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Abstract: The efforts on boundary control of general classes of nonlinear parabolic
PDEs with nonlinearities of superlinear growth have so far only resulted in
counterexamples—results that show that finite time blow up occurs for large
initial conditions even for simple cases like quadratic nonlinearities, with or
without control. In this paper we present results identifying a class of systems
that is stabilizable. Our approach is a direct infinite dimensional extension of
the feedback linearization/backstepping approach and employs Volterra series
nonlinear operators both in the transformation to a stable linear PDE and in
the feedback law. While the full detail of our general approach is left for a future
publication without a page limit, in this paper we give an example with explicit
solutions for the plant/controller pair, including an explicit construction of the
inverse of the feedback linearizing Volterra transformation. This, in turn, allows us
to explicitly construct the exponentially decaying closed loop solutions. We include
also a numerical illustration, showing blow up in open loop, and stabilization for
large initial conditions in closed loop. Copyright c©2004 IFAC
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1. INTRODUCTION

Boundary control of linear parabolic PDEs is a
well established subject with extensive literature,
see (Lasiecka and Triggianii, 2000) and the ref-
erences therein. On the other hand, boundary
control of nonlinear parabolic PDEs is a com-
pletely open problem as far as general classes of
systems are concerned. Applications of interest
include fluids, thermal, chemically-reacting, and
plasma systems. The book (Christofides, 2001)
solves problems of nonlinear parabolic PDE con-
trol but for inside-the-domain actuation, rather
than with boundary control.

When attempting to develop general methods for
nonlinear PDEs, it is advisable to take a clue from
finite dimensional nonlinear systems. Clearly, one
should bet on methods that have emerged as
successful there. This eliminates (direct) optimal
control methods and leaves feedback lineariza-
tion/backstepping/Lyapunov approaches as can-
didates for extension to PDEs. This implies that
the optimal control/operator Riccati equation so-
lutions (Lasiecka and Triggianii, 2000) are unlikely
to be extended to the nonlinear case.

The backstepping approach for linear PDEs has
reached the level of maturity where a systematic
design procedure (Smyshlyaev and Krstic, 2003)
is available for a broad general class of parabolic



equations. This systematic procedure provides ex-
plicit formulae for control laws in most cases of
practical interest and is the starting point for our
nonlinear developments here.

Our efforts in this paper are based on Volterra
series. This is a major departure from our previous
discretization-based nonlinear efforts (Boskovic
and Krstic, 2001; Boskovic and Krstic, 2002;
Boskovic and Krstic, 2003; Aamo and Krstic,
2004), which were successful in addressing some
applications but in general cannot be expected to
converge when the discretization step goes to zero,
as shown in (Balogh and Krstic, 2003).

We start the paper by reviewing the literature
on blow up phenomena in nonlinear PDEs (Sec-
tion 2), including results that show that blow up
cannot be overcome by feedback in some physi-
cally relevant classes of parabolic PDEs. In Sec-
tion 3 we introduce the general class of nonlinear
parabolic PDEs we consider in this paper, where
the nonlinearity is of the form of a nonlinear
operator represented by a Volterra series whose
kernels are functions of the spatial variables of
the PDE. Section 4 is the main result of the paper,
introducing a feedback linearization/backstepping
type of an approach to stabilizing the PDE. A
coordinate transformation (nonlinear and infinite
dimensional, represented by a Volterra operator)
is introduced to transform the original nonlinear
PDE into a stable linear PDE (a heat equation,
to be exact). Finding the kernels of the transfor-
mation is the main design task in this procedure.
The full detail of the general design procedure is
beyond the scope of this paper (due to the page
limit), thus, in Section 5 we show an example
where a simple, yet nonlinear, controller stabilizes
a nonlinear PDE that has a finite time blow up
in open loop, due to a superlinear nonlinearity
in its model. As in feedback linearization and
backstepping, the invertibility of the coordinate
transformation to a linear system is the key ques-
tion, which we address in Section 6, developing
explicit expressions for the inverse transformation,
and even providing explicit closed loop solutions
for the PDE.

2. BLOW UP PHENOMENA IN NONLINEAR
PARABOLIC EQUATIONS

One of the facts that has perhaps discouraged
the boundary control community from attempting
anything systematic in global nonlinear stabiliza-
tion is that some of the basic nonlinear PDEs
are not globally stabilizable. When considering
parabolic partial differential equations of the kind

ut = uxx + f(u), (1)

in the interval (0, 1), where f(u) is a continuous
(or even smooth) function, with, for example,

Dirichlet boundary conditions, finite-time blow
up instabilities are likely to occur when f(u) is
superlinear. This was first studied in a classical
paper (Fujita, 1966), and has been object of sys-
tematic study in subsequent years. More recent
reviews include (Levine, 1990) and (Deng and
Levine, 2000). Exponentially growing functions,
which also lead to blow up, have been considered
(Gelfand, 1963; Bebernes and Eberly, 1989) be-
cause their importance in some combustion prob-
lems. The analysis leading to blow up results usu-
ally makes use of differential inequalities and the
maximum principle.

In recent years, the question of controllability
of this kind of equations has been considered.
For superlinear functions which grow faster than
|u| logp(1 + |u|) lack of controllability is proved in
(Fernandez-Cara and Zuazua, 2000), along with
a study of controllability depending on the value
of the exponent p. Therefore, for many nonlinear-
ities there are initial conditions which cannot be
brought to zero, no matter what amount of control
is applied. In (Coron and Trelat, 2003) a more
hopeful result was shown, where the problem of
moving between different steady states by means
of boundary control is considered for nonlineari-
ties with superlinear growth.

The negative results like these indicate that the
class of systems to be controlled needs to be
refined. If such a refinement is made at the very
short length scales at which the blow ups occur,
the refinement would not be non-physical since
the PDEs don’t model physics (fluids, materials)
at the shortest length scales.

3. CLASS OF SYSTEMS UNDER STUDY

We study the following class of parabolic systems,

ut = uxx + F [u], (2)

with x ∈ (0, 1), Dirichlet boundary conditions
u(0, t) = 0 and u(1, t) = U(t), and initial condi-
tion u(x, 0) = u0(x), where U(t) is the control in-
put and F [u] is a Volterra nonlinearity. A Volterra
series is defined as

F [u](x, t) =
∞∑

i=1

Fi[u](x, t), (3)

where the notation Fi[u](x, t) emphasizes the fact
that each Fi[u](x, t) is a functional of u(x, t) and
that it depends on x and t. The precise definition
of the terms, employing the triangular formulation
of the kernels, is:



Fi[u](x, t) =
∫ x

0

∫ σ1

0

. . .

∫ σi−1

0

fi(x, σ1, . . . , σi)

×

 i∏
j=1

u(σj , t)

 dσ1 . . . dσn (4)

where fi is called the ith Volterra (triangular)
kernel.

Volterra series (Volterra, 1959) are widely known
and studied in the control literature (Boyd et al.,
1984; Isidori, 1995; Lamnabhi-Lagarrigue, 1996;
Sastry, 1999). An excellent exposition can also be
found in (Rugh, 1981).

4. CONTROL STRATEGY

The objective is to find a stabilizing Volterra feed-
back law for U(t). As in the feedback linearization
approach for finite dimensional systems, we trans-
form the original plant into another system, which
we call target system. As target system we choose
the simplest possible PDE with the properties
we need, but also similar enough in structure to
the original system. The natural choice for this
problem is the heat equation

wt = wxx (5)

with homogeneous boundary conditions w(0, t) =
w(1, t) = 0, which is exponentially stable by
standard linear PDE results.

To transform (2) into (5), a change of variables is
used which is based again on a Volterra series:

w(x, t) = u(x, t)−K[u](x, t)

= u(x, t)−
∞∑

i=1

Ki[u](x, t). (6)

Evaluating (6) at x = 1 and using the boundary
conditions of both the original and the target
system, we arrive at the control law:

U(t) =
∞∑

i=1

Ki[u](1, t). (7)

Assuming that the series kernels can be differen-
tiated, using (2) and (5) the following equation is
obtained:

∞∑
i=1

Fi[u] =
∞∑

i=1

(
∂

∂t
Ki[u]− ∂2

∂x2
Ki[u]

)
. (8)

Using (8), the definition of each term in the
Volterra series, integration by parts, and change of
the order of integration in the multiple integrals
that arise, we obtain a set of partial differential
equations for the kernels ki of Ki.

5. AN EXAMPLE OF A STABILIZABLE
SUPER-LINEAR SYSTEM

For illustration we present a plant/controller pair
with superlinear nonlinearities (and open loop
blow up) where the controller achieves stabiliza-
tion. The pair is chosen such that the controller is
as simple as possible so the design concept is clear
without getting lost in the technicalities.

The simplest possible (nonlinear) controller comes
from a single second order control kernel, k2 =
σ1σ2(x−σ1)(x−σ2), whose particular form comes
from (8). All other control kernels are set to zero,
i.e., k1 = k3 = . . . = kn = . . . = 0. Then the
control input, U(t) = K[u](1, t), is:

U(t) =
∫ 1

0

∫ σ1

0

σ1σ2(1− σ1)(1− σ2)

×u(σ1, t)u(σ2, t)dσ1dσ2, (9)

which can be written shorter thanks to the sym-
metry of the kernel:

U(t) =
1
2

(∫ 1

0

σ(1− σ)u(σ, t)dσ

)2

(10)

The plant kernels derived from (8) are f1 = 0,

f2 = 2σ2σ1 + 2σ2x− 2σ2
2 + 2σ1x− 2σ2

1 , (11)

f3 = σ1σ2x

(
xσ2

3
(σ2

2 + σ1x)− σ4
2

6
− σ4

1

6

−x3

2
(σ1 + σ2) +

σ3
1

3
(x− σ2) +

σ2σ1

3
(x2 − σ2

2)

+
x4

3

)
+ σ1σ3x

(
x4

3
+

σ3
1

3
(x− σ3) +

2σ3σ1x
2

3

−σ4
1

6
− x3

2
(σ1 + σ3)

)
+ σ2σ3x

2

(
x2

3

−x

2
(σ2 − σ3) +

2σ2σ3

3

)
+

σ2
1σ2σ3

6

×
(
4σ3σ2(2σ1 + σ2)− 7σ3

2 − 7σ2
1(σ2 + σ3)

)
+

σ2
1

6
(
σ5

2 + σ3
1(σ2

3 + σ2
2)
)

+
xσ1σ2σ3

6
(6xσ3σ1

+7σ3
2 + 14σ3

1 + σ2
2(10σ1 − 4σ3 − 10x)

−20σ2
1x + 6xσ3σ2 + 2x2(3x− σ1 − σ2 − σ3)

+6σ1(σ3σ1 + σ2σ1 + xσ2 − 3σ2σ3)) , (12)

fn =
∫ σ1

σ2

k2(x, σ1, s)fn−1(s, σ2, . . . , σn)ds

+
∑

γ̄∈P̂n(σ̄)

∫ x

σ1

k2(x, s, γ1)

×fn−1(s, γ2, . . . , γn)ds, (13)

where γ̄ = (γ1, . . . , γn), σ̄ = (σ1, . . . , σn), and
P̂n(σ1, . . . , σn) is a certain subset of the permu-
tations of the variables (σ1, . . . , σn), used to write
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Fig. 1. Effect of K and F on u(x) = 100 sin(2πx)

the equations in compact form, and defined in the
following fashion:

Definition 1. Given an ordered set of n different
objects, say (ξ1, . . . , ξn), we define P̂n(ξ1, . . . , ξn)
as the set of n ordered n-tuples, {S1, . . . , Sn}
which are given by the following recursive formula:

S1 = (ξ1, . . . , ξn), (14)

Si = s1,iSi−1, i = 2, . . . , n, (15)

where s1,i denotes the operation of flipping be-
tween the first and the ith element.

For example,

P̂4(1, 2, 3, 4) = { (1, 2, 3, 4), (2, 1, 3, 4),

(3, 1, 2, 4), (4, 1, 2, 3)}. (16)

Using this definition and employing symbolic cal-
culation it is easy to get all the kernels up to a
desired order. Higher order kernels get smaller and
smaller, and its influence becomes negligible.

For the purpose of illustrating the operators K
and F , we plot the effect of both them on a test
function, u(x) = 100 sin(2πx) in Figure 1. The
order of magnitude of K is much less than the
order of magnitude of F , so we plot 20K for the
sake of clarity.

Starting with a large enough initial condition (of
the order of 200), the uncontrolled system diverges
to infinity in finite time, as seen in Figure 2. With
the controller (9), this behavior is suppressed and
the system is stabilized, as shown in Figure 2.

6. INVERSE OF THE CHANGE OF
VARIABLES, STABILITY, AND EXPLICIT

CLOSED LOOP SOLUTIONS

For proving stability of the controlled system
in the example, the first step is to show the
invertibility of the change of variables
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Fig. 2. Uncontrolled and controlled system.

w(x, t) = u(x, t)−
∫ x

0

∫ σ1

0

σ1σ2(x− σ1)(x− σ2)

×u(σ1, t)u(σ2, t)dσ2dσ1 . (17)

It is natural to also seek a Volterra formulation
for the inverse u = w + L[w], i.e.,

u(x, t) = w(x, t) +
∫ x

0

∫ σ1

0

. . .

∫ σi−1

0

li(x, σ1, . . . , σi)

×

 i∏
j=1

w(σj , t)

 dσ1 . . . dσn . (18)

To find the Volterra kernels li, substituting (6)
into (18), we arrive at

K = L− LK , (19)

where, in our example, K = K2. Expanding
the Volterra series L and matching the terms,
a set of recursive linear integral equations for
the li’s can be found for the general case. For
our example, the integral equations simplify to
direct computation of several integrals, which can
be obtained explicitly using symbolic software as
l1 = 0,



l2 = σ1σ2(x− σ1)(x− σ2), (20)

l3 = σ1σ2σ3

[
(2x− σ2 − σ3)

(
σ5

1 − x5

5

+
x4 − σ4

1

4
(x + σ1) +

σ3
1 − x3

3
xσ1

)
+(x(σ2 + σ3)− σ2σ3)

(
x4 + σ4

1

4

+
σ3

1 − x3

3
(x + σ1) +

x2 + σ2
1

2
xσ1

)
+(x− σ1)

(
σ5

2 − x5

5
+

x4 + σ4
2

4

×(x + σ2 + σ3) +
σ3

2 − x3

3
(x(σ2 + σ3)

+σ2σ3) +
x2 + σ2

2

2
xσ2σ3

)]
, (21)

and so on.

The key question is whether the Volterra series
L converges. This question is answered using
Theorem 3.3.1 on inverses of Volterra series in
(Boyd et al., 1984). Applied to our problem,
this theorem states that, if the operator Id −
K1 is invertible then Id + L converges locally in
the spatial L∞ sense, i.e., for sufficiently small
w(x, t). It was proved in (Smyshlyaev and Krstic,
2003) that backstepping guarantees Id−K1 to be
invertible, thus local invertibility is guaranteed in
the general case. In our example K1 = 0, thus the
condition of Boyd’s theorem is satisfied trivially,
and hence Id + L converges for small w(x, t).

With the li’s obtained explicitly, we also obtain
the explicit solution for (5) in terms of u0(x):

w(x, t) = 2
∞∑

n=1

e−π2n2t sin(πnx)

×
∫ 1

0

sin(πnξ) [u0(ξ)

−1
2

(∫ ξ

0

η(ξ − η)u0(η)dη

)2
 dξ.(22)

By substituting (22) into (18), with (20), (21) we
obtain an explicit expression for u(x, t). The re-
sulting expression contains a Volterra series which
converges for sufficiently small u0(x), establishing
at least local exponential stability of the closed
loop system. As the bottom in Figure 2 shows, the
actual stability result is much more than local.

7. CONCLUSIONS

The efforts on nonlinear boundary control of PDEs
of parabolic type have so far resulted primar-
ily in negative results—results that show that
control cannot prevent finite time blow up. In

this paper we show the first positive result that
stabilizes a PDE with a superlinear nonlinearity
and open loop blow up. Our design is based on
a general approach utilizing Volterra operators
in the nonlinear feedback law, which we don’t
present in detail due to space constraints. This
approach is the first rigorous, continuum approach
to boundary control for general classes of nonlin-
ear parabolic PDEs and, unlike previous efforts
(including ours), does not employ any spatial dis-
cretization.

The approach we presented in the paper is a di-
rect infinite dimensional extension of feedback lin-
earization/backstepping. A PDE, with a Volterra
nonlinearity, is transformed via an invertible coor-
dinate transformation represented in the Volterra
form, and via a nonlinear feeback law in the
Volterra form, into the (linear, stable) heat equa-
tion.

In the example that we presented in the pa-
per, every element of the design and analysis is
explicit—the plant, the controller, the linearizing
transformation, and even the closed loop solution.
This may not always be possible for a general
F [u], however, if the linear case (Smyshlyaev and
Krstic, 2003) is an indicator, it might be possible
for a number of relevant subclasses.

While in this paper we postulated the control law
for our example, in a general problem, finding the
controller’s Volterra kernels would be the main
task. As we indicated in Section 4, to find the
kernels ki, a recursive set of linear hyperbolic
PDEs on spaces of increasing dimensions and
with moving boundaries would have to be solved,
which will be presented in a future, longer paper.
Future efforts include studying the well-posedness
of these PDEs, their numerical solution, and the
convergence of the resulting Volterra series K[u].

While common physical PDE models mostly come
with nonlinear functions f(u(x, t)), rather than
with Volterra series F [u](x, t), our approach can
be adapted to be used in such cases. For example,
if f(u) = u2, we would approximate it with
F [u] = F2[u] with

f2(x, σ1, σ2) = η(x− σ1)η(x− σ2) , (23)

where (Evans, 1998)

η(ξ) =
c

ε
exp

(
ε2

ξ2 − ε2

)
(h(ξ + ε)− h(ξ − ε))

(24)
is a C∞ function, h is the step function, c =(∫ 1

−1
exp

(
(x2 − 1)−1

)
dx
)−1

, and ε controls the
tightness of the approximation. Obviously, the
blow up for f(u) = u2 with large initial con-
ditions cannot be prevented with any boundary
controller. Thus we would expect our approxi-
mate controller for F [u] = F2[u], when applied



to f(u) = u2, to be effective only for initial data
of limited size.
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