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ABSTRACT

In this effort, we focus on determining the safe operational
domain of a coupled actuator-valve configuration. The sikieda
“Smart Valves” system has increasingly been used in critica
applications and missions including municipal piping netks,
oil and gas fields, petrochemical plants, and more impotyant
the US Navy ships. A comprehensive dynamic analysis is henc
needed to be carried out for capturing dangerous behavibrs o
served repeatedly in practice. Using some powerful tools of
nonlinear dynamic analysis including Lyapunov exponent a
Poinca© map, a comprehensive stability map is provided in or-
der to determine the safe operational domain of the network
in addition to characterizing the responses obtained. CGedp
chaotic and hyperchaotic dynamics of two coupled solenoid a
tuated butterfly valves are captured by running the network f
some critical values through interconnected flow loadschdie
by the coupled actuators’ variables. The significant eftécn
unstable configuration of the valve-actuator on anotheriset
thoroughly investigated to discuss the expected stahdityes
of a remote set due to others and vice versa.

1 Introduction
Multidisciplinary electromechanical-fluid systems have

been widely used in many megascale networks. Municipal pip-
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nsylvania

ing systems, oil and gas fields, petrochemical plants, ang mo
critically, the US Navy are the immediate ones which need to
utilize a reliable, safe, and efficient coupled flow disttibo net-
work.

Future smart cities would inevitably need an autonomous

flow control network in order to help improve the safety oflsuc

€a critical system and also to decrease the incremental cbsgs
eration and maintenance. Malfunctions of the flow networkeha
occurred repeatedly resulting in the flow interruption ofaim
towns/districts. Although significant cost and energy wiobé
needed to be spent in order to restore the whole system in ad-
dition to human resources required to be recruited. Ecooami
and even social impact of these malfunctions can be expéxted
be dramatic and consequently, a fully automated flow netugork
needed to be designed and operated.

The same issues exist for oil and gas fields and petrochemi-
cal plants. The industry of oil and gas is one of the most sigasi
elements of the global economy and plays important roles eve
in global politics. The flow control network is the essenpatt
of these fields and is therefore required to be safely deditgme
minimize the flow interruptions leading to much higher alég
production.

The US national defense and homeland security is undoubt-
edly a highly important priority which requires to be addes
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and investigated carefully. The US Navy broadly employs the
network of coupled electromechanical valve sets for cagbiar-
poses, mainly for chilled water systems. The proper perémte

of the network is remarkably effective for other criticalitsnof
radar, sonar, defense systems, etc.

We have carried out broad analytical and experimental stud-
ies from nonlinear modeling to design optimization of both a
isolated and interconnected symmetric butterfly valvegetrby
solenoid actuators [1-9]. The multidisciplinary coupBndn-
cluding electromagnetics and fluid mechanics, had to be thor
oughly regarded in the modeling phase in order to yield an ac-
curate nonlinear model of such a complex system. A thirceord
nondimensional dynamic model of the single set was deriwed t
be used in nonlinear dynamic analysis [3] and optimal defgign

The dynamic analysis expectedly yielded practically ob-
served crisis and transient chaotic dynamics of a singleatet
valve for some critical physical parameters. A comprehensi
stability map was also presented as an efficient tool to oheber
the safe domain of operation which in turn could serve fonide
tifying the lower and upper bounds of the design optimizagt
forts. The design optimization was then carried out [4] tecte
the optimal actuation unit's parameters coupled with thehme-
ical and fluid parts in order to significantly reduce the antain
energy consumption (upward of %40).

Note that the applications addressed earlier contain thou-
sands of actuated valves in which a high level of dynamic cou-
pling has been repeatedly observed in practice. These dgnam
couplings among different sets need to be captured throogh a
lytical studies. We have developed [5] a novel nonlinear ehod
for two sets of solenoid actuated butterfly valves operaiing
series. The closing/opening valves were modeled as chgngin
resistors and the flow between them as a constant one. A sixth-
order nonlinear coupled model revealed the high dynamie sen
sitivity of each element of a set, the valve and the actuator,
another one and vice versa. The power spectrum was used in
confirming the same frequency response of a neighbor set due
to the external periodic noise applied on another set of dev
and actuator.

By taking another step, we optimized the design of coupled
actuation units of two sets operating in series [8] subjeatgud-
den contraction. The pipe contraction imposed an additi@a
sistance to be modeled and therefore, the coupled dynamic eq
tions derived in [5] had to be slightly modified. We represent
the modeling process here for completeness. We have surpris
ingly established an interesting coupling between cusrefithe
actuation units through the interconnected flow loads piticlg
hydrodynamic and bearing torques, which affect both theesl
dynamics.

Important nonlinear phenomena in electromechanical sys-
tems have also received considerable attention. e3wai. [10]
studied the hyperchaotic behavior of the newly presentaglsi
fied Lorenz system by using a sinusoidal parameter variatiah

2

hyperchaos control of the forced system via feedback. Bemer
et al. [11] investigated the synchronization of chaos and hyper-
chaos in first-order time-delayed systems that are couedju
the nonlinear time-delay excitatory coupling by assigniwg
characteristic time delays: the system delay that is samteofi

the systems, and the coupling delay associated with theliogup
path. Many efforts for analyzing hyperchaotic dynamicsehav
been reported in [12-27].

We have addressed the modeling process subject to the
pipe contraction in [8] and represent here for completeness
The contribution of this work is the inclusion of intercormied
electromechanical-fluid nonlinearities between two dciua
valve configurations to thoroughly analyze the effects otian
stable set of the valve-actuator on another one. Through thi
comprehensive analysis, chaotic and hyperchaotic dyrsaafic
two coupled configurations are captured by exposing thear&tw
to some critical values. The responses are then charasderiz
using some powerful tools including Lyapunov exponents and
Poincaré map.
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FIGURE 1. (a) A schematic configuration of two solenoid actuated

butterfly valves subject to the sudden contraction; (b) Apbed model
of two butterfly valves in series without actuation
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TABLE 1. The system parameters
P 10004 v 0.17
NP 0.104x 10%(kg.m?) N, 3000
Ny 3000 G122 1.56x 1P(H?)
Omimz 0.1(m) Vi 24(\olt)
Dy1 0.2032(m) Q>  0.127(m)
Ds1s2  0.01(m) Ru  2(kPa)
Ki2 1000(N.m%) Co122 6.32x 1CF(HY)
Ly 2(m) Lo 1(m)
Lt 0.018 (Kg.mt.s1) Ry  6(Q)
ro 0.05(m) 6 el
Pin 256(kPa)

2 Mathematical Modeling
Shown in Fig. 1(a) is a pair of symmetric butterfly valves
driven by solenoid actuators through rack and pinion arang
ments. The rack and pinion mechanism provides a kinematic
constraint which connects the dynamics of the valve andaactu
tor. Applying DC voltages, as being used in the Navy ships for
chilled water systems, the motive forces give translatioma:
tions to the actuators’ moving parts (plungers) and su ety
the valves rotate to desirable angles. Note that a retuimgshas
been a common practice among industries to open the valves.
Interconnected modeling of such a multiphysics system un-
doubtedly needs some simplifying assumptions to neglest us
less and tremendously time consuming numerical calculgtio
The magnetic force resulted from the magnetic field needg-an e
tremely short period of time to reach its maximum value. This
period is the so-called “Diffusion Time” and has an inverse r
lationship with the amount of current used. Note that using
the current of 4 (A) would yield a negligible diffusion timé o
T4 =~ 20(m9 [1] with respect to the nominal operation time of
40(s). We have to also assume dominant laminar flow for both
the coupled valves. Note that developing an analytical rhisde
a necessity to carry out the dynamic analysis and optinoizati

which would lead us to make such a commonly used assumption

and also to avoid the numerical difficulties involved withughu-
lent regime. However a crucial question needs to be cayedaH
swered with respect to the validity of such an assumptiomdJs
the values of pipe diameter and flow mean velocity listed da
1, one can easily distinguish the existence of the turbuégime

which invalidates the assumption we have made. From another

aspect, the analytical formulas derived for the flow loadsluid-
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FIGURE 2. A comparison between the experimental and analytical

total torques

issues discussed above, we have carried out experimential wo
to measure the sum of the hydrodynamic and bearing torques as
the most affecting loads on the valves’ and subsequentiyaact
tors’ dynamics [8]. The experiment yielded the total tor(jtig.

2) for the inlet velocity ofv~ 2.7 () and valve diameter of

Dy =2 (incheg validating the laminar flow assumption [30]. The
flow torques have shown highly important roles for the dynam-
ics of an isolated solenoid actuated butterfly valve and weée
expect to observe such effects for the interconnectedsets [

The coupled system is modeled as a set of five resistors. Two
changing resistors represent the closing/opening vatwes;on-
stant ones indicate head losses between the valves, arfteanot
is due to the pipe contraction as shown in Fig. 1(b). The suhek
outlet pressures are given values in Table 1. Using the gssum
tion of the dominant laminar flow, the pressure drops between
two valves can be expressed based on the Hagen-Poisedile [3
and Borda-Carnot [32] formulas (points 1 and 2):

1)

2)
Qv Q)

1
Pconl - Pcon2 = EKcoangut

128usl,
nDy,
————
Ri2

F)conZ - F)2 =

ing the hydrodynamic and bearing torques, have been desglop where,qy is the volumetric flow rateys indicates the fluid dy-
based on the assumption of laminar flow [28, 29]. To address th namic viscosityD,; andD,; are the valves’ diameters; andL,
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stand for the pipe lengths before and after contractihn,and

R » indicate the constant resistances, 8wl andP.p are the
flow pressures before and after contractilipy, is calculated as
the following:

Keon= 0.5(1— 82),/sin (g) (4)

where, indicates the ratio of minor and major diameté%ﬁ)

and@ is the angle of approach. The values listed in Table 1 easily
yield K¢on = 0.2562. We then rewrite Eq. 2 as follows:

1

2
_ 8KCOn

2Dy,
RCOn

= Reonllg

F)conl - F)conZ Kconpvgut

”2D4\/2V<2)ut
16

a

(5)

where,Rqon is the resistance due to the pipe contraction. The

The hydrodynamicT,) and bearingTy) torques [28,29] have ex-
pectedly shown the high sensitivity to the pressure dropiobtl
via Eq. 9 leading us to rewrite them as follows.

fi(ai): ;GTSEZ_I)SIH(U» 2 (10)
37-[(1_ cildi > i )
16Ti(0i)D3AR
T = al@)DAR ¢ op3an (11)
37-[(1_ Qci(ai>(]é*5'n(ai)))
Toi = 0.5A4AR uDs = GAR (12)

where,Ds stands for the stem diameter of the valueindicates
the friction coefficient of the bearing are@, = FuDZDs, and
Te andCgg are the hydrodynamic torque and the sum of up-
per and lower contraction coefficients, respectively, delrey
on the valve rotation angle [1].

The comprehensive stability map we have presented in [3]
was based on a nonlinear analytical model. The analyticdeino

pressure drop between the valves can be derived by adding Eqshad to be used in the dynamic analysis to investigate thermsyst

1,2,3,and 5:

P —P, = [R1+ R2+ ReorQv]av (6)

The valve’s “Resistance (R)” and “Coefficiemt)’, as important
parameters of the regulating valves, are nonlinear funstid the
valve rotation angle to be stated [33] as follows:

891Dy,

cgi(ai)’

Ri(ai) - 172 (7)

Based on the assumption of laminar flow, the valve’s pressure
drop is calculated via the following relationship [28]:

AP (a;) = 0.5R (a)pv? (8)

where,a indicates the valve rotation anglg,is the density of
the media, and stands for the flow velocity. Rewriting Eq. 8 in
a standard form gives,

_ mDiv? 8x R(ai)p
16 D

o

AR (ai) = Rni(ai)af

(9)

Rni(ai)

stability around equilibria by calculating its eigenvadubrough
the Jacobian matrix; this has led us to identify the safe-oper
ational domain to be utilized in the design optimization. eTh
same practice was employed in [8] with the aid of fitting doiita
curves oncy; andRy; in order to model the system analytically.
For our case study dd,,=8 (in) andD,,=5 (in), the valves’ co-
efficients and resistances are developed as follows.

ca(01) = p103+quaf + 0101+ (13)
Ca(02) = P03 + Qa3 + 0202+ S (14)
€1

a1) = 15
Rai(a1) (P13 + a2+ 010 1 51)° (15)
Ro2(02) = ° (16)

B (pza§ + CI20!22 + 002+ 5)?

where,e; = 7.2 x 10°, p1 = 4619, q; = —4054, 0, = —1831,

s1 = 2207,8, = 451 x 1P, pp = 16184, = —11053,0, =
—6951, ands, = 807.57. These fittings were selected with re-
spect to the decremental and incremental profiles of theegalv
coefficients and resistances, respectively [5, 30]. Apgthe
mass continuity principlec, = dout = Qv) and then rewriting
Eqg. 9 yields,

Phn—P. _ P—Pou

Ru(a1)  Rp(a)
Rn1P> + Ri2PL = Rn2Pin + RatPout

17)
(18)
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The interconnecte® andP, terms are derived by combining
Egs. 6 and 18 as follows:

_ Rn2Pin + Rn1Pout + Rna(RL1 + Ri2 + ReorQv) Qv

P, 19
' (Ri1+Rn2) (19)
Rn2Pn + Rn1Pout — Ri2(RL1 + Ri2 + Reontv) v
— 20
& (Ri1+Rn2) (20)

The dynamic sensitivities d® andP, to Ry1, Rz, R.1, R2, and

Reon are distinguishable through Egs. 19 and 20, as observed in
the practice. Any slight dynamic changes of the upstream set
of the valve-actuator would be expected to be observed for th
downstream one. The hydrodynamic and bearing torques’ de-
pendencies on all the resistances are reformulated as/®llo

Thi = fi(ai)D3AR (Ra1, Rz, Ri1, Ri2, Reon)
Tbl - CIAPI (Rnlv Rn27 Rle RLZa Rcon)

(21)
(22)

fi is a nonlinear function of the changifg, Ccci, and the valve
rotation angles. To carry out a systematic dynamic analifsis
following functions are fitted to thfji fi of each valve [5, 30]:

Th = (alaleblall'l — 1€ (R — Py)

3
Dy f1

€1
3 2 2
_ (alaleblall.l B Cledlal) % éplal+qlal+ola1+sl)

S]
=1 (piad+qa?+oiai+s)2
X (Pin — Pout — (Ri1 + Ri2 + Reonlv) Qv) (23)
Tho = (ah €% — c1€4192) (P, — Poyy)

D3, 2

&
/ Loty dla (P203+0202+0202+52)2
= (a) 0% — h %) x —

, B
=1 (pad+aio?+oai+s)2

X (Bn — Pout— (RL1 + Ri2 + Reoniv) av) (24)

where,a; = 0.4249,a) = 0.1022,b; = —18.52,b; = —17.0795,
€1 =-7.823x107% ¢, = —2x 1074 d; = —1.084, andd; =
—1.0973.

We have previously derived the rate of current and magnetic
force terms [1] which are utilized in developing the sixttuer
coupled dynamic model [8] as follows. Note that both the meoti
force and current are highly sensitive to the plunger dgteent

and subsequently the valve rotation angle.

CyiN?i2
Foni = | 25
™ 2(Cai + Cai(gmi — %i))? (23)
di _ (Vi —Riii)(Cai +Cai (gmi — X))
dt N?
CailiX;
— 26
(Cai +Cai (Gmi — Xi)) (26)
il =2 (27)
. 1 r1C21lez§
= — —bg122 — K1z
SN [2(C11+C21(9ml —riz)2 A
(Rn—Pout—(RL1+R 2+Reondv) dv) €1
n (plzi+qlz§+0;;zl+sl>2 «
2i=14 (3792 ron1s)?
[(alzleblzll'l — cledlzl) —Cix tanr(Kzz)H (28)
_ V1 Riz)(Ca1+Cor(gm —1121))
N{
r1Cr1232
29
(C11+Coa(9m —r1z1)) (29)
2 =175 (30)
. 1 r2C22N222§
- ~ bzs— k
% J [2(C12+ Co2(gme — r224))? 4225 — o2
(Pn—Pout—(RL1+Ri24+Reondv)v) &2
n (p223+q2231+0224+52>2 »
2i=14 37 q 7 roz 152
[(a’lz4ebﬁz“l'1 — ¢jehh®) — Cyx tank(Kz\;)} } (31)
_ (V2—Re2)(Caa+ Coa(Gme — roza))
N3
r2Co07575 (32)

(Cr2+Co2(Omz — r224))

where, by indicates the equivalent torsional dampit,is the
equivalent torsional stiffnesy, stands for the supply voltage,

is the plunger displacemenmtjndicates the radius of the pinion,
C1 andC, are the reluctances of the magnetic path without air
gap and that of the air gap, respectiveély, is the motive force,

N stands for the number of coilsindicates the applied current,
Om is the nominal airgapl indicates the polar moment of inertia
of the valve’s disk, anR is the electrical resistance of coil.

Copyright © 2016 by ASME



3 Nonlinear Analysis

The linearization method is one of the immediate tools to
be used in determining the stability of the network around-mu
tiple equilibria. The analytical studies of such a six-stays-
tem would be tedious and time consuming, in particular, & th
presence of enormous parameters and variables. The nafneric
method is an optimal approach to calculate the Jacobiarixnatr

shown in Eq. 33 and subsequently the system'’s eigenvalues to HE ot

judge the stability around the equilibria. We select two amp
tant critical parameters of the equivalent viscous damingg
and the friction coefficient of bearing areg;) of both the sets
to evaluate their effects on the stability/instability bétcoupled
sets:

0 1 0 0 0 0
1732334 22 26 4772 O 0
0 —1.95-4317 0 0 0
= 0 0 0 0 1 0 (33)
—1175393 O 0 195704455 O
0 0 0 8426 0 —4317

where, j22 = —96by; — 177131, and j55 = —96.15by, —
32371u,. We then obtain the following characteristic equation

-20+4

-304
0.3

0.2 0.3

0.1 0.1 0.2

Nms 0O 0 Nms
eql rad bego

rad

FIGURE 3. The interconnected sets’ stability map; red and blue
crosses stand for unstable and stable domains, respgctivel

based orbg; and 4;:

L+ CoS° 4+ C0opst +C0zs° + Cous® +Coss+Cos =0 (34)
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a;(degree)

@
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-100r

-150 : ‘ ‘ ’ ’
0 5 10 15 20 25 30
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(b)
FIGURE 4. (a) The coupled sets’ phase portraits for Initidb) The
coupled sets’ phase portraits for Initial

where,

Cop = 96bg1 + 96042 + 17711 + 323U, 4 86 (35)
Cop = 830y + 8302y, + 1529511 + 27951,

+ 924%041bgo + 3112%41 > + 1703Dgopi1

+ 5734Quyp — 3687463 (36)
Coz = 18799808841 + 1663864684, + 3463337141

+ 560154376, — 79832Dy1byr — 2687624y Lo

— 147068®qo111 — 495119443 1> + 318563300 (37)
Coy = —162484832784, — 14382603308,

— 2993327098fA; — 4842027413f,+ 1723314D41bg»

+ 58016860qs + 3174722841 + 10687978511 1r+
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FIGURE 5. (a) The Lyapunov exponents for Initja(b) The positive FIGURE 6. (&) The poincaré map for Initiabf the upstream set; (b)

Lyapunov exponents for Initialvs. different approach angle8)( The poincaré map for Initialof the downstream set
3383271986600 (38)
Cos = 350750592248, -+ 310477025308, tive real parts of eigenvalues, respectively. Such a styabilap

would help us select some critical values in order to capitee-

+ 64615954302/, + 1045247675853, tically observed chaotic and hyperchaotic dynamics.

— 292732345689222 (39)
Cos = 6319208419510455 (40)
4 Results
Using the numerical approach, the coupled sets’ normalized We select two sets of initial conditions for the critical weas
eigenvalues are presented in Fig. 3 revealing an integestar of byi = pi = 107>, based on the stability map shown in Fig. 3,

bility map by assuming thaigis’ and piis’ change equally fora  as follows.
critical range of 108 < by = <3x 10~ %
Shown in Fig. 3 reveals instability and stability of the cou- N
pled sets for the ranges of 1< by = Y < 9 x 102 and Initial; = [20(deg 0 0 2Q(deg 0 0
101 < bgi = 4 < 3x 107! by presenting positive and nega- Initial, = [2(deg 0 0 2(deg O (]
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Chaotic motions are known to be sensitive to even slightgesn
of initial conditions and hence examining different iniiteon-
ditions potentially serve to characterize the responséssircdd.
The first set, Initial, would be a realistic option for the so-called
“modulating” valves to regulate/reroute flow for many apph
tions addressed earlier. The second set, Iajtiml chosen to
be close enough to the system'’s physically feasible eqjuilip
point and also to avoid numerical singularities.

Shown in Figs. 4(a) and 4(b) are the phase portraits of the
coupled valves for two sets of the initial conditions. Fiegir
4(a) and 4(b) reveal coupled chaotic and hyperchaotic dynam
ics. The hyperchaotic attractors by having two or more pasit
lyapunov exponents [34] are also known to be sensitive to ini
tial conditions and subsequently orbits initiated from telose
points move expectedly away from each other until the separa
tion reaches the size of attractor. Some power tools of the
nonlinear dynamic analysis would potentially help us chema
ize the responses obtained, in particular, Lyapunov exmsne
and Poincaré maps shown in Figs. 5(a)-7(b). A chaoticcttira
presents one positive Lyapunov exponent [34], as showngn Fi
5(a) (Ls = +0.1535), indicating the chaotic motions of the inter-
connected valves-actuators configuration. Figure 5(3ges
two positive Lyapunov exponents not only for the sudden pipe
contraction @ = 90°) but also for a broad spectrum of the ap-
proach angles (35< 6 < 85°), which can be served as a proof
of the network’s hyperchaotic dynamics.

Poincaré map is another power tool to distinguish among
periodic, quasiperiodic, and chaotic responses. Noteftinain
n-dimensional system {»3), this tool may not yield a clear na-
ture of the response to determine whether the motion is haot
or two-period quasiperiodic [34]. Although the Lyapunow ex
ponents, as discussed earlier, would firmly confirm the ¢baot
and hyperchaotic motions of the interconnected actuatk@va
along with irregular Poincaré maps (almost different ££1835
points) shown in Figs. 6(a)-7(b) for each set of the upstraach
downstream valves, and for two sets of the initial condgion

Shown in Figs. 8(a) and 8(b) are the total flow loads, the sum
of both the hydrodynamic and bearing torques, vs. the motive
forces for two initial conditions. The squared areas rerallk
magnify the differences between the chaotic and hyperahaot
responses of the coupled sets by presenting relativelgiay
tractor sizes for the hyperchaotic ones.

52.5/ e
.'-f.{-.. e -.g.-E?. .
3.5 - ;\""
521 ¢ %
© ¥ #
51.5] *,
51f
(&3]
(@)
65f - ..

64.9

64.8f “4;

(e%)

64.7}

64.61

64.5¢

64.4

(b)

FIGURE 7. (a) The Poincaré map for Initiabf the upstream set; (b)
The poincaré map for Initialof the downstream set

emerges (Fig. 9(a)) which is significantly different frone thre-
vious case of Fig. 4(b). Its Poincaré map shown in Fig. 10(a)
confirms the chaotic dynamics of the upstream set containing
regular points but expectedly different from the map présgm

One of the crucial issues which needs to be investigated is Fig. 7(a). It is of great interest to observe a very weak dbaot

the effects of dangerous behavior of a valve-actuator setnen
other one. Figures 9(a) and 9(b) present this interesttngtin

motion of the downstream valve as shown in Fig. 9(b) whereas a
stable response was logically expected to be seen. Fig(i¢ 10

in which the upstream set is assumed to be chaotic by exposingis the Poincaré map of the downstream set revealing iraggul

to the critical values oy, = 1 = 10~° and the downstream set
is operated safely usinigy, = 1 = 101, for the second set of
initial condition.

The hyperchaotic motion of the upstream valve is again
expected to be observed, but another smaller chaotic titrac
with a positive Lyapunov exponent of = +0.013, surprisingly

points but too close to its equilibrium point. It is fairlyraight-
forward to conclude that the chaotic motion of the upstreatn s
is transmitted to the downstream one through the mediaédpp
between them and subsequently affects its dynamics. Isicrea
ing the chaotic attractor domain of a set would accordinghgm
nify the domains of neighbor ones which would gradually eaus

Copyright © 2016 by ASME
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FIGURE 8. (&) The sum of flow loads vs. magnetic force of both the
upstream and downstream sets for Injtigb) The sum of flow loads vs.
magnetic force of both the upstream and downstream setsitcal4.
The red and blue lines stand for the upstream and downstretanre-
spectively.

failure of the whole network of thousands of valves-acttmto
Such failures have to be avoided to reduce the considerabte c
needed to restore the flow line.

5 Conclusions
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FIGURE 9. (a) The phase portrait of the upstream set for Inifiéb)

The phase portrait of the downstream set for Initial

the equivalent viscous damping and the friction coefficadrthe
bearing area.

The coupled chaotic and hyperchaotic dynamics were cap-
tured and discussed. Some powerful tools of the nonlinear dy
namic analysis were then employed, including Lyapunov expo
nents and Poincaré map, to characterize the responsésexbta
We presented the expected larger hyperchaotic attracioaihs
in comparison with the chaotic ones. One and two positive Lya

This paper represented an interconnected nonlinear model punov exponents were shown to confirm the chaotic and hyper-

of two actuators and valves subject to the sudden contractio

chaotic dynamics of the coupled actuated valves, resmhetiv

These dependencies among different components were formal The irregular Poincaré maps were also presented to supgibrt

ized to yield a sixth-order dynamic model of the whole system
We established a stability map to yield a clear picture dbita
ity/instability of the coupled network for some criticalluas of

the chaotic and hyperchaotic dynamics along with the p@siti
Lyapunov exponents.
The upstream valve-actuator set was intentionally opérate

Copyright © 2016 by ASME
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FIGURE 10. (a) The poincaré map of the upstream set for Inifigd)
The poincaré map of the downstream set for Injtial

with the same initial condition and critical values of thepky-
chaotic dynamics to evaluate its effects on a stable doeastr
set. The dynamics of the upstream set was surprisinglyrdifte
by revealing a chaotic attractor demonstrated by its Po@ncep

and a positive Lyapunov exponent. The downstream set was als
affected by the chaotic dynamics of the upstream one by stgpwi

the irregular Poincaré map but too close to its equilibrpomt.

We are currently focusing our efforts on developing a com-
prehensive model fan valves and actuators to be operated opti-

mally and safely in series.
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