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ABSTRACT
In this effort, we focus on determining the safe operational

domain of a coupled actuator-valve configuration. The so-called
“Smart Valves” system has increasingly been used in critical
applications and missions including municipal piping networks,
oil and gas fields, petrochemical plants, and more importantly,
the US Navy ships. A comprehensive dynamic analysis is hence
needed to be carried out for capturing dangerous behaviors ob-
served repeatedly in practice. Using some powerful tools of
nonlinear dynamic analysis including Lyapunov exponents and
Poincaŕe map, a comprehensive stability map is provided in or-
der to determine the safe operational domain of the network
in addition to characterizing the responses obtained. Coupled
chaotic and hyperchaotic dynamics of two coupled solenoid ac-
tuated butterfly valves are captured by running the network for
some critical values through interconnected flow loads affected
by the coupled actuators’ variables. The significant effectof an
unstable configuration of the valve-actuator on another setis
thoroughly investigated to discuss the expected stabilityissues
of a remote set due to others and vice versa.

1 Introduction
Multidisciplinary electromechanical-fluid systems have

been widely used in many megascale networks. Municipal pip-

ing systems, oil and gas fields, petrochemical plants, and more
critically, the US Navy are the immediate ones which need to
utilize a reliable, safe, and efficient coupled flow distribution net-
work.

Future smart cities would inevitably need an autonomous
flow control network in order to help improve the safety of such
a critical system and also to decrease the incremental costsof op-
eration and maintenance. Malfunctions of the flow network have
occurred repeatedly resulting in the flow interruption of small
towns/districts. Although significant cost and energy would be
needed to be spent in order to restore the whole system in ad-
dition to human resources required to be recruited. Economical
and even social impact of these malfunctions can be expectedto
be dramatic and consequently, a fully automated flow networkis
needed to be designed and operated.

The same issues exist for oil and gas fields and petrochemi-
cal plants. The industry of oil and gas is one of the most sensitive
elements of the global economy and plays important roles even
in global politics. The flow control network is the essentialpart
of these fields and is therefore required to be safely designed to
minimize the flow interruptions leading to much higher oil/gas
production.

The US national defense and homeland security is undoubt-
edly a highly important priority which requires to be addressed
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and investigated carefully. The US Navy broadly employs the
network of coupled electromechanical valve sets for cooling pur-
poses, mainly for chilled water systems. The proper performance
of the network is remarkably effective for other critical units of
radar, sonar, defense systems, etc.

We have carried out broad analytical and experimental stud-
ies from nonlinear modeling to design optimization of both an
isolated and interconnected symmetric butterfly valves driven by
solenoid actuators [1–9]. The multidisciplinary couplings, in-
cluding electromagnetics and fluid mechanics, had to be thor-
oughly regarded in the modeling phase in order to yield an ac-
curate nonlinear model of such a complex system. A third-order
nondimensional dynamic model of the single set was derived to
be used in nonlinear dynamic analysis [3] and optimal design[4].

The dynamic analysis expectedly yielded practically ob-
served crisis and transient chaotic dynamics of a single actuated
valve for some critical physical parameters. A comprehensive
stability map was also presented as an efficient tool to determine
the safe domain of operation which in turn could serve for iden-
tifying the lower and upper bounds of the design optimization ef-
forts. The design optimization was then carried out [4] to select
the optimal actuation unit’s parameters coupled with the mechan-
ical and fluid parts in order to significantly reduce the amount of
energy consumption (upward of %40).

Note that the applications addressed earlier contain thou-
sands of actuated valves in which a high level of dynamic cou-
pling has been repeatedly observed in practice. These dynamic
couplings among different sets need to be captured through ana-
lytical studies. We have developed [5] a novel nonlinear model
for two sets of solenoid actuated butterfly valves operatingin
series. The closing/opening valves were modeled as changing
resistors and the flow between them as a constant one. A sixth-
order nonlinear coupled model revealed the high dynamic sen-
sitivity of each element of a set, the valve and the actuator,to
another one and vice versa. The power spectrum was used in
confirming the same frequency response of a neighbor set due
to the external periodic noise applied on another set of the valve
and actuator.

By taking another step, we optimized the design of coupled
actuation units of two sets operating in series [8] subject to a sud-
den contraction. The pipe contraction imposed an additional re-
sistance to be modeled and therefore, the coupled dynamic equa-
tions derived in [5] had to be slightly modified. We represent
the modeling process here for completeness. We have surpris-
ingly established an interesting coupling between currents of the
actuation units through the interconnected flow loads, including
hydrodynamic and bearing torques, which affect both the valves’
dynamics.

Important nonlinear phenomena in electromechanical sys-
tems have also received considerable attention. Sunet al. [10]
studied the hyperchaotic behavior of the newly presented simpli-
fied Lorenz system by using a sinusoidal parameter variationand

hyperchaos control of the forced system via feedback. Banerjee
et al. [11] investigated the synchronization of chaos and hyper-
chaos in first-order time-delayed systems that are coupled using
the nonlinear time-delay excitatory coupling by assigningtwo
characteristic time delays: the system delay that is same for both
the systems, and the coupling delay associated with the coupling
path. Many efforts for analyzing hyperchaotic dynamics have
been reported in [12–27].

We have addressed the modeling process subject to the
pipe contraction in [8] and represent here for completeness.
The contribution of this work is the inclusion of interconnected
electromechanical-fluid nonlinearities between two actuator-
valve configurations to thoroughly analyze the effects of anun-
stable set of the valve-actuator on another one. Through this
comprehensive analysis, chaotic and hyperchaotic dynamics of
two coupled configurations are captured by exposing the network
to some critical values. The responses are then characterized
using some powerful tools including Lyapunov exponents and
Poincaré map.
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FIGURE 1. (a) A schematic configuration of two solenoid actuated
butterfly valves subject to the sudden contraction; (b) A coupled model
of two butterfly valves in series without actuation
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TABLE 1 . The system parameters

ρ 1000kg
m3 v 0.1m

s

J1,2 0.104×10-1(kg.m2) N2 3000

N1 3000 C11,22 1.56×106(H-1)

gm1,m2 0.1(m) V1,2 24(Volt)

Dv1 0.2032(m) Dv2 0.127(m)

Ds1,s2 0.01(m) Pout 2(kPa)

k1,2 1000(N.m-1) C21,22 6.32×108(H-1)

L1 2(m) L2 1(m)

µf 0.018 (Kg.m-1
.s-1) R1,2 6(Ω)

r1,2 0.05(m) θ 90◦

Pin 256(kPa)

2 Mathematical Modeling
Shown in Fig. 1(a) is a pair of symmetric butterfly valves

driven by solenoid actuators through rack and pinion arrange-
ments. The rack and pinion mechanism provides a kinematic
constraint which connects the dynamics of the valve and actua-
tor. Applying DC voltages, as being used in the Navy ships for
chilled water systems, the motive forces give translational mo-
tions to the actuators’ moving parts (plungers) and subsequently
the valves rotate to desirable angles. Note that a return spring has
been a common practice among industries to open the valves.

Interconnected modeling of such a multiphysics system un-
doubtedly needs some simplifying assumptions to neglect use-
less and tremendously time consuming numerical calculations.
The magnetic force resulted from the magnetic field needs an ex-
tremely short period of time to reach its maximum value. This
period is the so-called “Diffusion Time” and has an inverse re-
lationship with the amount of current used. Note that using
the current of 4 (A) would yield a negligible diffusion time of
τd ≈ 20(ms) [1] with respect to the nominal operation time of
40(s). We have to also assume dominant laminar flow for both
the coupled valves. Note that developing an analytical model is
a necessity to carry out the dynamic analysis and optimization
which would lead us to make such a commonly used assumption
and also to avoid the numerical difficulties involved with a turbu-
lent regime. However a crucial question needs to be carefully an-
swered with respect to the validity of such an assumption. Using
the values of pipe diameter and flow mean velocity listed in Table
1, one can easily distinguish the existence of the turbulentregime
which invalidates the assumption we have made. From another
aspect, the analytical formulas derived for the flow loads, includ-
ing the hydrodynamic and bearing torques, have been developed
based on the assumption of laminar flow [28,29]. To address the
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FIGURE 2. A comparison between the experimental and analytical
total torques
.

issues discussed above, we have carried out experimental work
to measure the sum of the hydrodynamic and bearing torques as
the most affecting loads on the valves’ and subsequently actua-
tors’ dynamics [8]. The experiment yielded the total torque(Fig.
2) for the inlet velocity ofv ≈ 2.7

(
m
s

)
and valve diameter of

Dv= 2 (inches) validating the laminar flow assumption [30]. The
flow torques have shown highly important roles for the dynam-
ics of an isolated solenoid actuated butterfly valve and we hence
expect to observe such effects for the interconnected sets [5].

The coupled system is modeled as a set of five resistors. Two
changing resistors represent the closing/opening valves,two con-
stant ones indicate head losses between the valves, and another
is due to the pipe contraction as shown in Fig. 1(b). The inletand
outlet pressures are given values in Table 1. Using the assump-
tion of the dominant laminar flow, the pressure drops between
two valves can be expressed based on the Hagen-Poiseuille [31]
and Borda-Carnot [32] formulas (points 1 and 2):

P1−Pcon1 =
128µ f L1

πD4
v1

︸ ︷︷ ︸

RL1

qv (1)

Pcon1−Pcon2 =
1
2

Kconρv2
out (2)

Pcon2−P2 =
128µ f L2

πD4
v2

︸ ︷︷ ︸

RL2

qv (3)

where,qv is the volumetric flow rate,µ f indicates the fluid dy-
namic viscosity,Dv1 andDv2 are the valves’ diameters,L1 andL2
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stand for the pipe lengths before and after contraction,RL1 and
RL2 indicate the constant resistances, andPcon1 andPcon2 are the
flow pressures before and after contraction.Kcon is calculated as
the following:

Kcon= 0.5(1−β 2)

√

sin

(
θ
2

)

(4)

where,β indicates the ratio of minor and major diameters
(

Dv2
Dv1

)

andθ is the angle of approach. The values listed in Table 1 easily
yield Kcon= 0.2562. We then rewrite Eq. 2 as follows:

Pcon1−Pcon2 =
1
2

Kconρv2
out

=
8Kcon

π2D4
v2

ρ
︸ ︷︷ ︸

Rcon

π2D4
v2v2

out

16
︸ ︷︷ ︸

q2
v

= Rconq
2
v (5)

where,Rcon is the resistance due to the pipe contraction. The
pressure drop between the valves can be derived by adding Eqs.
1,2, 3, and 5:

P1−P2 = [RL1+RL2+Rconqv]qv (6)

The valve’s “Resistance (R)” and “Coefficient (cv)”, as important
parameters of the regulating valves, are nonlinear functions of the
valve rotation angle to be stated [33] as follows:

Ri(αi) =
891D4

vi

c2
vi(αi)

, i = 1,2 (7)

Based on the assumption of laminar flow, the valve’s pressure
drop is calculated via the following relationship [28]:

∆Pi(αi) = 0.5Ri(αi)ρv2 (8)

where,α indicates the valve rotation angle,ρ is the density of
the media, andv stands for the flow velocity. Rewriting Eq. 8 in
a standard form gives,

∆Pi(αi) =
π2D4

viv
2

16
︸ ︷︷ ︸

q2
v

8×Ri(αi)ρ
π2D4

vi
︸ ︷︷ ︸

Rni(αi)

= Rni(αi)q
2
v (9)

The hydrodynamic (Th) and bearing (Tb) torques [28,29] have ex-
pectedly shown the high sensitivity to the pressure drop obtained
via Eq. 9 leading us to rewrite them as follows.

fi(αi) =
16Tci(αi)

3π
(

1− Ccci(αi)(1−sin(αi))
2

)2 (10)

Thi =
16Tci(αi)D3

vi∆Pi

3π
(

1− Ccci(αi)(1−sin(αi))
2

)2 = fi(αi)D
3
vi∆Pi (11)

Tbi = 0.5Ad∆PiµDs =Ci∆Pi (12)

where,Ds stands for the stem diameter of the valve,µ indicates
the friction coefficient of the bearing area,Ci =

π
8 µD2

viDs, and
Tci andCcci are the hydrodynamic torque and the sum of up-
per and lower contraction coefficients, respectively, depending
on the valve rotation angle [1].

The comprehensive stability map we have presented in [3]
was based on a nonlinear analytical model. The analytical model
had to be used in the dynamic analysis to investigate the system
stability around equilibria by calculating its eigenvalues through
the Jacobian matrix; this has led us to identify the safe oper-
ational domain to be utilized in the design optimization. The
same practice was employed in [8] with the aid of fitting suitable
curves oncvi andRni in order to model the system analytically.
For our case study ofDv1=8 (in) andDv2=5 (in), the valves’ co-
efficients and resistances are developed as follows.

cv1(α1) = p1α3
1 +q1α2

1 +o1α1+ s1 (13)

cv2(α2) = p2α3
2 +q2α2

2 +o2α2+ s2 (14)

Rn1(α1) =
e1

(p1α3
1 +q1α2

1 +o1α1+ s1)2
(15)

Rn2(α2) =
e2

(p2α3
2 +q2α2

2 +o2α2+ s2)2
(16)

where,e1 = 7.2×105, p1 = 461.9, q1 = −405.4, o1 = −1831,
s1 = 2207,e2 = 4.51× 105, p2 = 161.84, q2 = −110.53, o2 =
−695.1, ands2 = 807.57. These fittings were selected with re-
spect to the decremental and incremental profiles of the valves’
coefficients and resistances, respectively [5, 30]. Applying the
mass continuity principle (qin = qout = qv) and then rewriting
Eq. 9 yields,

Pin −P1

Rn1(α1)
=

P2−Pout

Rn2(α2)
(17)

Rn1P2+Rn2P1 = Rn2Pin +Rn1Pout (18)
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The interconnectedP1 and P2 terms are derived by combining
Eqs. 6 and 18 as follows:

P1 =
Rn2Pin +Rn1Pout+Rn1(RL1+RL2+Rconqv)qv

(Rn1+Rn2)
(19)

P2 =
Rn2Pin +Rn1Pout−Rn2(RL1+RL2+Rconqv)qv

(Rn1+Rn2)
(20)

The dynamic sensitivities ofP1 andP2 to Rn1, Rn2, RL1, RL2, and
Rcon are distinguishable through Eqs. 19 and 20, as observed in
the practice. Any slight dynamic changes of the upstream set
of the valve-actuator would be expected to be observed for the
downstream one. The hydrodynamic and bearing torques’ de-
pendencies on all the resistances are reformulated as follows.

Thi = fi(αi)D
3
vi∆Pi(Rn1,Rn2,RL1,RL2,Rcon) (21)

Tbi = Ci∆Pi(Rn1,Rn2,RL1,RL2,Rcon) (22)

fi is a nonlinear function of the changingTci, Ccci, and the valve
rotation angles. To carry out a systematic dynamic analysis, the
following functions are fitted to theD3

vi fi of each valve [5,30]:

Th1 = (a1α1eb1α1
1.1
− c1ed1α1)

︸ ︷︷ ︸

D3
v1 f1

(Pin −P1)

= (a1α1eb1α1
1.1
− c1ed1α1)×

e1
(p1α3

1+q1α2
1+o1α1+s1)2

∑2
i=1

ei
(piα3

i +qiα2
i +oiαi+si)2

× (Pin −Pout− (RL1+RL2+Rconqv)qv) (23)

Th2 = (a′1α2eb′1α1.1
2 − c′1ed′1α2)

︸ ︷︷ ︸

D3
v2 f2

(P2−Pout)

= (a′1α2eb′1α2
1.1
− c′1ed′1α2)×

e2
(p2α3

2+q2α2
2+o2α2+s2)2

∑2
i=1

ei
(piα3

i +qiα2
i +oiαi+si)2

× (Pin −Pout− (RL1+RL2+Rconqv)qv) (24)

where,a1 = 0.4249,a′1 = 0.1022,b1 =−18.52,b′1 =−17.0795,
c1 = −7.823× 10−4, c′1 = −2×10−4, d1 = −1.084, andd′

1 =
−1.0973.

We have previously derived the rate of current and magnetic
force terms [1] which are utilized in developing the sixth-order
coupled dynamic model [8] as follows. Note that both the motive
force and current are highly sensitive to the plunger displacement

and subsequently the valve rotation angle.

Fmi =
C2iN2

i i2i
2(C1i +C2i(gmi− xi))2 (25)

dii
dt

=
(Vi −Ri i i)(C1i +C2i(gmi− xi))

N2
i

−
C2i i i ẋi

(C1i +C2i(gmi− xi))
(26)

ż1 = z2 (27)

ż2 =
1
J1

[
r1C21N2

1z2
3

2(C11+C21(gm1− r1z1))2 −bd1z2− k1z1

+

(Pin−Pout−(RL1+RL2+Rconqv)qv)e1
(p1z3

1+q1z2
1+o1z1+s1)2

∑i=1,4
ei

(piz3
i +qiz2

i +oizi+si)2

×

[

(a1z1eb1z1
1.1
− c1ed1z1)−C1× tanh(Kz2)

]]

(28)

ż3 =
(V1−R1z3)(C11+C21(gm1− r1z1))

N2
1

−

r1C21z3z2

(C11+C21(gm1− r1z1))
(29)

ż4 = z5 (30)

ż5 =
1
J2

[
r2C22N2

2z2
6

2(C12+C22(gm2− r2z4))2 −bd2z5− k2z4

+

(Pin−Pout−(RL1+RL2+Rconqv)qv)e2
(p2z3

4+q2z2
4+o2z4+s2)2

∑i=1,4
ei

(piz3
i +qiz2

i +oizi+si)2

×

[

(a′1z4eb′1z4
1.1
− c′1ed′1z4)−C2× tanh(Kz5)

]]

(31)

ż6 =
(V2−R2z6)(C12+C22(gm2− r2z4))

N2
2

−

r2C22z5z6

(C12+C22(gm2− r2z4))
(32)

where,bd indicates the equivalent torsional damping,Kt is the
equivalent torsional stiffness,V stands for the supply voltage,x
is the plunger displacement,r indicates the radius of the pinion,
C1 andC2 are the reluctances of the magnetic path without air
gap and that of the air gap, respectively,Fm is the motive force,
N stands for the number of coils,i indicates the applied current,
gm is the nominal airgap,J indicates the polar moment of inertia
of the valve’s disk, andR is the electrical resistance of coil.
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3 Nonlinear Analysis
The linearization method is one of the immediate tools to

be used in determining the stability of the network around mul-
tiple equilibria. The analytical studies of such a six-state sys-
tem would be tedious and time consuming, in particular, in the
presence of enormous parameters and variables. The numerical
method is an optimal approach to calculate the Jacobian matrix
shown in Eq. 33 and subsequently the system’s eigenvalues to
judge the stability around the equilibria. We select two impor-
tant critical parameters of the equivalent viscous damping(bdi)
and the friction coefficient of bearing area (µi) of both the sets
to evaluate their effects on the stability/instability of the coupled
sets:

J =











0 1 0 0 0 0
1732334 j22 26 −4772 0 0

0 −1.95 −43.17 0 0 0
0 0 0 0 1 0

−1175.93 0 0 1957044j55 0
0 0 0 −84.26 0 −43.17











(33)

where, j22 = −96bd1 − 177.13µ1 and j55 = −96.15bd2 −

323.71µ2. We then obtain the following characteristic equation
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FIGURE 3. The interconnected sets’ stability map; red and blue
crosses stand for unstable and stable domains, respectively.

based onbdi andµi :

s6+Co1s
5+Co2s4+Co3s3+Co4s2+Co5s+Co6 = 0 (34)
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FIGURE 4. (a) The coupled sets’ phase portraits for Initial1; (b) The
coupled sets’ phase portraits for Initial2

where,

Co1 = 96bd1+96bd2+177µ1+323µ2+86 (35)

Co2 = 8302bd1+8302bd2+15295µ1+27951µ2

+ 9245bd1bd2+31125bd1µ2+17032bd2µ1

+ 57340µ1µ2−3687463 (36)

Co3 = 187998083bd1+166386463bd2+346333714µ1

+ 560154376µ2−798323bd1bd2−2687624bd1µ2

− 1470686bd2µ1−4951194µ1µ2+318563300 (37)

Co4 = −16248483272bd1−14382603305bd2

− 29933270986µ1−48420274134µ2+17233142bd1bd2

+ 58016860bdµ2+31747229bd2µ1+106879785µ1µ2+
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3383271986600 (38)

Co5 = 350750592245bd1+310477025305bd2

+ 646159543021µ1+1045247675853µ2

− 292732345689222 (39)

Co6 = 6319208419510455 (40)

Using the numerical approach, the coupled sets’ normalized
eigenvalues are presented in Fig. 3 revealing an interesting sta-
bility map by assuming thatbdis’ andµis’ change equally for a
critical range of 10−8 ≤ bdi = µi ≤ 3×10−1.

Shown in Fig. 3 reveals instability and stability of the cou-
pled sets for the ranges of 10−8 ≤ bdi = µi ≤ 9× 10−2 and
10−1 ≤ bdi = µi ≤ 3× 10−1 by presenting positive and nega-
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FIGURE 6. (a) The poincaré map for Initial1 of the upstream set; (b)
The poincaré map for Initial1 of the downstream set

tive real parts of eigenvalues, respectively. Such a stability map
would help us select some critical values in order to captureprac-
tically observed chaotic and hyperchaotic dynamics.

4 Results
We select two sets of initial conditions for the critical values

of bdi = µi = 10−5, based on the stability map shown in Fig. 3,
as follows.

Initial1 = [20(deg) 0 0 20(deg) 0 0]

Initial2 = [2(deg) 0 0 2(deg) 0 0]

7 Copyright c© 2016 by ASME



Chaotic motions are known to be sensitive to even slight changes
of initial conditions and hence examining different initial con-
ditions potentially serve to characterize the responses obtained.
The first set, Initial1, would be a realistic option for the so-called
“modulating” valves to regulate/reroute flow for many applica-
tions addressed earlier. The second set, Initial2, is chosen to
be close enough to the system’s physically feasible equilibrium
point and also to avoid numerical singularities.

Shown in Figs. 4(a) and 4(b) are the phase portraits of the
coupled valves for two sets of the initial conditions. Figures
4(a) and 4(b) reveal coupled chaotic and hyperchaotic dynam-
ics. The hyperchaotic attractors by having two or more positive
lyapunov exponents [34] are also known to be sensitive to ini-
tial conditions and subsequently orbits initiated from twoclose
points move expectedly away from each other until the separa-
tion reaches the size of attractor. Some power tools of the
nonlinear dynamic analysis would potentially help us character-
ize the responses obtained, in particular, Lyapunov exponents
and Poincaré maps shown in Figs. 5(a)-7(b). A chaotic attractor
presents one positive Lyapunov exponent [34], as shown in Fig.
5(a) (L6 =+0.1535), indicating the chaotic motions of the inter-
connected valves-actuators configuration. Figure 5(b) presents
two positive Lyapunov exponents not only for the sudden pipe
contraction (θ = 90◦) but also for a broad spectrum of the ap-
proach angles (35◦ ≤ θ ≤ 85◦), which can be served as a proof
of the network’s hyperchaotic dynamics.

Poincaré map is another power tool to distinguish among
periodic, quasiperiodic, and chaotic responses. Note thatfor an
n-dimensional system (n≥3), this tool may not yield a clear na-
ture of the response to determine whether the motion is chaotic
or two-period quasiperiodic [34]. Although the Lyapunov ex-
ponents, as discussed earlier, would firmly confirm the chaotic
and hyperchaotic motions of the interconnected actuated valves
along with irregular Poincaré maps (almost different setsof 635
points) shown in Figs. 6(a)-7(b) for each set of the upstreamand
downstream valves, and for two sets of the initial conditions.

Shown in Figs. 8(a) and 8(b) are the total flow loads, the sum
of both the hydrodynamic and bearing torques, vs. the motive
forces for two initial conditions. The squared areas remarkably
magnify the differences between the chaotic and hyperchaotic
responses of the coupled sets by presenting relatively larger at-
tractor sizes for the hyperchaotic ones.

One of the crucial issues which needs to be investigated is
the effects of dangerous behavior of a valve-actuator set onan-
other one. Figures 9(a) and 9(b) present this interesting situation
in which the upstream set is assumed to be chaotic by exposing
to the critical values ofbd1 = µ1 = 10−5 and the downstream set
is operated safely usingbd2 = µ2 = 10−1, for the second set of
initial condition.

The hyperchaotic motion of the upstream valve is again
expected to be observed, but another smaller chaotic attractor,
with a positive Lyapunov exponent of L1 =+0.013, surprisingly
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FIGURE 7. (a) The Poincaré map for Initial2 of the upstream set; (b)
The poincaré map for Initial2 of the downstream set

emerges (Fig. 9(a)) which is significantly different from the pre-
vious case of Fig. 4(b). Its Poincaré map shown in Fig. 10(a)
confirms the chaotic dynamics of the upstream set containingir-
regular points but expectedly different from the map presented in
Fig. 7(a). It is of great interest to observe a very weak chaotic
motion of the downstream valve as shown in Fig. 9(b) whereas a
stable response was logically expected to be seen. Figure 10(b)
is the Poincaré map of the downstream set revealing irregular
points but too close to its equilibrium point. It is fairly straight-
forward to conclude that the chaotic motion of the upstream set
is transmitted to the downstream one through the media trapped
between them and subsequently affects its dynamics. Increas-
ing the chaotic attractor domain of a set would accordingly mag-
nify the domains of neighbor ones which would gradually cause

8 Copyright c© 2016 by ASME



(a)

(b)

FIGURE 8. (a) The sum of flow loads vs. magnetic force of both the
upstream and downstream sets for Initial1; (b) The sum of flow loads vs.
magnetic force of both the upstream and downstream sets for Initial2.
The red and blue lines stand for the upstream and downstream sets, re-
spectively.

failure of the whole network of thousands of valves-actuators.
Such failures have to be avoided to reduce the considerable cost
needed to restore the flow line.

5 Conclusions
This paper represented an interconnected nonlinear model

of two actuators and valves subject to the sudden contraction.
These dependencies among different components were formal-
ized to yield a sixth-order dynamic model of the whole system.
We established a stability map to yield a clear picture of stabil-
ity/instability of the coupled network for some critical values of
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FIGURE 9. (a) The phase portrait of the upstream set for Initial2; (b)
The phase portrait of the downstream set for Initial2

the equivalent viscous damping and the friction coefficientof the
bearing area.

The coupled chaotic and hyperchaotic dynamics were cap-
tured and discussed. Some powerful tools of the nonlinear dy-
namic analysis were then employed, including Lyapunov expo-
nents and Poincaré map, to characterize the responses obtained.
We presented the expected larger hyperchaotic attractor domains
in comparison with the chaotic ones. One and two positive Lya-
punov exponents were shown to confirm the chaotic and hyper-
chaotic dynamics of the coupled actuated valves, respectively.
The irregular Poincaré maps were also presented to supportboth
the chaotic and hyperchaotic dynamics along with the positive
Lyapunov exponents.

The upstream valve-actuator set was intentionally operated
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FIGURE 10. (a) The poincaré map of the upstream set for Initial2; (b)
The poincaré map of the downstream set for Initial2

with the same initial condition and critical values of the hyper-
chaotic dynamics to evaluate its effects on a stable downstream
set. The dynamics of the upstream set was surprisingly different
by revealing a chaotic attractor demonstrated by its Poincaré map
and a positive Lyapunov exponent. The downstream set was also
affected by the chaotic dynamics of the upstream one by showing
the irregular Poincaré map but too close to its equilibriumpoint.

We are currently focusing our efforts on developing a com-
prehensive model forn valves and actuators to be operated opti-
mally and safely in series.
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