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ABSTRACT
In this paper, a predictor-based controller for a 7-DOF Bax-

ter manipulator is formulated to compensate a time-invariant in-
put delay during a pick-and-place task. Robot manipulators are
extensively employed because of their reliable, fast, and precise
motions although they are subject to large time delays like many
engineering systems. The time delay may lead to the lack of high
precision required and even catastrophic instability. Using com-
mon control approaches on such delay systems can cause poor
control performance, and uncompensated input delays can pro-
duce hazards when used in engineering applications. Therefore,
destabilizing time delays need to be regarded in designing con-
trol law. First, delay-free dynamic equations are derived using
the Lagrangian method. Then, we formulate a predictor-based
controller for a 7-DOF Baxter manipulator, in the presence of
input delay, in order to track desirable trajectories. Finally, the
results are experimentally evaluated.

1 Introduction
Robot manipulators are extensively employed because of

their reliable, fast, and precise motions [1] although they are sub-
ject to large time delays like many engineering systems. Moti-
vation of studying delay, as a common dynamic phenomenon, is
induced by applications in control of traffic systems [2], teleop-
erators [3], and robot manipulators [4, 5], to name only a few.

Time delay may lead to the lack of high precision required
and even catastrophic instability. The large input delays emanate
from communication delays in sensor-actuator networks, or from
the time-consuming computational burden of multi-agent net-
works. Note that the robustness margin to small input delays
can be optimized by applying finite-dimensional feedback laws
when the input delay is short relative to the plant’s time scales.
However, a large input delay needs to be compensated through
controller design [6].

Tackling the challenge of control problems with input de-
lays has always been significantly important. In 1959, Smith pre-
sented the compensator known as the Smith predictor [7]. How-
ever, the Smith predictor may fail to achieve closed-loop stabil-
ity when the plant is unstable, even though a nominal controller
was designed to stabilize the delay-free system [6]. Many efforts
were carried out for linear systems subject to the input delays
[8–16]. Tsubakino et al. [17] proposed a predictor-based state
feedback controller for multi-input linear time-invariant (LTI)
systems with different time delays in each input channel using
the modified backstepping transformation due to the differences
among delays.

In addition to the recent developments of predictor-based
control laws for nonlinear systems with input delays [18–28],
Bekiaris-Liberis and Krstić [29] addressed the problem of sta-
bilization of multi-input nonlinear systems with distinct arbi-
trary large input delays, and developed a nonlinear version of
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FIGURE 1. (a) The 7-DOF Baxter manipulator; The joints’ configu-
ration: (b) sagittal view; (c) top view

the predictor-based control law.
Motivated by the harmful consequences of input delays on

the stability and performance of such control systems, we formu-
late and implement a predictor-feedback controller for the com-
pensation of large input delays of the 7-DOF Baxter manipulator
(a multi-input highly nonlinear system). We assume that all input
channels induce the same delay, since all commands are sent to
the joints simultaneously.

The paper is organized as follows. We begin with the math-
ematical modeling of the system in Section II, along with deriv-
ing equations in order to formulate the predictor-feedback con-
trol law in the presence of time delay. In Section III, we present
the global asymptotic stability of the closed-loop system using
predictor-feedback control law and necessary assumptions. Fi-
nally, Section IV is devoted to the results of experiments (pick-
and-place task) in order to reveal the significance of the predictor.

2 Mathematical Modeling
The redundant manipulator, which is being studied here,

has 7-DOF as shown in Fig. 1. The manipulator’s Denavit-
Hartenberg parameters are shown in Table 1 provided by the
manufacturer.

The mass, Coriolis, and gravitational (stiffness) matrices are
symbolically derived using the Euler-Lagrange equation. We

TABLE 1. Baxter’s Denavit-Hartenberg Parameters

Link ai di αi θi

1 0.069 0.27035 −π/2 θ1

2 0 0 π/2 θ2 +π/2

3 0.069 0.36435 −π/2 θ3

4 0 0 π/2 θ4

5 0.010 0.37429 −π/2 θ5

6 0 0 π/2 θ6

7 0 0.3945 0 θ7

employed the symbolic toolbox in MATLAB to obtain the cou-
pled nonlinear dynamic equations as follows [30–32],

M(q)q̈+C(q, q̇)q̇+φ(q) = τ (1)

M(q)q̈+C(q, q̇)q̇ =U, U = τ−φ(q) (2)

where, q, q̇, q̈ ∈ R7 are angles, angular velocities and accelera-
tions of joints, respectively, and τ ∈ R7 indicates the vector of
joints’ driving torques. Also, M(q) ∈ R7×7 and C(q, q̇) ∈ R7×7,
and φ(q) ∈R7 are the mass, Coriolis, and gravitational matrices,
respectively; which are symbolically derived using the Euler-
Lagrange equation.

The multi-input nonlinear system (2) can be rewritten as
14th-order Ordinary Differential Equations (ODE) with the fol-
lowing general state-space form,

Ẋ = f (X ,U) (3)

where X =
[
q1, · · · ,q7, q̇1, · · · , q̇7

]T
∈ R14.

3 Designing the Predictor-Based Controller
Dealing with unmolded dynamics including joints’ friction

and backlash, along with strong dynamic interconnections would
cause a complicated problem of designing robust and computa-
tionally efficient control schemes to avoid the large destabilizing
time delays. Therefore, in this section, we formulate a predictor-
based controller for a multi-input nonlinear system in the pres-
ence of input delay.

In order to demonstrate the generality of our approach, con-
sider the following general multi-input nonlinear system with
constant input delay,

Ẋ(t) = f
(
X(t),U1(t−D), · · · ,Um(t−D)

)
(4)
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where, X ∈ Rn is the vector of states, U1, · · · ,Um ∈ R are the
control inputs, D is input delay, and f : Rn ×Rm → Rn is a
locally Lipschitz vector field. We assume that a feedback law
Ui(t) = κi(X) is known such that the functions κi : Rn→R glob-
ally asymptotically stabilize the delay-free system. On the other
hand, Ẋ(t) = f (X(t),κ(X(t))) is globally asymptotically stable
in the absence of delay. Therefore, in delay system the control
law needs to be as follows,

Ui(t−D) = κi(X(t)) (5)

which can alternatively be written as,

Ui(t) = κi(X(t +D)) = κi(P(t)) (6)

where P(t) is the D-time units ahead predictor of X(t). The pre-
dictor feedback law for the system (4) is given by,

P(t) = X(t)+
∫ t

t−D
f (P(θ),U1(θ),U2(θ), · · · ,Um(θ))dθ (7)

with initial conditions for the integral (7),

P(θ) = X(0)+
∫

θ

−D
f (P(s), ,U1(s),U2(s), · · · ,Um(s))ds (8)

where θ ∈ [−D,0].
Note that P(t) is calculated based on its past values, however

a solution P(t) to (7) does not always exist since the control ap-
plied after t = 0 has no effect on the plant over the time interval
[0,D]; system (4) can consequently exhibit finite escape over that
interval. Therefore, in order to ensure the global existence of the
predictor state, we assume that, for all initial conditions and all
locally bounded input signals, the system’s solutions exist for all
time. This property is called forward completeness.

Definition 1. A system is forward-complete if it has bounded so-
lutions (and a suitable continuous gain function) for any bounded
input.

Forward-complete systems include all linear systems both
stable and unstable, as well as various nonlinear systems that
have linearly bounded nonlinearities, such as systems contain-
ing trigonometric nonlinearities, as a result of rotational motions
(e.g. robotic manipulators). Therefore, the following assumption
for our system is made,

Assumption 1. The system Ẋ = f (X ,U1, · · · ,Um) is forward
complete with respect to U = [U1, · · · ,Um]

T .

Assumption 1 guarantees that the system does not escape in
finite time and, in particular, before the input reaches the system
at t = D. It ensures that for every initial condition and every lo-
cally bounded input signal the corresponding solution is defined
for all t ≥ 0.

Forward complete systems yield global stability when
predictor feedback is applied to them. In order to have
the global asymptotic stability of closed-loop system Ẋ(t) =
f (X(t),κ(X(t))), at the expense of not having a Lyapunov func-
tional available, it can be shown that the closed-loop system
should be Input-to-State Stable (ISS). Note that we use the com-
mon definition of class K , K∞ and K L functions from [33].

Definition 2. A system is ISS if there exist γ ∈K ,β ∈K L
such that for all initial conditions x(t0), u, and t ≥ 0

|x(t)| ≤ β (|x0|, t− t0)+ γ(‖u‖∞) (9)

where ‖u‖∞ is the L∞ norm of u. An equivalent condition for
ISS is the existence of a smooth (continuously differentiable) V :
Rn → R (ISS-Lyapunov function) such that α1(|x|) ≤ V (x) ≤
α2(|x|) for some α1,α2 ∈K∞ and satisfying for all x, u:

∂V
∂x

f (x,u)≤−α(|x|)+σ(|u|) (10)

where σ ∈K and α ∈K∞

The Input-to-State Stability of our system can be proved us-
ing the following theorem [34].

Theorem 1. A system is ISS provided that:

1. it admits a quasi ISS Lyapunov function:

V̇1 ≤−γ(|y|)+σ1(|u|) (11)

2. it admits an Input-Output to State Stable (IOSS) Lyapunov
function:

V̇2 ≤−α(|x|)+σ2(|u|)+λ (|y|) (12)

3. lim supr→∞ λ (r)/γ(r)<+∞

Note that in (2), M(q) is a periodic function. In particular,
M(q) is a uniformly bounded matrix and ∃α1,α2 such that α1I ≤
H(q)≤ α2I. Therefore, we have the following inequalities,

|H(q)| ≤ c1 (13)

|Ḣ| ≤ c2|q̇| (14)

|C(q, q̇)| ≤ c3|q̇| (15)
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In order to control the system (2), U is chosen as

U =−KP(q−qd)−KDq̇ (16)

where, KP and KD are symmetric positive definite matrices, qd is
the vector of desired trajectories, and qd indicates a generic func-
tion of time to be regarded as input of the closed-loop system.
Considering the following Lyapunov function, we can establish
that our system holds the first assumption of Theorem 1,

V1(q, q̇) =
1
2

q̇T H(q)q̇+
1
2

qT KPq (17)

Note that V1 is not a proper ISS-Lyapunov function for the system
since V̇1 is only negative semi-definite [34].

V̇1 =−q̇T KDq̇+ q̇T KPqd ≤−α1|q̇|2 +α2|qd |2 (18)

where α1 and α2 are sufficiently small and large constants, re-
spectively. Defining the system output y as q̇, V1 becomes a
quasi ISS-Lyapunov function. We hence define the following
Lyapunov function,

V2(q, q̇) =
1
2

q̇T H(q)q̇+
1
2

qT KPq+ ε
qT H(q)q̇√

1+qT q
(19)

which is a positive definite function for a sufficiently small value
of ε . The derivative of V2 with respect to time is [34],

V̇2(q, q̇) = − q̇T

(
KD− ε

H√
1+qT q

)
q̇− ε

qT KPq√
1+qT q

+ q̇T KPqd + ε
qT KPqd√

1+qT q
+ ε

qT
(
Ḣ−C−KD

)
q̇√

1+qT q

− ε

(
qT q̇
)(

qT Hq̇
)

(1+qT q)3/2

≤ 1
2

q̇T KDq̇− 1
2

ε
qT KPq√
1+qT q

+M1

(
|qd |+ |qd |2

)
+M2|q̇|2 (20)

where ε > 0 is sufficiently small and M1,M2 > 0 are sufficiently
large. The last inequality follows due to bounded H, Ḣ, and C as
in (13) - (15), and exploiting the fact that ∀v,w∈R −v2+vw≤
−v2/2+2w2. Consequently, the following is held:

1
2

q̇T KDq̇− 1
2

ε
qT KPq√
1+qT q

≤−ε1
|q̇|2 + |q|2√

1+ |q̇|2 + |q|2
(21)

Defining α(r) = r2/
√

1+ r2 and x = [qT q̇T ]T , we observe
that V2 is an IOSS Lyapunov function [34],

V̇2 ≤−α(|x|)+M1|qd |2 +M2|y|2 (22)

Finally, according to (18) and (22), λ (r)/γ(r) is a constant,
and the assumption 3 of Theorem 1 is satisfied,

lim sup
r→∞

M2r2

α2r2 < ∞ (23)

Therefore, using Theorem 1, the system (2) is ISS indicating
that the following assumption for our system is held,

Assumption 2. The system Ẋ = f (X ,ω1 + κ1(X), · · · ,ωm +
κm(X)) is Input-to-State Stable (ISS) with respect to ω =
[ω1, · · · ,ωm]

T .

The stability proof of the closed-loop system with input de-
lay is based on an equivalent representation of plant (4), using
transport PDEs (first-order hyperbolic PDEs) for the actuator
states, as well as an equivalent PDE representation of the pre-
dictor states (7). Therefore, we present the equivalent represen-
tations for the plant and the predictor states using transport PDE.

3.1 Equivalent Representation of the Plant Using
Transport PDEs for the Actuator States

Delay, as a common dynamic phenomenon, can be repre-
sented by a partial differential equation (PDE) of transport type,
which evolves in one spatial dimension, with one derivative in
space and one derivative in time.

ODEs with delays are interconnected systems of ODEs and
transport PDEs. A control system with ODE plant in the pres-
ence of input delay, has a cascade PDE-ODE structure, where
the control signal enters through a boundary condition of the
PDE [6]. System (4) can be written equivalently as the following
PDE system,

Ẋ(t) = f (X(t),u1(0, t), · · · ,um(0, t)) (24)
∂tui(x, t) = ∂xui(x, t), x ∈ (0,D), i = 1, · · · ,m (25)
ui(D, t) =Ui(t) i = 1, · · · ,m (26)

Note that the solutions to (25) and (26) are given by

ui(x, t) =Ui(t + x−D), x ∈ [0,D] i = 1, · · · ,m (27)

4 Copyright c© 2018 by ASME



3.2 Transport PDE Representation of the Predictor
States

The predictor states P(θ) (8) can be written as

p(x, t) = X(t)+
∫ x

0
f
(

p(y, t),u1(y, t), · · · ,um(y, t)
)

dy (28)

where x ∈ [0,D]. Based on (28), the functions p(x, t) satisfying
the following ODE in x:

∂x p(x, t) = f
(

p(x, t),u1(x, t), · · · ,um(x, t)
)

x ∈ [0,D] (29)

with initial solution,

p(0, t) = X(t) (30)

We intend to reveal that the solution to (29) and (30) is

p(x, t) = X(t + x), x ∈ [0,D] (31)

Note that the function X(t + x) satisfies the ODE in x (29)
due to the (4):

X ′(t + x) = f
(
X(t + x),U1(t + x−D), · · · ,Um(t + x−D)

)
,

(32)
for all t ≥ 0 and 0≤ x≤ D. It is resulted from the uniqueness of
solutions to the ODE (4). Therefore, by defining

p(D, t) = P(t) (33)

and using the fact that p is a function of one variable, namely
x+ t, one can conclude that

P(t + x−D) = p(x, t), x ∈ [0,D] (34)

Doing the change of variables x = θ +D− t in (28), and utilizing
(27), (30), and (34) results in

P(θ) = X(t)+
∫

θ

t−D
f
(
P(s),U1(s), · · · ,Um(s)

)
ds (35)

where t −D ≤ θ ≤ t. Finally, with this representation, the fol-
lowing holds

Ui(t) = ui(D, t) = κi(p(D, t)), i = 1, · · · ,m (36)

We define the backstepping transformation of ui and its in-
verse backstepping based on the following lemmas:

Lemma 1. The direct backstepping transformations of ui, i =
1, · · · ,m, are defined by

wi(x, t) = ui(x, t)−κi(p(x, t)) (37)

with x ∈ [0,D], p(x, t) is defined in (28), and transform system
(24)-(26) to the following “target system”:

Ẋ(t) = f
(

X(t),w1(0, t)+κ1(X(t)),wm(0, t)+κm(X(t))
)

(38)

∂twi(x, t) = ∂xwi(x, t), x ∈ (0,D) (39)
wi(D, t) = 0 (40)

Lemma 2. The inverse backstepping transformations of (37) are
defined by

ui(x, t) = wi(x, t)+κi(π(x, t)), i = 1, · · · ,m (41)

with x ∈ [0,D] and π(x, t) is defined as follows

π(x, t) = X(t)+
∫ x

0
f
(

π(y, t) , w1 +κ1(π(y, t)), · · · ,

wm +κm(π(y, t))
)

dy (42)

Therefore,

∂xπ(x, t) = f
(
π(x, t),κ1(x, t)+w1(x, t), · · · ,κm(x, t)+wm(x, t)

)
(43)

where x ∈ [0,D], with the following initial solution,

π(0, t) = X(t) (44)

Also, based on assumption 2, we can mention the following
lemma,

Lemma 3. There exist a class K L function β1 such that the
following holds

Ξ̄(t)≤ β1
(
Ξ̄(0), t

)
, for all t ≥ 0 (45)

where

Ξ̄(t) = |X(t)|+
m

∑
i=1
‖wi(., t)‖∞ (46)

The following lemmas help the proof of closed-loop system
stability [29],
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Lemma 4. There exist class K∞ functions ρ such that

‖p(., t)‖∞ ≤ ρ(Ξ(t)) (47)

where

Ξ(t) = |X(t)|+
m

∑
i=1
‖ui(., t)‖∞ (48)

Lemma 5. There exist class K∞ functions ρ̄ such that

‖π(., t)‖∞ ≤ ρ̄(Ξ̄(t)) (49)

where Ξ̄ is defined in (46).

Lemma 6. There exist class K∞ functions ρ and ρ̄ such that

Ξ̄(t)≤ ρ(Ξ(t)) (50)
Ξ(t)≤ ρ̄(Ξ̄(t)) (51)

Finally, based on the mentioned technical lemmas 1-6, the
following theory can be proved [29].

Theorem 2. Consider the closed-loop system consisting of the
plant (24) - (26) and the control laws (36). Under Assumptions
1 and 2 there exists a β function belongs to class K L such
that for all initial conditions X0 ∈ Rn and ui0 ∈ C[0,D], i =
1, · · · ,m, which are compatible with the feedback laws, that
is, they satisfy ui0(D) = κi(p(D,0)), i = 1, · · · ,m, the closed-
loop system has a unique solution X(t) ∈C1[0,∞) and ui(x, t) ∈
C
(
[0,D]× [0,∞)

)
, i = 1, · · · ,m, and the following holds for all

t ≥ 0,

Ξ(t)≤ β
(
Ξ(0), t

)
, for all t ≥ 0 (52)

where Ξ(t) defined in (48).

Proof of Theorem 2: By combining (51) with (45), we
get that Ξ(t) ≤ ρ̄

(
β1(Ξ̄(0), t)

)
, for all t ≥ 0, and hence, with

(51) we arrive at (52) with β (s, t) = ρ̄
(
β1(ρ(s), t)

)
. The proof

of existence and uniqueness of a solution X(t) ∈ C1[0,∞) and
ui(x, t) ∈ C([0,D]× [0,∞)), i = 1, · · · ,m, is shown as follows.
Using relation (29) for t = 0, the compatibility of the initial con-
ditions ui0 , i = 1, · · · ,m, with the feedback laws (36) guarantee
that p(x,0) ∈C1[0,D]. Hence, using relations (28), (30), and the
fact that ui0 ∈C[0,D], i = 1, · · · ,m, it also follows from (37) that
wi0 ∈ C[0,D], i = 1, · · · ,m. The solutions to (39) and (40) are

given for all i = 1, · · · ,m by

wi(x, t) =

{
wi0(t + x), 0≤ x+ t ≤ D
0, x+ t ≥ D

(53)

There is a unique solution for (53) due to the unique-
ness of the solution to (39) and (40). Hence, the compati-
bility of the initial conditions ui0 , i = 1, ...,m, with the feed-
back laws (36) guarantee the existence of a unique solution
wi(x, t) ∈ C

(
[0,D]× [0,∞)

)
, i = 1, · · · ,m. Also, it follows that

X(t) ∈ C1[0,∞) from the target system (38). The fact that
π(x, t) = X(t + x), for all t ≥ 0 and x ∈ [0,D], along with the in-
verse backstepping transformations (41) guarantee that ui(x, t) ∈
C
(
[0,D]× [0,∞)

)
, i = 1, · · · ,m. The proof is completed [29].

By using (27), Theorem 2 can be written in the form of stan-
dard delay notation as follows [29],

Corollary 1 (Theorem 2 in Standard Delay Notation). Consider
the closed-loop system consisting of the plant (4) and the control
laws (6)-(7). Under Assumptions 1 and 2, the following holds for
all t ≥ 0,

Ω(t)≤ β
(
Ω(0), t

)
(54)

where

Ω(t) = |X(t)|+
n

∑
i=1

sup
t−D≤θ≤t

|Ui(θ)| (55)

As Assumptions 1 and 2 are held for our system, we can
employ Theorem 2 and Corollary 1, and formulate a predictor-
based controller for our system to compensate any large input
delays.

Experimental Results
We implement the predictor-based controller for Baxter

robot through a pick-and-place task, whereas there is a similar in-
put delay in all input channels. We formulate the control scheme
for the highly interconnected nonlinear system and then experi-
mentally validate.

First, in order to reveal the significant destabilizing effect
of delay for the robot (Fig. 2), we intentionally apply 0.05s in-
put delay and then control the manipulator without any predictor.
The join-space trajectories are demonstrated in Fig. 4.

Shown in Fig. 4 reveals that, for a small input delay, the
closed-loop system becomes unstable. It is worth mentioning
that we operate the robot using joint torque control mode, as an
advanced control scheme. By operating the robot in the torque
control mode, access is granted to the lowest control levels. On

6 Copyright c© 2018 by ASME



FIGURE 2. The failing robot without the predictor

FIGURE 3. A stable obstacle-avoidance pick-and-place task using the
predictor-based controller

the other hand, we cannot capture more and accurate data, since
Baxter is moving stochastically leading to the catastrophic mal-
function. The AVI files of the experiments are accessible through
our Dynamic Systems and Control Laboratory (DSCL) website.

Then, we intentionally apply 0.5s input delay and control
the system to compensate the destabilizing delay, as shown in
Fig. 3. As all the assumptions are held for the system, we take
the advantage of the predictor-based controller using Theorem 2
and Corollary 1, in order to globally asymptotically stabilize the
robot. The results are shown in Fig. 5.

As can be seen, the robot does not have any motion at the
first 0.5s, since there is no control input to the system. Note
that the gravity compensation torques need to be applied on the
Baxter manipulator in order to oppose the effect of gravitational
force; note that this is a basic mode which is, by default, active
for the onset of the robot operation. Then, the robot begins track-
ing the desired join-space trajectories just after 0.5s. As can be
observed, the joints are tracking, almost perfectly, the desirable
trajectories. As shown in Fig. 5, the negligible error mainly roots
on the inaccuracy of sensors and actuators.
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FIGURE 4. Inability to track the desired trajectories without any pre-
dictor in the presence of 0.05s input delay

Conclusion
Through this paper, we presented the formulation and im-

plementation of the predictor-based controller for a highly inter-
connected nonlinear system, Baxter manipulator as a case study,
with the time-invariant input delay. The results reveal the sig-
nificance of predictor used in the feedback control law subject
to the destabilizing time delay. We established that our system
is forward complete and Input-to-State Stable, and then formu-
lated the predictor-based controller utilizing Theorem 2. The re-
sults demonstrate that the manipulator becomes stable and, as
expected, tracks the desired joint-space trajectories despite the
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FIGURE 5. Tracking the desired trajectories using predictor-based
controller in the presence of 0.5s input delay

destabilizing input delay. The negligible tracking error mainly
roots on sensors and actuators inaccuracy.

We are currently focusing our efforts on the creation of
a nonlinear adaptive time-delay controller for highly inter-
connected multi-agent systems; with application to high-DOF
robots.
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linear predictor feedback laws to time-and state-dependent delay
perturbations”. Automatica, 49(6), pp. 1576–1590.
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