435 65.1590
W0 �170 to 170 �30.1357 �85.2770
W1 �90 to 115 9.2920 �46.2050
W2 �170 to 170 �60.0735 12.0360
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Hence, utilizing the polynomials subsequently leads to an undesir-
able higher computational cost.

Also, the logistic functions (for example hiðkÞ
¼ ðLi=1þ e�BiðkDtÞÞ) can also be used as the S-shaped trajectories,
but we logically expect to obtain almost the same computational
cost with that of the following one (Eq. (2)), whereas seven Bi’s
are again optimized with respect to the practically imposed
bounds and constant Li for each joint; Li, like Ai and Di of Eq. (2),
is constant. We fit the following nonlinear functions (nominal tra-
jectories) to the joints’ actual trajectories which are generated
with respect to the initial/end points given in Table 2 using
Baxter’s PID controller:

hiðkÞ ¼ AitanhðBiðkDtÞCiÞ þ Di i ¼ 1;…; 7 (2)

where k ¼ 0; 1;…;N; Dt indicates constant time-step, tf ¼ NDt
(operation time), and Ai’s, Bi’s, Ci’s, and Di’s are calculated utiliz-
ing the least square method for the trajectory fitting process listed
in Table 3. Note that we discretized the functions due to the
discrete-time nature of the problem.

Note that Ai’s and Di’s are constant/unique parameters for each
joint and are easily calculated as “End Points� Initial Points” and
“Initial Points,” respectively. The parameters Bi’s and Ci’s are the
optimization variables although a crucial issue to address is the
number of parameters expectedly leading to a cumbersome compu-
tational cost. Therefore, the sensitivity of the optimization process
to the variables of Bi’s and Ci’s needs to be carefully addressed.

4.1 Analysis. A global sensitivity analysis has to be carried
out in order to examine the roles of Bi’s and Ci’s in the optimiza-
tion process. Typically, the local and global sensitivity analyses
are used in determining the effects of changes of the optimization
variables on the cost function defined. The local sensitivity analy-
sis (one-at-a-time method) evaluates the effect of one variable on
the cost function at a time while keeping the other variables con-
stant, although the global sensitivity analysis utilizes a set of ran-
dom samples to search the design space with respect to the
bounds defined. The global analysis would be an efficient
approach as the change of each variable affects the dynamic char-
acteristics of all the joints/links, through the interconnected
dynamic equations, and subsequently, the lumped cost function.

To carry out the global sensitivity analysis, we need to numeri-
cally calculate the gradient of the cost function with respect to the
optimization variables as follows:

rE ¼ @E

@Bi
;
@E

@Ci

� �T

i ¼ 1;…; 7

where,

E ¼
X7

i¼1

Ei ¼
X7

i¼1

XN�1

k¼0

jsiðkÞ _hiðkÞjDt (3)

Figures 4 and 5 reveal that the roles of Bi’s are more drastic
than Ci’s. On the other hand, the effects of Ci’s are negligible in
comparison with those of Bi’s on the changes of energy consump-
tion. Therefore, all Bi’s are logically chosen to be optimized using

both the ES and the GA. The parameters Bi’s are optimized sub-
ject to the following lower and upper bounds determined through
the constraints:

c ¼ ½B1;B2;B3;B4;B5;B6;B7� (4)

cmin ¼ ½68; 69; 68:5; 69; 66:5; 69:3; 69� � 10�4 (5)

cmax ¼ ½1385; 1368; 1372; 1368; 1383; 1390; 1386� � 10�4 (6)

The lower bound indicates the operational time, which we are
willing to keep within tf¼ 8 s as a case study. Note that decreasing
the lower bound would yield much slower motion which is not
desirable and logical, in particular for the industrial applications.
We use a semi-analytical approach to determine the upper bound.
The Baxter manufacturer provides tables of allowable maximum
angular velocities/torques of the joints to avoid the robot cata-
strophic failure/damage. We utilize the allowable maximum angu-
lar velocity and torque to determine the maximum slope of the
S-shaped trajectory and the time derivative of slope (€hi), respec-
tively, which can be easily translated to the upper bound of Bi’s;
increasing the upper bound would yield abrupt torques leading to
both the motors’ failures and considerably fast motion.

It is worth mentioning that Eq. (2) is the nonlinear function of
the Bi leading to

qðB; kÞ ¼ ½h1ðB1; kÞ;…; h7ðB7; kÞ�T (7)

_qðB; kÞ ¼ ½ _h1ðB1; kÞ;…; _h7ðB7; kÞ�T (8)

€qðB; kÞ ¼ ½€h1ðB1; kÞ;…; €h7ðB7; kÞ�T (9)

Therefore, the joints’ torques (Eq. (1)), and subsequently, the
mechanical energy consumed are the nonlinear functions of Bi’s

EðBÞ ¼
X7

i¼1

XN�1

k¼0

����siðB; kÞ _hiðB; kÞ
����Dt

¼
X7

i¼1

XN�1

k¼0

����ðDiðB; kÞ€qðB; kÞ þ CiðB; kÞ _qðB; kÞ

þUiðB; kÞÞ _hiðB; kÞ
����Dt (10)

where DiðB; kÞ and CiðB; kÞ are the ith rows of D and C matrices,
respectively.

Therefore, the optimization problem is a constrained one,
enforcing the mentioned lower and upper bounds, with the follow-
ing cost function defined as the lumped amount of mechanical
energy consumed in the robot:

min EðBÞ
Subject to : The Interconnected Equations &

cmin � c � cmax (11)

We hence need to optimize seven interconnected variables
using both the ES and the GA. One issue to consider is the small
values of the variables resulting in serious numerical errors. We
fixed this problem by conditioning them using a normalization
scheme as follows:

cn ¼ c� 104 (12)

Two optimization schemes, including both the ES and the GA,
are utilized to avoid being trapped in several possible local min-
ima. The genetic method was developed based on a heuristic
search to mimic the process of natural selection [49]. The genetic

Table 3 The nominal trajectories’ coefficients

Joints’ name A B� 102 C D

S0 61.4022 1.532 2.9430 �87.0532
S1 55.0456 1.489 2.9760 �50.0156
E0 51.2083 1.504 2.9385 �10.1733
E1 45.0155 1.510 2.9712 20.1435
W0 �55.1413 1.490 2.9910 �30.1357
W1 �55.9970 1.513 2.9293 9.2920
W2 72.1095 1.495 2.9382 �60.0735
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algorithm is typically more robust than other conventional
schemes. It does not break down easily in the presence of slight
changes of inputs and noise. For large-scale state-space equations,
the algorithm may potentially exhibit significantly better perform-
ance than typical optimization techniques.

Note that for the GA method, we have utilized: (1)
“PopulationSize” of 200 for the size of population, (2)
“Generations” of 400 which indicates the maximum number of
iterations before the algorithm halts, (3) “MigrationFraction” of
0.2 specifying the fraction of individuals in each subpopulation
that migrates to a different subpopulation, (4) “MigrationInterval”
of 20 standing for the number of generations that take place
between migrations of individuals between subpopulations, and
(5) Function (TolFun) and constraints (TolCon) tolerances
of 10�6.

5 Multivariable Optimization Using Gradient-Based

Extremum Seeking

Our objective is to develop a feedback mechanism minimizing
the energy consumed (E), where its nonlinear static map is known
to have an extremum. We utilize the multivariable extremum
seeking scheme [50–53], developed from Krstić and Wang efforts
[24], in obtaining optimal values B� ¼ ½B�1;…;B�7�

T
.

The extremum seeking scheme estimates the gradient of cost
function defined in addition to driving it to zero. The gradient is
estimated using a zero-mean external periodic perturbation (or
dither signal) and a series of filtering and modulation operations.
The convergence of the gradient algorithm is dictated by the

second derivative (Hessian) of the cost function. The minimizer
is the optimal parameters B� obtained by driving the system with
a BðlÞ ¼ ½B1ðlÞ;…;B7ðlÞ�T to determine the cost value E(l) and
then iterating the discrete-time extremum seeking to produce
Bðlþ 1Þ; where l denotes the lth iteration of the algorithm [31].
Shown in Fig. 6 is a schematic of the discrete-time ES algorithm.
It is worth mentioning that the measured output (Fig. 6) passing
through a washout (high-pass) filter ðWðzÞ ¼ ðz� 1=zþ hÞÞ, by
having zero DC gain, expectedly helps better performance
[31,35].

Note that there is a map from Bi’s to the energy consumed (E)
through Eq. (10). The extremum seeking-based optimization
shown in Fig. 6 is governed by the following equations:

B̂ lð Þ ¼ �eK
z� 1

f lð Þ½ � (13)

f lð Þ ¼ M lð Þ z� 1

zþ h
E lð Þ½ � (14)

BðlÞ ¼ B̂ðlÞ þ SðlÞ (15)

where B̂ðlÞ ¼ ½B̂1ðlÞ;…; B̂7ðlÞ�T, e is a small positive parameter,
K is a positive diagonal matrix, and 0 < h < 1. The notation
PðzÞ½qðlÞ� is used to denote the signal in the iteration domain that
is the output of the transfer function P(z) driven by q(l), where
P(z) operates with respect to the iteration domain. Note that q(l) is
a signal in iteration domain, where l denotes the lth iteration. The
perturbation signals M(l) and S(l) are given by

Fig. 4 The global sensitivity analysis with respect to B’s
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SðlÞ ¼ ½ a1 cosðx1lÞ;…; a7 cosðx7lÞ �T (16)

M lð Þ ¼ 2

a1

cos x1l� /1ð Þ;…;
2

a7

cos x7l� /7ð Þ
� �T

(17)

with ak > 0 and the modulation frequencies are given by
xk ¼ bkp, where jbkj 2 ð0; 1Þ is a rational number and the probing
frequencies are selected such that xi 6¼ xj for all distinct
i; j; k 2 f1;…; 7g. Also, phase values /k are selected such that
Refej/k Wðejxk Þg > 0 for all k 2 f1;…; 7g [31].

Using the Taylor series expansion of the cost function around
the local minimum B� ðrEðB�Þ ¼ 0Þ, the cost function can be
written as

E Bð Þ ¼ E B�ð Þ þ 1

2
B� B�ð ÞTH B� B�ð Þ (18)

where H is a positive definite Hessian matrix ðH :¼ ð@2E=@B2ÞÞ.
Note that cubic and higher order terms are eliminated since they
are negligible for local stability analysis via averaging [35]. We
then define

~BðlÞ ¼ B̂ðlÞ � B� ¼ BðlÞ � SðlÞ � B� (19)

Substituting Eq. (19) into Eq. (18) yields

E ~B lð Þ
� �

¼ E B�ð Þ þ 1

2
~B lð Þ þ S lð Þ
� �T

H ~B lð Þ þ S lð Þ
� �

(20)

¼ E B�ð Þ þ 1

2
~B

T
H ~B þ STH ~B þ 1

2
STHS (21)

Equation (13) can be therefore rewritten as

~B lð Þ ¼ �eK
z� 1

f lð Þ½ � � B� (22)

which leads to the following difference equation by utilizing Eq.
(21) and ðWðzÞ ¼ z� 1=zþ hÞ:

Fig. 5 The global sensitivity analysis with respect to C’s

Fig. 6 Discrete-time multivariable gradient-based ES using
washout filter
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~B lþ 1ð Þ ¼ ~B lð Þ � eKM lð ÞW zð Þ E lð Þ½ �
¼ ~B lð Þ � eKM lð ÞW zð Þ E B�ð Þ½ �

� 1

2
eKM lð ÞW zð Þ ~B lð ÞTH ~B lð Þ þ S lð ÞTHS lð Þ

h i

�eKM lð ÞW zð Þ S lð ÞTH ~B lð Þ
h i

(23)

We utilize the following lemmas [31] to carry out the convergence
analysis.

LEMMA 1. The transfer function G(z) for any real / can be writ-
ten as

GðzÞ½cosðxl� /Þ�ðlÞ� ¼ Refejðxl�/ÞGðejxzÞ½�ðlÞ�g (24)

LEMMA 2. The following is true for any two rational functions Pð�Þ
and Qð�; �Þ:

Re ej x1l�/1ð ÞP ejx1ð Þ
� �

Re ej x2l�/2ð ÞQ z; ejx2

� �
� lð Þ½ �

� �
¼ 1

2
Re ej x2�x1ð Þlþ/1�/2ð ÞP e�jx1ð ÞQ z; ejx2

� �
� lð Þ½ �

n o

þ 1

2
Re ej x2þx1ð Þl�/1�/2ð ÞP ejx1ð ÞQ z; ejx2

� �
� lð Þ½ �

� �
(25)

LEMMA 3. The following is true for any rational functions Qð�; �Þ:

Refejðxl�/ÞQðz; ejxÞ½�ðlÞ�g (26)

¼ cosðxl� /ÞRefQðz; ejxÞ½�ðlÞ�g (27)

�sinðxl� /ÞImfQðz; ejxÞ½�ðlÞ�g (28)

Applying Lemma 1 to the last term of Eq. (23) yields

WðzÞ½STH ~B� ¼ a Re ejxlXðz; ejxÞ½H ~B�
� �

(29)

where

a ¼ diag½a1;…; a7� (30)

Xðz; ejxÞ ¼ diag½Wðejx1 zÞ;…;Wðejx7 zÞ� (31)

Due to the fact that ð2=a0Þcosðx0l� /Þ ¼ ð2=a0ÞRefejðx0l�/Þg,
and utilizing Lemmas 1 and 2, the following holds:

2

a0
cos x0l� /ð ÞW zð Þ a cos xð ÞH ~B

	 


¼ 2
a

a0
Re ej x0l�/ð Þf gRe ejxlW ejxzð Þ H ~B½ �

� �

¼ a

a0
Re ej x�x0ð Þlþ/ð ÞW ejxzð Þ H ~B½ �
n o�

þRe ej xþx0ð Þl�/ð ÞW ejxzð Þ H ~B½ �
n o�

(32)

which can be rewritten as follows by applying Lemma 3:

2

a0
cos x0l�/ð ÞW zð Þ acos xð ÞH ~B

	 


¼a

a0
cos x�x0ð Þlþ/
� �

Re W ejxzð Þ H ~B½ �
� ��

�sin x�x0ð Þlþ/
� �

Im W ejxzð Þ H ~B½ �
� �

þcos xþx0ð Þl�/
� �

Re W ejxzð Þ H ~B½ �
� �

�sin xþx0ð Þl�/
� �

Im W ejxzð Þ H ~B½ �
� �

(33)

Then, using the result of Eqs. (32) and (33) results in

MðlÞWðzÞ½SðlÞTH ~BðlÞ� ¼ C�ðlÞRefXðz; ejxÞ½H ~B�g
� S�ðlÞImfXðz; ejxÞ½H ~B�g
þCþðlÞRefXðz; ejxÞ½H ~B�g
� SþðlÞImfXðz; ejxÞ½H ~B�g (34)

where C–, S–, Cþ, and Sþ are 7� 7 matrices whose kth rows are
given by

C�k lð Þ ¼ a1

ak
cos x1 � xkð Þlþ /k

� �
;…;

a7

ak
cos x7 � xkð Þlþ /k

� �� �

(35)

S�k lð Þ ¼ a1

ak
sin x1 � xkð Þlþ /k

� �
;…;

a7

ak
sin x7 � xkð Þlþ /k

� �� �

(36)

Cþk lð Þ ¼ a1

ak
cos x1 þ xkð Þl� /kð Þ;…;

a7

ak
cos x7 þ xkð Þl� /kð Þ

� �

(37)

Sþk lð Þ ¼ a1

ak
sin x1 þ xkð Þl� /kð Þ;…;

a7

ak
sin x7 þ xkð Þl� /kð Þ

� �

(38)

The diagonal elements of C– and S– are time-invariant. We
define diagonal matrices C�D and S�D containing the diagonal ele-
ments of C– and S–, respectively, to highlight these time-invariant
terms. Then, Eq. (34) can be rewritten as

MðlÞWðzÞ½STH ~B� ¼ Ref�Xðej/ÞXðz; ejxÞ½H ~B�g

þðC�ðlÞ � C�DÞRefXðz; ejxÞ½H ~B�g

�ðS�ðlÞ � S�DÞImfXðz; ejxÞ½H ~B�g

þCþðlÞRefXðz; ejxÞ½H ~B�g

�SþðlÞImfXðz; ejxÞ½H ~B�g (39)

where �Xðej/Þ ¼ diag½ej/1 ;…; ej/7 �. Substituting Eq. (39) into Eq.
(23) yields the following error dynamics:

~Bðlþ 1Þ � ~BðlÞ ¼ eðLðzÞ½H ~B� þW�1 ðlÞ þWþ1 ðlÞ
þW2ðlÞÞ þ dðlÞ (40)

where

L zð Þ ¼ �K

2
�X ej/ð ÞX z; ejx

� �
þ�X e�j/ð ÞX z; e�jx

� �� 
(41)

W�1 ðlÞ ¼ KðS�ðlÞ � S�DÞImfXðz; ejxÞ½H ~B�g
�KðC�ðlÞ � C�DÞRefXðz; ejxÞ½H ~B�g (42)

Wþ1 ðlÞ ¼ KSþðlÞImfXðz; ejxÞ½H ~B�g
�KCþðlÞRefXðz; ejxÞ½H ~B�g (43)

W2 lð Þ ¼ � 1

2
KM lð ÞW zð Þ ~B lð ÞTH ~B lð Þ

h i
(44)

d lð Þ ¼ �eKM lð ÞW zð Þ E B�ð Þ½ �

� 1

2
eKM lð ÞW zð Þ S lð ÞTHS lð Þ

h i
(45)
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It is straightforward to observe that the error dynamics evolve
according to a sum of a linear time-invariant term, LðzÞ½H ~B�, lin-
ear time-varying functions, W�1 ðlÞ and Wþ1 ðlÞ, a nonlinear time-
varying function, W2ðlÞ, and a time-varying function, dðlÞ, which
is independent of the error of the optimization variable ~B.

We extend the results reported in Ref. [35] in order to establish
the convergence of the multivariable discrete-time extremum
seeking scheme. We present the local exponential convergence of
the homogeneous error system and then consider the full system
(Eq. (40)), including the dðlÞ term, to establish its convergence.

5.1 Convergence of Homogeneous Error System. The fol-
lowing theorem states a sufficient condition for local exponential
convergence of the error system (Eq. (40)) regardless of the dðlÞ
term. We deal with the homogeneous error system which is peri-
odic in time l

~Bðlþ 1Þ � ~BðlÞ ¼ eðLðzÞ½H ~B� þW�1 ðlÞ þWþ1 ðlÞ
þW2ðlÞÞ (46)

THEOREM 1. Consider the homogeneous error system (Eq. (46))
with modulation frequencies that satisfy xi 6¼ xk for all distinct
i; k 2 f1; 2;…; 7g and phase values /k selected such that
Refej/k Wðejxk Þg > 0 for all k 2 f1; 2;…; 7g. There exists a posi-
tive constant e� such that the state-space realization is locally
exponentially stable at the origin for all 0 < e < e�. This theorem
is proved as in Ref. [31].

Note that the eigenvalues of H, denoted by kðHÞ, play impor-
tant roles in the convergence rate of the extremum seeking [31].

5.2 Convergence of Full Error System. The established
exponential stability of the averaged homogeneous error system
helps us investigate the full system (Eq. (40)). We state the con-
vergence properties of dðlÞ through the following lemma proved
as in Ref. [31].

LEMMA 4. The time-varying function dðlÞ exponentially con-
verges to an OðejajÞ of zero,

jdðlÞj � e�1 þ c1ejaj (47)

where c1 is a constant and a ¼ ½a1;…; a7�.
Utilizing the perturbed averaged system [31]

~B
aveðlþ 1Þ ¼ ðI � e �KHÞ ~BaveðlÞ þ dðlÞ (48)

and Lemma 4, we notice that ~B
aveðlÞ converges exponentially to

an OðjajÞ-neighborhood of the origin since jdðlÞj � e�1 þ c1ejaj.
From Ref. [54], the exponential convergence rate of ~B in Eq. (40)

tends to the rate of ~B
ave

in the average system as e tends to zero.

We can hence state the convergence of the overall ~B-system.
THEOREM 2. Consider the full system (Eq. (40)) with the condi-

tions of Theorem 1 satisfied. For sufficiently small ak,
k 2 f1; 2;…; 7g, there exists 0 < e�1 � e�, such that the error

Fig. 7 The optimal values of B’s using the ES
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variable ~B locally exponentially converges to an OðjajÞ-neighbor-
hood of the origin for all 0 < e � e�1.

COROLLARY 1. With the conditions of Theorem 2 satisfied, the
cost value E locally exponentially converges to an Oðjaj2Þ-neigh-
borhood of the optimal cost EðB�Þ.

Proof. By defining

~E Bð Þ ¼ E Bð Þ � E B�ð Þ

¼ 1

2
~B

T
H ~B þ STH ~B þ 1

2
STHS (49)

Fig. 8 The optimal values of B’s using the GA

Table 4 Optimal trajectories’ coefficients

Joints’ name Optimized B using ES Optimized B using GA

S0 0.0078 0.00703
S1 0.0071 0.00700
E0 0.1354 0.1400
E1 0.00703 0.00700
W0 0.01306 0.1398
W1 0.0703 0.0650
W2 0.1222 0.1212

Fig. 9 The (a) actual and (b) mean value of energy optimized using the ES
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From Theorem 2, ~B locally exponentially converges to an OðjajÞ-
neighborhood of the origin. Thus, ~EðBÞ locally exponentially con-
verges to an Oðjaj2Þ-neighborhood of the origin.

6 Experimental Results

We used both the analytical (ES) and the numerical (GA)
approaches to obtain the optimal values of Bi’s shown in Figs. 7

and 8, respectively. The optimal values of Bi’s are listed in Table 4
indicating negligible differences between the methods.

It is straightforward to observe that the optimal values of B1,
B2, and B4 shown in Figs. 7(a), 7(b), and 7(d), respectively, are
lower than the nominal ones indicating that their corresponding
links move slower than those of the nominal trajectories. This sub-
sequently leads to a significant reduction in the energy consumed.
Note that the joint S1, as expected, takes the biggest share of
energy consumption, and therefore, its lower angular velocities

Fig. 10 (a) The energy optimized using the GA and (b) the convergence history of the GA

Fig. 11 The actual (inefficient), nominal fitted to the actual, and optimal trajectories using the ES and GA: (a) S0, (b) S1, (c)
E0, (d) E1, (e) W0, (f) W1, and (g) W2
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would lead to a lower amount of the cost function defined.
Although, the optimal values of B3, B5, B6, and B7 presented in
Figs. 7(c) and 7(e)–7(g), respectively, are higher than those of the
nominal ones resulting in higher angular velocities of the optimal
trajectories than the nominal ones.

Shown in Figs. 9 and 10 are the energy consumptions mini-
mized using both the ES and the GA, respectively. Figure 9(a)
presents the energy optimization process versus time while the
energy consumed sharply decreases to almost 37 (J) and then
gradually converges to the optimal value of 36.627 (J) (at t ¼
84.75s). Shown in Fig. 9(a) reveals that the optimization of energy
consumption fluctuates stochastically, as all the seven parameters
(Bi’s) are oscillating with seven different frequencies satisfying
the mentioned conditions. Therefore, the value of optimal energy
is not transparent to be compared with that of the GA one. We
hence calculated its mean value over a running average window
of one cycle of the specified fundamental low frequency
(Fig. 9(b)) to obtain the amount of energy saved

DEES ¼
Enominal

zfflfflffl}|fflfflffl{45:34 Jð Þ

�Eoptimal

zfflfflffl}|fflfflffl{36:527 Jð Þ

Enominal

� 100 ¼ 19:44%
(50)

Shown in Fig. 10(a) is the energy consumption minimized
using the GA, and its best value is 36.631 (J) shown in Fig. 10(b)

DEGA ¼
Enominal

zfflfflffl}|fflfflffl{45:34 Jð Þ

�Eoptimal

zfflfflffl}|fflfflffl{36:631 Jð Þ

Enominal

� 100 ¼ 19:21% (51)

From another aspect, Fig. 10 presents considerable computa-
tional cost (iterations) of 46,400 for the GA which looks logical
with respect to the scale of the coupled dynamic equations

resulting in a significant computational time of 2876 s in compari-
son with 137 s of the ES method. Although Figs. 9 and 10 reveal a
negligible difference (less than 1%) for the energy savings of both
the schemes, the ES yields the better performance. Such a superior
performance of the ES can be justified as follows. The ES carries
out optimization by continuously sliding on the cost function in
gradient direction rather than finding optimal points discretely
with a certain step size of the GA.

The actual (inefficient), nominal fitted to the actual, and optimal
trajectories are presented in Fig. 11 revealing the differences
expected. Shown in Figs. 11(a), 11(b), and 11(d) indicate that the
optimal angular velocities of joints S0, S1, and E1 are lower than
those of the nominal ones. As mentioned earlier, the joint S0 takes
the biggest share (Fig. 3(a)) among the other ones to consume the
lumped amount of energy, and therefore, its lower angular veloc-
ity would lead to a lower amount of the cost function defined.
From another aspect, the effects of such higher values of Bi’s
(i¼ 3, 5, 6, 7) can be visualized in Figs. 11(c) and 11(e)–11(g),
respectively. Logically, the smooth optimal trajectories shown in
Figs. 11(a)–11(g), in comparison with the actual jerky ones,
would expectedly demand lower driving torques to be used in the
robot operation.

We have also carried out experimental validation of the nonlin-
ear analytical approach examining both the actual (inefficient) and
optimal trajectories. Figure 12 presents the experimental work, for
sample operation times of 1 s, 3 s, 5 s, and 6 s, revealing smoother
motions of the joints/links for the optimal path than the actual
(inefficient) one. The jerky motion of the actual trajectory caused
an undesirable collision between the robot’s end-effector and
another object at t¼ 6 s, while the optimal one avoids such a colli-
sion throughout the whole operational time. Note that the shadow
motions/frames stand for the actual (inefficient) operation.

In summary, the nominal operation shown in Fig. 12 is consid-
erably faster than the optimal one, expectedly consumes more

Fig. 12 The experimental nominal and optimal trajectories using the ES in sample times of (a) t 5 1 s, (b) t 5 3 s, (c) t 5 5 s,
and (d) t 5 6 s; at t 5 6 s, the robot’s end effector through the nominal trajectory collides with another object due to the jerky
motion, while the optimal one avoids such a collision throughout the whole operational time. The shadow frames present the
nominal trajectory.
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energy, and causes the collision at t¼ 6 s. For the optimal case,
the manipulator is fast enough, moves toward the end point safely,
and no jerky motion can be observed.

7 Conclusion

Through this paper, we presented the interconnected trajectory
optimization of a 7DOF Baxter manipulator using both the
extremum seeking and heuristic based methods to avoid being
trapped in several possible local minima. The coupled dynamic
equations of the robot were derived utilizing the Lagrangian
method and then validated through the experimental work. We
then optimized the joints’ trajectories to generate smooth paths to
avoid being exposed to the jerky motions of the nominal ones in
addition to minimizing the energy consumption.

The design sensitivity analysis was then carried out to evaluate
the effects of changes of the optimization variables on the cost
function defined leading to select the most effective ones. Based
on the sensitivity analysis, Bi’s were optimized to considerably
decrease the operation’s energy consumed and also to address the
crucial issue of jerky motion. Finally, the optimal trajectory was
experimentally implemented and compared with the actual (ineffi-
cient) one.

The principal results of this research work can be summarized
as follows:

� Using the multivariable discrete-time Extremum Seeking
results in a significant decrease in computational cost, an
almost twenty-fold reduction relative to Genetic Algorithm.

� A considerable amount of energy is saved (upward of 19%).
� The jerky motion and the subsequent collision between the

robot’s end effector and another object close to the end point
are removed using the optimal trajectory, which is noted in
experimental results.

We are currently focusing our efforts on developing an adaptive
controller (to be validated experimentally) to carry an unknown
mass to the desired position using an optimal trajectory.
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[26] Wang, H.-H., Yeung, S., and Krstić, M., 2000, “Experimental Application of
Extremum Seeking on an Axial-Flow Compressor,” IEEE Trans. Control Syst.
Technol., 8(2), pp. 300–309.
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[33] Stanković, M. S., and Stipanović, D. M., 2009, “Discrete Time Extremum Seek-
ing by Autonomous Vehicles in a Stochastic Environment,” 48th IEEE Confer-
ence in Decision and Control, 2009 Held Jointly With the 2009 28th Chinese
Control Conference (CDC/CCC), Shanghai, China, Dec. 15–18, pp. 4541–4546.
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Power Point Tracking for Photovoltaic Micro-Converters Using Extremum
Seeking,” Control Eng. Pract., 35, pp. 83–91.
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