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ABSTRACT

In this paper, we present a novel nonlinear analytical cou-
pled trajectory optimization of a 7-DOF Baxter manipulator val-
idated through experimental work utilizing global optimization
tools. The robotic manipulators used in network-based applica-
tions of industrial units and even homes, for disabled patients,
spend significant lumped amount of energy and therefore, opti-
mal trajectories need to be generated to address efficiency is-
sues. We here examine both heuristic (Genetics) and gradient
based (GlobalSearch) algorithms for a novel approach of “S-
Shaped” trajectory (unlike conventional polynomials), to avoid
being trapped in several possible local minima along with yield-
ing minimal computational cost, enforcing operational time and
torque saturation constraints. The global schemes are utilized in
minimizing the lumped amount of energy consumed in a nomi-
nal path given in the collision-free joint space except an impact
between the robot’s end effector and a target object for the nom-
inal operation. Note that such robots are typically operated for
thousands of cycles resulting in a considerable cost of operation.
Due to the expected computational cost of such global optimiza-
tion algorithms, step size analysis is carried out to minimize both
the computational cost (iteration) and possibly cost function by
finding an optimal step size. Global design sensitivity analysis is
also performed to examine the effects of changes of optimization
variables on the cost function defined.

1 Introduction
Autonomous and nonautonomous operations of any elec-

tromechanical system, in particular robots, have received con-
siderable attention with respect to both the stability and, more
importantly, efficiency issues. Both the autonomous and nonau-
tonomous methods, which utilize online and offline/blind opti-
mization and control schemes, respectively, have revealed some
advantages and disadvantages. We here focus on the nonau-
tonomous energy-efficient operation of the Baxter manipulator
which would subsequently be used in nonlinear control schemes
as desirable trajectories. The offline optimization/control of the
robot will be gradually examined with respect to the autonomous
practice to yield the most reliable and optimal configuration.

Note that the robots are widely utilized in industry due to
their reliable, fast, and precise motions [1] although they are not
energy efficient and hence consume a significant lumped amount
of energy. The energy consumption and subsequently cost of
operation considerably increase when thousands of the robots
work together, for example in a factory, to carry out a network-
based task for thousands of cycles. Based on the recent statis-
tics published, manufacturing industries are among the largest
consumers of energy in which the robots they employ take the
biggest share of consumption [2]. It is worthy to mention that
the robots used in auto industry consume more than half of the
total energy required to produce a vehicle body.

The importance of the optimal operation can be visualized
through a network of robots operating simultaneously to carry
out a specific task defined; we have reported another effort of the
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interconnected operational optimization in [4] for the so-called
“Smart Valves Network” [5–7]. The robot manipulator, which is
being analyzed in this research work, is operated for thousands
of cycles in industries and even homes as a reliable servant for
disabled patients. A considerable lumped amount of energy is
expectedly consumed in a nominal trajectory given, as a part of
the network-based operation, and it hence needs to be minimized
resulting in a significant reduction of operational cost.

Therefore, the issue of energy consumed by robots has be-
come a major challenge for researchers and robot manufactur-
ers [8–15]. The total mechanical energy consumed by the robot
is expectedly affected by the required torque of each joint in
addition to the joints’ angular velocities. The high level of en-
ergy consumption is typically caused by jerky motions of robots.
Many researchers have mainly focused on the optimal design of
robots [16–18], path planning [19–21], and minimizing joints’
torques [22, 23]. The geometrical constraints [24], dynamic
characteristics, energy consumed, and execution time [25] are
important issues which have been thoroughly addressed by re-
searchers to carry out optimization. Many efforts have been re-
ported in presenting optimal control schemes to optimize op-
eration time and energy consumption [26–28]. Nevertheless,
most approaches have focused on minimizing the execution time,
which may not necessarily yield a minimal amount of energy
consumption [29–32]. From another aspect, the robot redun-
dancy yields motion dexterity which in turn would avoid harm-
ful singularities and potentially workspace obstacles. We have
previously reported [16] the effects of redundancy on the design
optimization process.

Note that the operational optimization scheme, which is be-
ing formulated here, needs three phases to be carried out. First,
we have a collision-free nominal trajectory which will be dis-
cussed in detail except a collision between the robot’s end ef-
fector and a target object due to the jerky motion of the nomi-
nal operation. Based on the assumption of collision-free motion,
adding more points between the initial and end points makes no
sense and expectedly only imposes significant computational cost
by implementing conventional polynomials of Spline and Beźier
which contain considerable additional constraints; this would
lead to tedious and gradually infeasible computational burden
for such a 7-DOF robot. Therefore, the contribution of this work
is to propose novel “S-Shaped” trajectories to overcome the dif-
ficulties mentioned earlier. Then, the cost function is formu-
lated as the lumped amount of mechanical energy consumption
enforcing operational time and torque saturation constraints. Fi-
nally, we utilize global optimization schemes, the heuristic and
gradient based ones, in improving the dynamic characteristics
of a given nominal trajectory along with minimizing the energy
consumption.

After deriving fourteenth-order dynamic equations using the
Lagrangian method, the results of experimental work are pre-
sented to examine the accuracy of the modeling process. We

then utilize both the Genetic and GlobalSearch (gradient based
method) algorithms to avoid being trapped in several possible lo-
cal minima with respect to the bounds of optimization variables,
which are determined based on the operational time and torque
saturation constraints. Optimization of such interconnected non-
linear coupled equations needs step size analysis to improve an
expected cumbersome computational cost (iteration). An opti-
mal step size is numerically calculated to avoid a significant com-
putational cost/time. The effects of changes of optimization vari-
ables on the cost function defined are also studied using global
design sensitivity analysis. The gradient of cost function is calcu-
lated with respect to the optimization variables to reveal the share
of each variable in minimizing the lumped energy consumption.

2 Mathematical Modeling
The redundant manipulator, which is being studied here, has

7-DOF as shown in Fig. 1. The mass, Coriolis, and gravi-
tational (stiffness) matrices are symbolically derived using the
Euler-Lagrange equation. The robot’s Denavit-Hartenberg pa-

FIGURE 1. The 7-DOF Baxter’s arm

rameters are shown in Table 1 provided by the manufacturer. In
general, the Euler-Lagrange equation expectedly leads to a set of
n second-order ordinary differential equations:

d
dt

∂L
∂ q̇i
− ∂L

∂qi
= τi i = 1, · · · ,n (1)

where L denotes the Lagrangian and is obtained based on kinetic
and potential energies (L = K−P). The kinetic energy of an n-
link manipulator, which has n degrees of freedom, is a quadratic
term of q̇ (the vector of joints’ angular velocities) as the follow-
ing:
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TABLE 1. Baxter’s Denavit-Hartenberg Parameters

Link ai di αi θi

1 0.069 0.27035 −π/2 θ1

2 0 0 π/2 θ2 +π/2

3 0.069 0.36435 −π/2 θ3

4 0 0 π/2 θ4

5 0.010 0.37429 −π/2 θ5

6 0 0 π/2 θ6

7 0 0.3945 0 θ7

K =
1
2

q̇T
n

∑
i=1

[miJvi(q)
T Jvi(q)+ Jωi(q)

T Ri(q)IiRi(q)T Jωi(q)]q̇

=
1
2

q̇T D(q)q̇ =
1
2

n

∑
i, j

di j(q)q̇iq̇ j (2)

where, Jvi and Jωi are 3×n matrices making the Jacobian of mass
center of i-th link and n× n “inertia matrix” (D(q)) is symmet-
ric/positive definite for each q ∈ℜn.

Note that the Baxter’s arm has a set of springs (Fig. 1) acting
as a damper to absorb harmful vibration of the jerky motions
as discussed earlier. The potential energy is hence obtained as
the sum of both the gravitational and elastic (spring) terms as
follows:

P =
n

∑
i=1

Pi +
1
2

keqx2

=
n

∑
i=1

gT rcimi +
1
2

keqx2 (3)

where, Pi is the potential energy of the i-th link, g is the gravita-
tional acceleration, rci indicates the coordinate of mass center of
link i, keq stands for the stiffness of preloaded springs in joint S1,
and x is the spring displacement which is calculated as follows:

x =
√

a2 +b2−2abcos(θ) (4)

where θ = π

2 +ψ (ψ =−q2) as shown in Figs. 1 & 2. Using the
energy terms presented in Eqs. 2 and 3, the general form of the
Euler-Lagrange equation becomes as:

D(q)q̈+C(q, q̇)q̇+φ(q) = τ (5)

where, q̇ and q̈ indicate the vectors of angular velocity and accel-
eration of the joints, respectively, τ is the driving torque vector,
and φ(q) is the gravitational matrix as follows:

φk =
∂P
∂qk

(6)

q
4

q
6

q
2

(a)

q
1

q
5

q
3

q
7

(b)

FIGURE 2. The joints’ configuration: (a) sagittal view; (b) top view

Utilizing the “Christoffel symbols” [33] would help us de-
rive the elements of the Coriolis matrix (C(q, q̇)) as follows:

ci jk =
1
2

{
∂dk j

∂qi
+

∂dki

∂q j
−

∂di j

∂qk

}
(7)

where the k, j-th element of C(q, q̇) is calculated as the following:

ck j =
n

∑
i=1

ci jk(q)q̇i =
n

∑
i=1

1
2

{
∂dk j

∂qi
+

∂dki

∂q j
−

∂di j

∂qk

}
q̇i (8)

We implemented the symbolic formulations in MATLAB
and obtained the coupled fourteenth-order nonlinear dynamic
equations to be used in the optimization process.

3 Experimental Validation
The experimental validation of such a coupled nonlinear

mathematical model is a necessity to be carried out in order to
examine the accuracy of the formulation and then possibly refine
the model. We hence recorded the joints’ torques to be compared
with the ones computed through the interconnected equations.
The results are shown in Figs. 3(a) and 3(b), and 3(c) and 3(d) for
four different joints which, in particular, need significant higher
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FIGURE 3. Comparison between the experimentally measured and
nominal analytical torques used in driving the joints (a) S0 and (b) E0
(c) W0 and (d) W1; the non-zero torques at the initial point (t=0) stand
for holding torques against gravity.

and lower amounts of torques, respectively, to be operated. Note
that non-zero torques at the initial point, t = 0, stand for holding
torques against gravity while the links are stationary leading to
zero angular velocities/accelerations at the initial point.

Shown in Figs. 3(a), 3(b), 3(c), and 3(d) are the experimen-
tal and analytically computed nominal torques used in driving
the joints S0, E0, W0, and W1, respectively, which reveal an ac-
ceptable consistency giving us the confidence to utilize the model
developed in the optimization process. Note that the negligible
differences potentially root on the unmodeled friction and back-
lash of the joints.

4 Trajectory Optimization
The Baxter uses a simple PD controller and therefore, the

lack of I controller has caused the jerky motions, steady state
tracking errors, and subsequently inefficient operation of the
robot. The undesirable responses can be observed through ex-
perimental work which we have carried out for a nominal trajec-
tory in our Dynamic Systems and Control Laboratory (Figs.
3(a)–3(d)). It can be observed that the robot collides with the
target object. This is counted as a harmful dynamical behavior
for both the industrial and home applications. Note that the Bax-
ter, which is being analyzed here, has been designed for research
purposes and hence has no predefined nominal trajectory. The
robot operates using the PD controller with respect to the initial
and end points given in the joints space, which in turn generates
energy-inefficient trajectories. The coupled trajectory optimiza-
tion of the robot, as a part of the nonautonomous approach, is

TABLE 2. The ranges of joints’ angles (degree)

Joint’s Name Range Initial Point End Point

S0 -97.5 to 90 -97.2070 29.5312

S1 -80 to 60 -71.1694 -21.5338

E0 -170 to 170 -10.3052 0.1099

E1 0 to 150 46.9775 50.2954

W0 -170 to 170 -29.2676 35.7935

W1 -90 to 115 19.1382 59.5459

W2 -170 to 170 -67.7417 -156.9287

a necessity to be carried out in order to considerably reduce the
mechanical energy consumption along with removing the jerky
motions to avoid such a harmful collision discussed earlier.

Note that the optimization needs to be formulated enforcing
the operational time and torque saturation constraints to avoid
the expected singularities. The feasible joints’ ranges along with
the initial and end points are listed in Table 2. One of the
physical constraints, which needs to be implemented in the op-
timization formulation, is zero angular velocity/acceleration at
the initial and zero angular velocity at the end points, indicating
that the manipulator would remain stationary at those points:
1 This constraint leads us to the well-known “S-Shaped” tra-

jectories which would yield the robot’s smooth dynamical be-
havior by mitigating the effects of jerky motions. Such a smooth
trajectory obviously satisfies the initial/end points’ zero angu-
lar velocity condition; 2 The conventional polynomials, in-
cluding Spline/Bézier ones, would yield considerably more vari-
ables to be optimized with respect to the joint-space optimiza-
tion, which in turn would expectedly impose cumbersome com-
putational costs. 3 Note that adding points between the initial
and end points only imposes additional constraints with cum-
bersome computational cost which would be meaningless with
respect to the collision-free motion; except the collision between
the robot’s end effector and the target object for the nominal op-
eration due to the jerky motion. Note that we have previously
examined these trajectories (S-Shaped ones) for another inter-
connected electromechanical system [6] enforcing the geometri-
cal and stability constraints [5]. We fit the following nonlinear
functions to the joints’ nominal trajectories which are generated
with respect to the initial/end points given in Table 2 using the
PD controller:

θi(t) = Ai tanh(BitCi)+Di i = 1, ...,7 (9)

where A’s, B’s, C’s, and D’s are calculated utilizing the
least square method for the trajectory fitting process as
listed in Table 3. Note that the A’s and D’s are con-
stant/unique parameters for each joint and are easily calculated as
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TABLE 3. The nominal trajectories’ coefficients

Joint’s Name A B C D

S0 126.7382 0.0172 2.6530 -97.2070

S1 49.6356 0.0169 2.6480 -71.1694

E0 10.4151 0.0171 2.6476 -10.3052

E1 3.3179 0.0173 2.6390 46.9775

W0 65.0611 0.0168 2.6503 -29.2676

W1 40.4077 0.0170 2.6410 19.1382

W2 -89.187 0.0171 2.6515 -67.7417

“End Points-Initial Points” and “Initial Points”, respectively.
The B’s and C’s are the optimization variables which are subject
to the following lower and upper bounds determined through the
following constraints:

γ1 = [B1S0 ,B2S1 ,B3E0 ,B4E1 ,B5W0 ,B6W1 ,B7W2 ] (10)

γ1min = [88,89,88.5,89,86.5,89.3,89]×10−4 (11)
γ1max = [245,261,252,248,253,260,251]×10−4 (12)

γ2 = [C1S0 ,C2S1 ,C3E0 ,C4E1 ,C5W0 ,C6W1 ,C7W2 ] (13)
γ2min = [2.35,2.19,2.36,2.27,2.18,2.35,2.29] (14)
γ2max = [4.09,4.2,4.10,4.20,4.20,4.30,4.11] (15)

The lower bound roots on the operational time indicating that
the robot’s motion will be within 12s. Note that decreasing the
lower bound would yield much slower motion which is not desir-
able and logical, in particular for the industrial applications. The
upper bound is determined based on the Practical Torque Sat-
uration issue such that increasing the upper bound would yield
abrupt torques leading to both the motors’ failures and consider-
ably fast motion. The optimization problem is a constrained one,
enforcing the mentioned lower and upper bounds, with the fol-
lowing cost function defined as the lumped amount of mechan-
ical energy consumed in the robot for a predefined operational
time:

minEtot =
7

∑
i=1

t f∫
0

∣∣∣τiθ̇i

∣∣∣dt (16)

Subject to :

The Interconnected Equations &
γ1min ≤ γ1 ≤ γ1max

γ2min ≤ γ2 ≤ γ2max

We hence need to optimize fourteen interconnected vari-
ables using global optimization schemes. Note that the variables
are not of the same order, which resulted in serious numerical er-
rors in our initial studies. We fixed this problem by conditioning

them using a normalization scheme as follows:
γ1n = γ1×104 (17)
γ2n = γ2×102 (18)

We utilize two global optimization schemes, including genetic
(GA) and GlobalSearch (GS) algorithms, to avoid being trapped
in several possible local minima. The genetic method has been
developed based on a heuristic search to mimic the process of
natural selection [34–37]. The genetic algorithm [6] is typically
more robust than other conventional schemes. It does not break
down easily in the presence of slight changes of inputs, and noise.
For large-scale state-space equations, the algorithm may poten-
tially exhibit significantly better performance than typical opti-
mization techniques.

The GlobalSearch method searches more through the possi-
ble trajectories, and computes the gradient of the cost function
along with width step for finding new points. We have previ-
ously employed the GlobalSearch algorithm in Matlab [6] which
uses gradient based method to return local and global minima.
The algorithm preliminary starts with a local solver (here fmin-
con) from multiple starting points and stores local and global
solutions found during the search process. The fmincon solver
estimates gradients utilizing parallel finite differences. Note that
the global search solver uses a scatter-search pattern to generate
multiple starting points which can be observed in figures shown
in results section for presenting the gradient-based method. The
function (TolFun) and constraints (TolCon) tolerances used in the
GS scheme are 10−6.

Note that for the GA method we have utilized 1) “Popula-
tionSize” of 200 for the size of population, 2) “Generations” of
140 which indicates the maximum number of iterations before
the algorithm halts, 3) “MigrationFraction” of 0.2 specifying the
fraction of individuals in each subpopulation that migrates to a
different subpopulation, 4) “MigrationInterval” of 20 standing
for the number of generations that take place between migrations
of individuals between subpopulations, and 5) Function (TolFun)
and constraints (TolCon) tolerances of 10−6.

Note that the scatter-search pattern of the GS algorithm
needs random initial guesses to be employed via the following
formulations:

γ1rn = γ1min +(γ1max− γ1min)× rand(0,1) (19)
γ2rn = γ2min +(γ2max− γ2min)× rand(0,1) (20)

where rand(0,1) is a random number between zero and one. We
implemented the algorithms in MATLAB and captured many in-
teresting results.

5 Results
Fig. 4 shows the optimization effort for B5 using both the

GA and GS algorithms, respectively. Note that we intentionally
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present the variable of joint W0 which expectedly requires a low
amount of torque to be operated (Fig. 3(c)). The optimal values
of the variables (B’s and C’s) are listed in Table 4.
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FIGURE 4. The optimized values of B5 using (a) GA and (b) GS
algorithms.

As discussed earlier, the GS scheme reveals the scatter-
search pattern although converges to both the optimal values of
variables and cost function satisfying the tolerances defined in
Section 4; we validate the crucial issue of convergence by pre-
senting the convergence histories. Fig. 4 presents considerable
computational costs (iterations) of 20400 and 87560 for both the
GA and GS schemes, respectively, which look logical with re-
spect to the scale of the coupled dynamic equations. Note that
we have spent the significant computational times of 11855s and
58020s for the GA and GS algorithms, respectively, which un-
doubtedly need to be minimized using the so-called “step size
analysis”.

TABLE 4. Optimal trajectories’ coefficients

Joint’s Name GA GS

B C B C

S0 0.009 2.4 0.009 2.4

S1 0.025 4.0959 0.025 4.0999

E0 0.009 3.5250 0.009 3.5228

E1 0.0202 2.9073 0.0091 3.3691

W0 0.025 4.1 0.025 4.1

W1 0.0102 2.9273 0.009 3.0361

W2 0.0115 2.4 0.009 2.4001

It is straightforward to observe that, based on the nominal
and optimal variables listed in Tables 3 and 4, the optimal values
of B1, B3, B6, and B7 are lower than the nominal ones. Note
that the optimal values of C1 and C7, and C3 and C6 are smaller
and higher than the nominal values, respectively. Shown in Figs.
5(a), 5(c), 6(c), and 6(d) reveal the effects of such optimal values
of the Bi and Ci (i=1, 3, 6, 7) on the trajectories of joints S0,

E0, W1, and W2, respectively. The optimal angular velocities of
joints S0, W1, and W2 are lower than those of the nominal ones,
as expected, leading to slower motions of the joints. Note that
the joint S0 takes the biggest share (Fig. 3(a)) among the other
ones to consume the lumped amount of energy and therefore, its
lower angular velocity would lead to a lower amount of the cost
function defined.
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FIGURE 5. The nominal and optimal trajectories using the GA and
GS algorithms: (a) S0; (b) S1; (c) E0

Note that the optimal values of B2, B4, and B5 are higher than
those of the nominal ones, except B4 of the GS method, and their
corresponding C’s have also higher values than the nominal C’s.
The effects of such higher values of the Bi and Ci (i=2,4,5) can
be visualized in Figs. 5(b), 6(a), and 6(b) by presenting faster
angular velocities of the optimal trajectories than the nominal
ones. Note that we can easily conclude that the joint E1, for both
the nominal and optimal cases with respect to its small range of
operation (θE1 ≤ 3.5◦), considerably spends a lower amount of
energy in comparison with the other joints, particularly than that
of the joint S0 which we have previously addressed. Logically,
the smooth optimized motions shown in Figs. 5(a)-6(d), despite
the robot’s nominal jerky trajectories, would expectedly demand
lower driving torques to be used in the robot operation.

The negligible differences between the GA and GS schemes
(Figs. 5(a)-6(d)) are expected to be observed as they utilize dif-
ferent algorithms discussed in Section 4.

An interesting trade-off can be observed among the optimal
values of B’s and C’s with respect to their subsequent effects
on the optimal trajectories, which expectedly lead to both the
lower angular velocities of the joints and energy consumption.
A crucial issue of sensitivity of the optimization process to the
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FIGURE 6. The nominal and optimal trajectories using the GA and
GS algorithms: (a) E1; (b) W0; (c) W1; (d) W2

variables of B’s and C’s hence needs to be carefully addressed.
We discussed that even getting the higher values of C’s, for the
joints E0 and W1, yields almost the same nominal and optimal
motions of the joints. Therefore, the roles of B’s seem to be
more drastic than the C’s. A global sensitivity analysis has to be
carried out in order to examine the roles of B’s and C’s on the
optimization process.

Typically, the local and global sensitivity analyses are used
in determining the effects of changes of the optimization vari-
ables on the cost function defined. The local sensitivity analysis
(one-at-a-time (OAT) method) evaluates the effect of one vari-
able on the cost function at a time while keeping the other vari-
ables constant. Although the global sensitivity analysis utilizes
set of random samples to search the design space with respect
to the bounds defined. The global analysis would be an efficient
approach as the change of each variable affects the dynamic char-
acteristics of all the joints/links, through the interconnected dy-
namic equations, and subsequently the lumped cost function.

To carry out the global sensitivity analysis, we need to nu-
merically calculate the gradient of the cost function with respect
to the optimization variables as follows:

∇E =

[
∂E
∂Bi

,
∂E
∂Ci

]T

i = 1, · · · ,7

Shown in Figs. 7(a)-8(g) are the results of such a sensitivity
analysis. It is straightforward to conclude that the changes of B’s
significantly affect the cost function in comparison with the C’s
variations such that the gradient of the lumped energy consump-
tion is too sensitive to the B’s. It is also of a great interest to
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FIGURE 7. The global sensitivity analysis with respect to the B’s.

observe that the changes of B1 and B2, as expected, have drastic
roles on the variations of the cost function and subsequently the
optimization process (Figs. 7(a)-7(b)). The physical interpreta-
tion of such dominant variables of B1 and B2 can be explained
through the dynamics of the robot while, as discussed earlier, the
joints S0 and S1 take the biggest shares of the torques needed to
be applied. Therefore, we expect to observe the high sensitivity
of the cost function to both the B1 and B2.

Shown in Figs. 9(a) and 9(b) are the energy consumptions
minimized using both the GA and GS algorithms, respectively.
Note that we have employed the heuristic and gradient based
methods to examine the locality/globality of the cost function
minima. Figs. 9(a) and 9(b) reveal a negligible difference (less
than 0.05%) for the energy savings of both the schemes as fol-
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FIGURE 8. The global sensitivity analysis with respect to the C’s.

lows:

∆EGS =

29.771(J)︷ ︸︸ ︷
Enominal−

23.7268(J)︷ ︸︸ ︷
Eoptimal

Enominal
×100 = 20.03% (21)

∆EGA =

29.771(J)︷ ︸︸ ︷
Enominal−

23.7338(J)︷ ︸︸ ︷
Eoptimal

Enominal
×100 = 20.027% (22)

The negligible higher amount of energy saving of the GS method
can be justified through its corresponding optimal values of B’s.
We have previously discussed the significant roles of B’s on the
variation of the cost function via the global sensitivity analysis.
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FIGURE 9. The energy optimized using (a) GA and (b) GS algo-
rithms.

(a) (b)

(c) (d)

FIGURE 10. The experimental nominal and optimal trajectories us-
ing both the GA and GS algorithms (check our DSCL website) in sample
times of (a) t = 2s, (b) t = 5s, (c) t = 6s, and (d) t=7s; at t=7s the robot’s
end effector through the nominal trajectory collides with the target ob-
ject while the optimal one avoids such a collision throughout the whole
operational time. The shadow frames present the nominal trajectory.

We have carried out experimental validation of the nonlin-
ear analytical approach examining both the nominal and optimal
trajectories. Figs. 10(a)-10(d) present the experimental work, for
sample operation times of 2s, 5s, 6s, and 7s, revealing smoother
and slower motions of the joints/links for the optimal path than
the nominal one. The jerky motion of the nominal trajectory
caused an undesirable collision between the robot’s end effec-
tor and the target object which needs to be smoothly picked up.
It is interesting to observe that at t=7s the robot’s end effec-
tor through the nominal trajectory collides with the target ob-
ject while the optimal one avoids such a collision throughout the
whole operational time. Note that the shadow motions/frames
stand for the nominal operation. The AVI files of the experiment
are accessible via our Dynamic Systems and Control Labora-
tory (DSCL) website. Note that the difference between the en-
ergy savings of both the theoretical and experimental approaches
is almost zero:
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FIGURE 11. The numerical step size (SS) analysis for the gradient
based algorithm (Global Search): a) SS = 10−8 (default value); b) SS =
10−7; c) SS = 10−6; d) SS = 10−5
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FIGURE 12. The numerical step size (SS) analysis for the gradient
based algorithm (Global Search): a) SS = 10−4; b) SS = 10−3; c) SS =
10−2

∆Esaving =

23.7268(J)︷ ︸︸ ︷
Etheory −

23.7224(J)︷ ︸︸ ︷
Eexperiment

Etheory
×100≈ 0% (23)
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FIGURE 13. The experimental nominal and optimal instantaneous
lumped amount of energy consumed in the joints.

Fig. 13 presents the experimental nominal and optimal in-
stantaneous lumped amount of energy consumed in the joints val-
idating the optimization efforts shown in Fig. 9.
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FIGURE 14. The numerical step size (SS) analysis: (a) Iteration vs.
SS; (b) Minimized energy vs. SS

Figs. 4 and 9 reveal cumbersome computational costs (it-
erations), in particular for the GS method. The step size (SS)
analysis is a necessity to be implemented in determining an opti-
mal step size to reduce the computational cost/time and possibly
the lumped amount of energy consumed.

Figs. 11(a)- 12(c) present convergence histories of the GS
method vs. different step sizes of SS=10−8 (default value) to
SS=10−2. Fig. 14(a) reveals the decremental computational cost
using the incremental values of the step size. Note that the mini-
mal computational cost is obtained at SS=10−2 which yields up-
ward of 80% reduction of the iteration. It is interesting to observe
that the iteration increases for SS=10−5. From another aspect,
the effect of the step size has to be evaluated for the cost function
defined. Fig. 14(b) presents a negligible decrease for the lumped
amount of energy saved (less than 8.5× 10−4 %) using the step
size of SS=10−2, which yielded the minimal computational cost.
Therefore, it is straightforward to conclude that the step size of
SS=10−2 is an optimal value to reduce both the computational
cost and time.

Note that the step size analysis shown in Figs. 11(a)- 12(c)
indicates the convergence of the GS scheme despite its scatter-
search pattern which we have previously addressed in Section 4.
Fig. 15 also shows the convergence of the GA method (the best
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fitness value).

6 Conclusion
In this effort, we presented the interconnected trajectory op-

timization of a 7-DOF Baxter manipulator using both the heuris-
tic and gradient based methods to avoid being trapped in sev-
eral possible local minima. The coupled dynamic equations of
the robot were derived utilizing the Lagrangian method and then
validated through the experimental work. We then optimized the
joints’ trajectories to generate smooth/efficient paths to avoid be-
ing exposed to the jerky motions of the nominal ones. The de-
sign sensitivity analysis was carried out to evaluate the effects
of changes of the optimization variables on the cost function de-
fined. As expected, the joints S0(B1) and S1(B2) play more sig-
nificant roles on the optimization process than the other ones.

We have also carried out the experimental work, for both
the nominal and optimal trajectories, to examine the accuracy
of the analytical efforts. The step size analysis was performed
to determine an optimal step size in order to reduce both the
computational cost and time. We obtained the optimal step size
of SS=10−2 which considerably reduced the computational cost
(80%).

The principal results of this research work can be summa-
rized as follows:

• A considerable amount of energy was saved (upward of 20%).
• The jerky motion and subsequently collision between the

robot’s end effector and the target object were removed us-
ing the optimized trajectory of the robot.

• An optimal step size resulted in the significant reductions of
both the computational cost (upward of 80%) and time, in
particular for the GS method.

• The experimental work validated the analytical approach by
presenting almost no difference between the energy savings.

We are currently focusing our efforts on developing an adap-
tive controller (to be validated experimentally) to carry an un-
known mass to a desired position using the optimal trajectory
which we have developed here.
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