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a b s t r a c t

We formulate a predictor-based controller for a high-DOF manipulator to compensate a time-invariant
input delay during a pick-and-place task. Robot manipulators are widely used in telemanipulation
systems on the account of their reliable, fast, and precise motions while they are subject to large
delays. Using common control algorithms on such delay systems can cause not only poor control
performance, but also catastrophic instability in engineering applications. Therefore, delays need to be
compensated in designing robust control laws. As a case study, we focus on a 7-DOF Baxter manipulator
subject to three different input delays. First, delay-free dynamic equations of the Baxter manipulator
are derived using the Lagrangian method. Then, we formulate a predictor-based controller, in the
presence of input delay, in order to track desired trajectories. Finally, the effects of input delays in
the absence of a robust predictor are investigated, and then the performance of the predictor-based
controller is experimentally evaluated to reveal robustness of the algorithm formulated. Simulation and
experimental results demonstrate that the predictor-based controller effectively compensates input
delays and achieves closed-loop stability.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Robot manipulators are widely used in various applications
to track desired trajectories, particularly in telemanipulation sys-
tems, on the account of their reliable, fast, and precise motions
in executing tasks such as moving debris and turning valves
(Bagheri, Ajoudani, Lee, Caldwell, & Tsagarakis, 2015). Remote
manipulators provide the capability of executing tasks safely
at an unreachable/dangerous location while they are subject to
large input delays as with many engineering systems. Interest
in delay, as a common dynamic phenomenon, is driven by ap-
plications in modeling and control of traffic systems (Solomon &
Fridman, 2013), teleoperators (Denasi, Kostić, & Nijmeijer, 2013;
Hashemzadeh, Hassanzadeh, & Tavakoli, 2013; Liu & Chopra,
2013), vehicles (Abdessameud & Tayebi, 2011), and robot manip-
ulators (Chen, Gong, & Wen, 1998; Fischer, Dani, Sharma, & Dixon,
2013).
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The detrimental impact of time delay is well-established,
which plays the most significant role in degrading remote per-
ception and manipulation. Large input delays often arise from
communication delay between sensor and actuator, or from time-
consuming computational burden of multi-agent networks. For
instance, the foremost concern of vision-based control is tackling
the delay introduced by image acquisition and image processing.
One of the earliest challenges in engineering has been the control
of systems subject to delays. Note that a common approach to
tackle and handle this problem is the use of predictive algo-
rithms. Smith (1959) presented the delay compensator known as
the Smith predictor. However, in some cases, the Smith predictor
– a modification of a nominal controller designed to stabilize the
delay-free system – may fail to achieve the closed-loop stability
when the plant is unstable (Krstić, 2010a).

Many studies in recent years were carried out for linear
systems subject to the input delays (Bekiaris-Liberis, Jankovic,
& Krstić, 2013; Bekiaris-Liberis & Krstić, 2010a, 2010b, 2011;
Bresch-Pietri & Krstić, 2009; Karafyllis & Krstić, 2013; Krstić,
2010c; Tsubakino, Krstić, & Oliveira, 2016; Zhu & Krstić, 2017;
Zhu, Su, & Krstić, 2015). In addition to many studies on linear
systems, the further recent developments of predictor-based con-
trol laws for nonlinear systems with input delays can be found
in Bekiaris-Liberis and Krstić (2013a, 2013b, 2013c), Bresch-Pietri
and Krstić (2014), Choi and Krstić (2016), Karafyllis and Krstić
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Table 1
Baxter’s Denavit–Hartenberg parameters.
Link/Joint ai di αi θi

1/S0 0.069 0.27035 −π/2 θ1
2/S1 0 0 π/2 θ2 + π/2
3/E0 0.069 0.36435 −π/2 θ3
4/E1 0 0 π/2 θ4
5/W0 0.010 0.37429 −π /2 θ5
6/W1 0 0 π /2 θ6
7/W2 0 0.3945 0 θ7

Fig. 1. The 7-DOF Baxter manipulator: (a) The joints configuration; (b) sagittal
view; (c) top view.

(2014), Karafyllis, Krstić, Ahmed-Ali, and Lamnabhi-Lagarrigue
(2014), Krstić (2008, 2009) and Krstić (2010b). Motivated by the
harmful consequences of input delays on the stability and per-
formance of such control systems, we formulate and implement
a predictor-feedback controller (Bekiaris-Liberis & Krstić, 2017)
for the compensation of large input delays in a multi-input highly
nonlinear system – the 7-DOF Baxter manipulator as a case study.
We reasonably assume that all input channels induce the same
delay due to the fact that it is practically impossible to have
different delays for the robot with highly coupled dynamics.

This paper is organized as follows. We begin with a brief math-
ematical modeling of the system in Section 2, along with deriving
dynamics equations, in order to formulate the predictor-feedback
control law. In Section 3, we present the global asymptotic stabil-
ity of the closed-loop system using the predictor-feedback control
law and necessary assumptions. Finally, Section 4 is devoted to
the results of experiments (pick-and-place task) in order to reveal
the significance of predictor for the system stabilization in the
presence of three different input delays.

2. Mathematical modeling

The redundant Baxter manipulator, which is being studied
here, has seven degrees of freedom, see Fig. 1. The Denavit–
Hartenberg parameters for this manipulator are determined based
on the specifications provided by the manufacturer, shown in
Table 1.

M(q)q̈ + C(q, q̇)q̇ + G(q) = τ (1)

where q ∈ R7, q̇ ∈ R7, and q̈ ∈ R7 are angles, angular
velocities, and angular accelerations of joints, respectively, and
τ ∈ R7 indicates the vector of joint driving torques. Also, M(q) ∈

R7×7, C(q, q̇) ∈ R7×7, and G(q) ∈ R7 are the mass, Coriolis,
and gravitational matrices, respectively, which are symbolically
derived using the Euler–Lagrange equation (Bagheri, Krstić, &
Naseradinmousavi, 2018b, 2018c; Bagheri & Naseradinmousavi,
2017; Bagheri, Naseradinmousavi, & Morsi, 2017). Note that the

inertia matrix M(q) is symmetric, positive definite, and conse-
quently invertible. This property is used in the subsequent de-
velopment. The multi-input nonlinear system (1) can be written
as 14th-order ODEs with the following general state-space form,

Ẋ = f0(X,U) (2)

where X = [q1, . . . , q7, q̇1, . . . , q̇7]T ∈ R14 is the vector of states
and U = τ7×1 ∈ R7 is the input of nonlinear system (2).

Since we intend to design a predictor-based controller leading
to perfect tracking, we derive error dynamics and then design
the controller to stabilize the error dynamics making the origin
asymptotically stable.

Ė = f (E,U) (3)

where E = [eT1, e
T
2]

T
∈ R14 is the vector of error states and

e1(q, t), e2(q, q̇, t) ∈ R7 are defined as

e1 = qdes − q (4)

e2 = ė1 + αe1 (5)

where α ∈ R7×7 is a constant positive definite matrix, and the
following assumption is held for the desired joint trajectories.

Assumption 1. The desired joint trajectories qdes(t) ∈ R7 and
their derivatives q̇des(t), q̈des(t) ∈ R7 exist and are bounded for all
t ≥ 0.

3. Designing the predictor-based controller

Dealing with highly nonlinear and coupled dynamic equations
could cause a complicated problem of designing computationally
efficient control scheme to avoid the large delay. Therefore, we
derive a predictor-based controller for a multi-input nonlinear
system, in the presence of input delay, to stabilize the closed-loop
system. In order to demonstrate the generality of our approach,
consider the following general multi-input nonlinear system with
m inputs, n states, and constant input delay D,

Ė(t) = f (E(t),U1(t − D), . . . ,Um(t − D)) (6)

where E ∈ Rn is the vector of states, U1, . . . ,Um ∈ R are the
control inputs, D > 0 is an input delay, and f : Rn

× Rm
→ Rn

is a locally Lipschitz vector field. We assume that a feedback law
Ui(t) = κi(E(t)) is known such that the functions κi : Rn

→ R
globally asymptotically stabilize the delay-free system — the
closed-loop system Ė(t) = f (E(t), κ(E(t))) is globally asymptoti-
cally stable in the absence of delay. Therefore, in the delay system,
the control law needs to be as follows:

Ui(t − D) = κi(E(t)) (7)

which can be expressed as

Ui(t) = κi(E(t + D)) = κi(P(t)) (8)

where P(t) is the D-time units ahead predictor of E(t). The pre-
dictor law for the system (6) is given by

P(t) = E(t) +

∫ t

t−D
f
(
P(θ ), U1(θ ),U2(θ ), . . . ,

Um(θ )
)
dθ (9)

with the following initial conditions for the integral (9),

P(θ ) = E(0) +

∫ θ

−D
f
(
P(s), U1(s),U2(s), . . . ,

Um(s)
)
ds (10)

where θ ∈ [−D, 0]. Note that P(t) is defined in terms of its
past values, however a solution P(t) to (9) does not always exist
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since the control applied after t = D has no effect on the plant
over the time interval [0,D]; consequently the system (6) can
exhibit finite escape before t = D. Therefore, in order to ensure
the global existence of the predictor state, we need to be sure
that, for all initial conditions and all locally bounded input signals,
the system’s solutions exist for all time. This property is the so-
called ‘‘forward completeness’’. For designing the predictor-based
controller, we utilize the results of Bekiaris-Liberis and Krstić
(2017) in the following theorem.

Theorem 1. Consider the closed-loop system consisting of the
plant (6) with input delay. If there exists control laws (8)–(9) such
that Ė(t) = f (E(t), κ(E(t))) becomes asymptotically stable, sub-
ject to the assumptions of open-loop system forward completeness
and the Input-to-State Stability (ISS) of closed-loop system Ė(t) =

f (E(t), κ(E(t)) + ω) with respect to ω, the following holds for all
t ≥ 0,

Ω(t) ≤ β (Ω(0), t) (11)

where

Ω(t) = |E(t)| +

n∑
i=1

sup
t−D≤θ≤t

|Ui(θ )| (12)

3.1. Error system development

The control objective includes converging joint position and
velocity errors to zero implying the generalized coordinates track
the desired time-varying joint trajectories, qdes(t) ∈ R7. A state-
space model for the tracking error (Eq. (3)) is developed based
on Eqs. (4) and (5). Then a controller is formulated to improve
tracking performance indices, converging errors to zero, subject
to the assumption of knowing the system’s dynamics, as men-
tioned earlier. A state-space model, based on the tracking error,
is formulated through premultiplying the inertia matrix by the
time derivative of Eq. (5), while Eqs. (1) and (4) are substituted,

−Mė2 + (Mα − C)e2 + (−Mα2
+ Cα)e1

+ Mq̈des + Cq̇des + G = τ (13)

which yields

ė2 = αe2 + h − M−1τ (14)

where h ∈ R7 is a nonlinear function defined as

h = q̈des − α2e1 + M−1(Cq̇des + G + Cαe1 − Ce2) (15)

and the state-space model of error dynamics becomes

Ė = f (E, τ ) =

[
e2 − αe1

αe2 + h − M−1τ

]
(16)

As we mentioned through Theorem 1, the forward complete-
ness and ISS properties of the nonlinear system need to be estab-
lished. The forward-complete systems include all linear systems
both stable and unstable, as well as various nonlinear systems
with bounded nonlinearities. The mathematical model of robot
manipulators contains trigonometric nonlinearities as a result of
rotational motions, which implies that q(t) and consequently e1(t)
do not escape to infinity within a finite time. Therefore, robot ma-
nipulators are the forward-complete nonlinear systems (Krstić,
2009). We can also utilize the following theorem to establish the
forward completeness of the system, see Angeli (1999).

Theorem 2. System ẋ = f (x, d) is forward complete if and only if
there exists a proper and smooth function V : Rn

→ R≥0 such that
the following exponential growth condition is verified:

DV (x)f (x, d) ≤ V (x), ∀x ∈ Rn, ∀d ∈ D (17)

So, this theorem by Angeli (1999) ensures that the assumption
of Theorem 1 holds if we can establish (17). We now establish
(17) by first considering the Lyapunov function,

V (E) =
1
2
eT1e1 +

1
2
eT2e2 (18)

We easily have

V̇ = eT1(e2 − αe1) + eT2(αe2 + h − M−1τ )

= eT1e2 − eT1αe1 + eT2αe2 + eT2h − eT2M
−1τ (19)

Since M , M−1, and C include trigonometric functions, we get

eT1e2− eT1αe1 + eT2αe2 ≤
1
2

(
eT1e1 + eT2e2

)
− λmeT1e1 + λMeT2e2 (20)

eT2h ≤ eT2
(
q̈des − α2e1 + M−1Cq̇des +

M−1G + M−1Cαe1 − M−1Ce2
)

≤
1
2

(
eT2e2 + q̈Tdesq̈des

)
+

γ1

2

(
eT2e2 + eT1e1

)
+

γ2

2

(
eT2e2 + q̇Tdesq̇des

)
+

γ3

2

(
eT2e2 + Γ 2)

+
γ4

2

(
eT2e2 + eT1e1

)
− γ5

(
eT2e2

)
− eT2M

−1τ ≤
γ6

2

(
eT2e2 + τ T τ

)
(21)

where λM and λm denote the maximum and minimum eigenval-
ues of matrix α, respectively. Also, γ ′

i s > 0 (i = 1, 2, 3, 4, 5, 6)
and Γ is the L2-norm of gravitational vector. Substituting Eqs.
(20) and (21) into Eq. (19) yields,

V̇ ≤ (1 − 2λm + γ1 + γ4)

(
1
2
eT1e1

)
+ (2 + 2λM + γ1 + γ2 + γ3 + γ4 − 2γ5 + γ6)

(
1
2
eT2e2

)
+

1
2

(
q̈Tdesq̈des

)
+

γ2

2

(
q̇Tdesq̇des

)
+

γ3

2
Γ 2

+
γ6

2
|τ |

2

≤ γ6

(
1
2
eT1e1 +

1
2
eT2e2

)
+ γ7 (22)

where,

γ6 = max
{(

1 − 2λm + γ1 + γ4
)
,(

2 + 2λM + γ1 + γ2 + γ3 + γ4 − 2γ5 + γ6
)}

(23)

1
2

(
q̈Tdesq̈des

)
+

γ2

2

(
q̇Tdesq̇des

)
+

γ3

2
Γ 2

+
γ6

2
|τ |

2
≤ γ7 (24)

since τ , q̈des, and q̇des are bounded, we get

V̇ ≤ γ6V (E) + γ7 (25)

Consequently, (V (E) +
γ7
γ6
)

1
γ6 is a smooth Lyapunov function sat-

isfying (17). With this function, which differs from classical Lya-
punov functions because it is not positive definite because it is
not zero at zero (note that this property is not required anyway
in Theorem 2), we have established that the following assumption
of Theorem 1 is verified.

Assumption 2. The system Ė = f (E, τ1, . . . , τm) is forward
complete.

The forward-completeness ensures that, for every initial con-
dition and locally bounded input signal, the corresponding solu-
tion is defined for all t ≥ 0. Then, we design a predictor feedback



4 M. Bagheri, P. Naseradinmousavi and M. Krstić / Automatica 108 (2019) 108485

law for (16), which achieves global asymptotic stability for the
delay-free system, as mentioned in Theorem 1 – the closed-loop
system Ė(t) = f (E(t), κ(E(t))) should be asymptotically stable.
Since the dynamics of system (1) is known, the controller is
formulated, based on Eq. (14), as

τ = κ(E) = M(h + (β + α)e2) (26)

where β is ∈ R7×7 is a constant positive definite matrix. As
mentioned earlier, M is the mass matrix, e2 and h are defined in
Eqs. (5) and (15), respectively, and α ∈ R7×7 is a constant positive
definite matrix. Substituting Eq. (26) into Eq. (14) and using the
invertible property of inertia matrix result in the closed-loop
error signal for e2(t) as

ė2 = −βe2 (27)

Finally, the state-space model of closed-loop system, with
respect to Eqs. (5) and (27), is derived as follows,

Ė = f (E, κ(E)) = AE(t) (28)

where A ∈ R14×14 is defined as

A =

[
−α I7×7
07×7 −β

]
(29)

where I7×7 and 07×7 are identity and zero matrices, respectively.
Since A is an upper triangular block matrix and is also Hurwitz for
any positive definite α and β matrices, (28) is hence exponentially
stable.

Note that the control law is formulated such that the error dy-
namics becomes exponentially and subsequently asymptotically
stable. Now the only property we need to establish, before using
Theorem 1, is the input-to-state (ISS) stability of the following
closed-loop system with respect to ω = [ω1, . . . , ωm]

T .

Ė = f (E, κ(E) + ω) =

[
e2 − αe1

αe2 + h − M−1(κ(E) + ω)

]
= AE(t) −

[
07×7
M−1ω

]
(30)

The ISS property can be shown using the following lemma
(Khalil, 2002).

Lemma 1. Suppose ẋ = f (t, x, u) is continuously differentiable
and globally Lipschitz in (x, u), uniformly in t. If the unforced system
ẋ = f (t, x, 0) has a globally exponentially stable equilibrium point
at the origin, then the system is input-to-state stable.

Due to the fact that Ė = f (E, κ(E) + ω) is continuously
differentiable and globally Lipschitz in (E, ω), the closed-loop
system (30) is therefore ISS with respect to ω using Lemma 1.
Hence, the following assumption for our system is verified,

Assumption 3. The system Ė = f (E, κ1(E)+ω1, · · · , κm(E)+ωm)
is Input-to-State Stable (ISS) with respect to ω = [ω1, . . . , ωm]

T .

Finally, as Assumptions 2 and 3 are held for our system, we
can employ Theorem 1 to design a predictor-based controller to
compensate any large input delay, asymptotically stabilize the
error, and make the robot to follow the desired joint trajectories.

4. Experimental results

We experimentally implement the predictor-based controller
for the 7-DOF Baxter manipulator as a case study, through a
pick-and-place task, while input delays are reasonably similar in
all input channels (Bagheri, Krstić, & Naseradinmousavi, 2018a).
We reveal the destabilizing effect of input delay on the control

Fig. 2. The robot fails to track the desired trajectory without a predictor in the
presence of input delay.

Fig. 3. A stable obstacle-avoidance pick-and-place task with input delay using
the predictor-based controller.

of the manipulator, as shown in Fig. 2, and also discuss the
effect of incremental delay on the stability of the robot. We
intentionally apply the following input delays and then operate
the manipulator without any predictor:

• D = 0.01 s: indicates minimum feasible input delay with
respect to the sampling rate (ts = 0.01 s) of Baxter.

• D = 0.02 s: the increased delay to determine a crucial value
causing the robot operational failure.

• D = 0.04 s: the increased delay to study the significant
effect of a relatively large input delay.

The joint trajectories and torques, for the three cases men-
tioned above, are presented in Figs. 4 and 5, respectively, and also
compared with the experimental results of delay-free system.
Note that we did not plot the joint trajectories of delay-free
system since the manipulator almost perfectly tracks the desired
trajectories. As shown in Fig. 4, for D = 0.01 s, the manipulator
can still follow the desired trajectories while the joint torques
are more than those of the delay-free system (Fig. 5). The results
also reveal that the joint torques, in particular for the joint 5
(Fig. 5(e)), oscillate since the manipulator approaches its singular
configuration while passing over the obstacle (2.5 s ≤ t ≤ 3.5 s).
By increasing the delay from 0.01 s to 0.02 s, the manipula-
tor becomes unstable and expectedly cannot follow the desired
trajectories (Fig. 4). Note that the joint 2 (S1) does not oscillate
like the other ones because of the supporting spring mounted at
this joint (Fig. 1). We also examine the robot’s performance in
the presence of 0.04 s input delay. The results illustrate that the
manipulator harmfully oscillates and then fails to properly oper-
ate. Therefore, the robot, as expected, becomes unstable within a
shorter time interval through increasing the amount of delay. It
is clear that the instability of one link results in the robot failure
due to the highly dynamic interconnections among the links.
It is worth mentioning that we operate the manipulator using
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Fig. 4. The experimental (a) S0 , (b) S1 , (c) E0 , (d) E1 , (e) W0 , (f) W1 , and (g) W2
joint trajectories in the presence of D = 0.01 s (blue line), D = 0.02 s (orange
line), and D = 0.04 s (green line) input delays without a predictor.

joint torque control mode, as an advanced control scheme, which
grants the access to the lowest control levels and puts much
responsibility on the control algorithm. Consequently, for both
0.02 s and 0.04 s input delays, we could not capture more data
since Baxter moves stochastically leading to the catastrophic mal-
function. The AVI files of the experiments are accessible through
our Dynamic Systems and Control Laboratory (DSCL) website.
In summary, as shown in Fig. 4, the closed-loop system be-
comes unstable for small input delays. Therefore, implementing
the predictor-based controller is a necessity to be carried out.
We hence take the advantage of the predictor-based controller,
using Theorem 1, in order to globally asymptotically stabilize the
manipulator due to the fact that all the assumptions are valid
for the robot’s arm. We formulate the predictor along with the
controller, and then thoroughly investigate their performances in
compensating the destabilizing input delays. In order to examine
the effects of delay’s magnitude, experiments are carried out in
the presence of three different large input delays: 0.8 s, 0.9 s,
and 1.0 s. Note that exposing the robot to the input delays more
than 1.0 s is not logical since the whole operational time is

Fig. 5. The experimental joint torques of (a) S0 , (b) S1 , (c) E0 , (d) E1 , (e) W0 , (f)
W1 , and (g) W2 in the presence of D = 0.01 s (blue line), D = 0.02 s (orange
line), and D = 0.04 s (green line) input delays without a predictor.

6.0 s. Shown in Figs. 6 and 7 are the joint angles and torques,
respectively. As shown in Fig. 7, there is no control torque before
t = D and consequently, the robot remains stationary (Fig. 6).
Therefore, the errors expectedly emerge within t ∈ [0,D), in
particular for the joints 2 (S1), 4 (E1), and 7 (W2) (Fig. 6). At
t = D, the manipulator begins following the desired trajectories
using the predictor-based controller by applying high amounts
of torques. Figs. 3 and 6 present an acceptable performance of
the predictor-based controller since the tracking errors converge
to zero after 4.0 s. From another aspect, Figs. 6(a) and 6(e)
reveal that the tracking errors of the joints 1 (S0) and 6 (W1)
are not considerably high, for 0 ≤ t ≤ D, despite the other
ones. It is obvious that the less tracking error typically demands
the less control torque to be applied with respect to the ranges
of joint rotation angles. Increasing the input delay expectedly
imposes higher tracking errors at the onset of the robot operation
and consequently, much more control torques are needed to be
applied (Fig. 7). After t = D, the manipulator begins to perfectly
track the desired trajectories using the considerable initial control
torques. The control torques peak at t = D and then decline
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Fig. 6. The experimental (a) S0 , (b) S1 , (c) E0 , (d) E1 , (e) W0 , (f) W1 , and (g) W2
joint trajectories in the presence of D = 0.8 s (blue line), D = 0.9 s (orange line),
and D = 1.0 s (green line) input delays using the predictor-based controller.

by the decremental tracking errors (Fig. 7). As mentioned earlier,
the manipulator approaches its singular configuration around t =

3.0 s, which subsequently results in the incremental oscillation-
like joint torques, in particular for the joint 5 (W0), as shown in
Fig. 7(e). As shown in Fig. 7, comparing the control torques at
t = D reveals that τ2, τ3, and τ4 take higher values than the other
ones since the joints 2 (S1), 3 (E0), and 4 (E1) are subject to more
tracking errors and loads (based on the manipulator structure)
with respect to the other joints. Finally, comparing Figs. 5 and
7 implies that even an uncompensated small delay results in
harmful torques and therefore, the manipulator expectedly fails
to track the desired trajectories. As can be observed in Fig. 6, the
tracking errors begin to decrease after t = D, due to the fact
that Theorem 1 guarantees the asymptotic convergence of the
tracking errors to zero subject to any large delay. Fig. 8 presents
the experimental tracking errors for D = 0.8 s. The negligible
experimental tracking errors mainly root on the inaccuracy of
sensors and actuators. We experimentally verified the model
in a back-and-forth procedure (Bagheri et al., 2018c; Bagheri &

Fig. 7. The experimental joint torques of (a) S0 , (b) S1 , (c) E0 , (d) E1 , (e) W0 ,
(f) W1 , and (g) W2 joints in the presence of D = 0.8 s (blue line), D = 0.9 s
(orange line), and D = 1.0 s (green line) input delays using the predictor-based
controller.

Naseradinmousavi, 2017) and there is an acceptable correlation
between our model and Baxter’s dynamics. Moreover, unmodeled
dynamics, such as friction in joints or external disturbances,
may result in the prediction offset from the actual path, which
we carefully considered through designing the controller. The
algorithm measures the robot’s joint angles at each iteration and
hence making predictions begins from that measurement — the
state E(t) in Eq. (9) is measured in each iteration. Providing this
measurement to the predictor endows robustness against small
uncertainties and avoids any cumulative error caused by uncer-
tainties or unmodeled dynamics. Moreover, we established that
the closed-loop system is ISS, which in turn provides the control
robustness against any bounded disturbance. Based on the data
provided by Baxter’s manufacturer, the series elastic actuators act
as filters helping to reduce both the friction and backlash through
low-cost gearbox. Therefore, as can be seen in Fig. 8, the tracking
errors asymptomatically converge to zero. Also, Fig. 9 presents
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Fig. 8. The experimental tracking errors subject to the predictor-based controller
in the presence of 0.8 s input delay.

the simulation results for D = 0.8 s revealing that the tracking
errors asymptomatically converge to zero, as expected.

5. Conclusions

Throughout this paper, we designed a predictor-based con-
troller for a general highly interconnected nonlinear system sub-
ject to the time-invariant input delay. We investigated the
destabilizing effects of three different input delays shown in
Figs. 4 and 5, and then the controller was implemented for the
7-DOF Baxter manipulator as a case study. Toward designing
the controller, we established the forward completeness of the
open-loop system and Input-to-State Stability (ISS) properties
of the closed-loop system. We then formulated the predictor-
based controller to asymptotically stabilize the system employing
Theorem 1, and then investigated the effects of large input de-
lays on the control of Baxter robot. The experimental results
revealed that the predictor-based controller, in the presence of
large input delays, makes the robot asymptomatically stable, and
the robot tracks the desired joint trajectories, as expected. We
also established that the tracking errors, subject to the predictor-
based controller, asymptotically converge to zero. The negligible
amounts of the tracking errors, shown in Fig. 8, mainly root on
the inaccuracy of sensors and actuators. The simulation results
also presented the asymptotic convergence of the tracking errors
to zero guaranteed through Theorem 1, as shown in Fig. 9. The
principal results of this research work can be summarized as
follows:

• The minimum input delay destabilizes the robot.
• Using Theorem 1, the stability of the system for any large

input delay is guaranteed.
• The predictor-based controller analytically and experimen-

tally compensates the input delay and achieves the closed-
loop asymptotic stability.

It is worth mentioning that the prediction is based on the knowl-
edge of system model and input delay. Although our controller
is robust against a time-invariant delay and small uncertainties,
but time-varying input delays and enormous uncertainties may
affect the control performance; this problem has not yet been
addressed. Therefore, we are currently focusing our efforts on
designing a nonlinear adaptive time-delay control scheme with
application to high-DOF robotic manipulators.

Fig. 9. The simulated tracking errors subject to the predictor-based controller
in the presence of 0.8 s input delay.
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