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Backstepping Boundary Controller and Observer
Designs for the Slender Timoshenko Beam

Miroslav Krstic and Andrey Smyshlyaev

Abstract— In this paper we present the first extension of
the backstepping methods developed for control of parabolic
PDEs (modeling thermal, fluid, and chemical reaction dynamics,
including Navier-Stokes equations and turbulence) to second-
order PDE systems (often referred loosely as hyperbolic) which
model flexible structures and acoustic.

We introduce controller and observer designs capable of
adding damping to a model of beam dynamics using actuation
only at the beam base and using sensing only at the beam
tip. Interestingly, the backstepping method does not apply to
the simplest Euler-Bernoulli model but does apply to more
realistic models, including the Timoshenko beam model under
the assumption that the beam is “slender.” For our method to
be applicable it is necessary that the beam model includes a
small amount of Kelvin-Voigt damping. Such damping models
internal material friction (rather than viscous interaction with
the environment) and is present in every realistic material. We
don’t use the KV damping as a source of dissipation but as a
means of controllability of the beam. With only a small amount
of KV damping present in the uncontrolled system, we are
able to introduce a substantial amount of damping of classical
type (velocity-based). The closed-loop system with our boundary
feedback included can be transformed into a form where both
the added damping and an addition of “stiffness” are evident.
As we show, this simultaneous change in damping and stiffness
results in an overall shift of the eigenvalues to the left in the
complex plane and in the improvement of the damping ratio of
all the eigenvalues.

To ease the reader into main concepts, we first present the
same method for a wave equation with a small amount of KV
damping and then pursue the development for a shear beam and
Timoshenko beam model. The same result can be developed for
the Rayleigh beam model which is structurally the same as the
shear beam model but with different parameters.

THE FINAL VERSION OF THE PAPER WILL INCLUDE
SIMULATION RESULTS.

I. I NTRODUCTION

Flexible beams constitute an important benchmark problem
in many application areas ranging from aerospace to civil
structures. In some of the exciting modern fields like atomic
force microscopy the cantilever beam is more than just a pro-
totype problem and constitutes an important application topic
in its own right. Extensive literature exists on control of beam
models. In this paper we concentrate on the most realistic of
the 1D distributed parameter models, the Timoshenko model,
and focus only on the prior literature on control of this model.

Probably the first result on control of the Timoshenko beam
is due to Kim and Renardy [6] who proved stabilization
under a classical “boundary damper” feedback which relates
spatial and temporal derivatives at the beam tip. Morgul [10]
proposed a more advanced dynamic feedback design which
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eliminates the need to measure the tip velocity but retains
the requirement to actuate at the tip. Zhang, Dawson, de
Queiroz, and Vedagarbha [21], [4] consider a Timoshenko
beam with mass/inertial dynamics at the free end and design
a Lyapunov-based adaptive version of the boundary damping
feedback in [6], which they also demonstrate experimentally.
Shi, Hou, and Feng [11] also consider the Timoshenko beam
with mass at the tip and prove uniform stabilization with
boundary damping feedback laws applied at the tip and applied
at both the tip and the base at the same time. Taylor and
Yau [17] establish controllability properties of a beam with
spatially varying parameters using force actuation at the tip
and torque at the base. Macchelli and Melchiorri consider
the Timoshenko beam in the framework of distributed port
Hamiltonian systems, unify several existing approaches, and
develop a new controller based on energy-shaping/Casimir
function concepts, with actuation at the tip.

All of the previous approaches, which rely on collocated
actuation and sensing at the tip, exploit elegantly the passivity
property between the corresponding input and output in the
beam model. Such feedbacks can be implemented via passive
dampers or as active controllers through more elaborate elec-
tromagnetic means of actuation at the tip. Our objective is
different—to design controllers implementable through anti-
collocated architecture, with actuation only at the base and
sensing only at the tip.

For parabolic PDEs such problem formulations have re-
cently led to backstepping controllers [12], [14] and ob-
servers [13] which result in closed-form formulae for the
controller/observer gains, which are explicit both in the spa-
tial coordinates and in the physical parameters. The explicit
parametrization has allowed the development of the first adap-
tive boundary controllers for unstable PDEs [7], [8], [15], [16].
The primary applications of the backstepping methodology so
far have been turbulent fluid systems [1], [2], [20], [18], [19].

In this paper we venture for the first time into the realm of
vibrating systems modeled by second order “hyperbolic”1 PDE
systems. We introduce controller and observer designs capable
of adding damping to Timoshenko and shear beam models
using actuation only at the beam base and using sensing only
at the beam tip. Interestingly, the backstepping method does
not apply to the simplest Euler-Bernoulli model but does apply
to the more realistic models that we consider here, under the
assumption that the beam is “slender.” For our method to
be applicable it is necessary that the beam model includes a
small amount of Kelvin-Voigt damping. Such damping models
internal material friction (rather than viscous interaction with
the environment) and is present in every realistic material. We
don’t use the KV damping as a source of dissipation but as a
means of controllability of the beam. With only a small amount
of KV damping present in the uncontrolled system, we are able
to introduce a substantial amount of damping of classical type
(velocity-based). The closed-loop system with our boundary
feedback included can be transformed into a form where

1The word is meant in a loose sense because in the presence of Kelvin-
Voigt damping these system share many properties of parabolic PDE systems,
though their main characteristic—oscillations with poor damping—remains.
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both the added damping and an addition of “stiffness” are
evident. As we show, this simultaneous change in damping
and stiffness results in an overall shift of the eigenvalues to
the left in the complex plane and in the improvement of the
damping ratio of all the eigenvalues.

To ease the reader into main concepts, we first present the
same method for a wave equation with a small amount of KV
damping and then pursue the development for a shear beam
and Timoshenko beam model. The same result can be devel-
oped for the Rayleigh beam model which is structurally the
same as the shear beam model but with different parameters.

a) Notation: The spatialL2(0, 1) norm is denoted by‖·‖.
The symbolsI1(·), I2(·), J1(·), etc., denote the corresponding
Bessel functions.

II. A N INTRODUCTORYEXAMPLE : WAVE EQUATION

To motivate our developments for the Timoshenko beam
model, we first present our ideas through an example of bound-
ary controller and observer design for a wave equation. While
the Timoshenko beam model is sometimes viewed as a PDE
with fourth order derivatives in time and space, it is actually
best approached as a set of two coupled wave equations with
a very specific form of coupling. Thus our introductory wave
equation example will be helpful in preparing the terrain for
the further presentation for the Timoshenko model.

We are going to consider a wave equation on an interval
x ∈ [0, 1] given by

εutt = (1 + d∂t)uxx (1)
ux(0) = 0 (2)
u(0) = measured (3)
u(1) = controlled, (4)

whereε andd are positive constants. The value1/ε represents
“stiffness” of the string. We do not restrictε to be either small
or large. The equation (2) represents the boundary condition
at the endx = 0, with the dependence on time suppressed
to reduce notational burden. The model (1)–(4) might model
the dynamics of a string controlled (or clamped) at the end
x = 1 and with boundary measurements applied at the free
endx = 0. Our orientation of thex-axis might seem confusing
to some readers. Typically the clamped end would be atx = 0
whereas the free end would be atx = 1. In contrast, our free
end is atx = 0 and the actuator is atx = 1, for consistency
with out previous papers on backstepping boundary controllers
and observers for PDEs [12], [13].

The operation∂t represents partial differentiation with
respect to time. The termd∂t models the “Kelvin-Voigt”
damping which represents the internal material damping (not
the damping that arises due to viscous interaction of the
string with the surrounding medium). We do not assume
that the coefficientd of the Kelvin-Voigt damping is large.
We only assume that a small amount ofd, occurring in
any realistic material, is present in the model. This small
amount of Kelvin-Voigt damping will allow us to much more
substantially dampen the eigenvalues of the system through the
backstepping design. In fact, we do not rely on the Kelvin-
Voigt term as “damping,” i.e., as a source of energy dissipation.
We use it as a means of controllability of the wave equation
system, in the same way we use the diffusion operator in the
backstepping design for parabolic systems [12].

A. The target system

At the center of our design is the observation that with the
backstepping approach we can construct a state transformation

and boundary feedback such that, in the transformed variable,
the closed-loop system assumes the form

εwtt = (1 + d∂t) (wxx − cw) (5)
wx(0) = 0 (6)
w(1) = 0 , (7)

where c ≥ 0 is a design gain. We shall show later how we
design such a transformation and a boundary controller but we
state first a result that shows the benefits of introducing the
term−cw in the w-system.

Proposition 2.1:All the eigenvalues of the system (5)–(7)
are in the open left-half-plane, have the damping ratios of at
least

πd

4
√

ε

√
1 +

4
π2

c (8)

and all of their real parts are no larger than

−min
{

1
d
,
π2d

8ε

(
1 +

4
π2

c

)}
. (9)

At most
4
√

ε

πd

√
1− d2

4ε
c− 1 (10)

of the eigenvalues are complex, whereas the rest are real.2

It is clear from this result that, whend is small, the damping
ratio of all the eigevalues can be greatly improved and they
can be all moved to the left in the complex plane by increasing
c. This effect disappears in case of the complete absence of
Kelvin-Voigt damping, but it is always present to some extent
whend > 0. The above proposition is proved by first showing
thenth pair of eigenvaluesσn satisfies the quadratic equation

εσ2
n + d

[
c +

(π

2
+ nπ

)2
]

σn +
[
c +

(π

2
+ nπ

)2
]

= 0 ,

(11)
wheren = 0, 1, 2, . . . From this it can be seen that there are
two sets of eigenvalues. For lowern’s the eignevalues reside
on the circle(

<{σn}+
1
d

)2

+ (={σn})2 =
1
d2

. (12)

For higher n’s the eigenvalues are real, with one branch
accumulating towards−1/d asn → ∞ and the other branch
converging towards−∞ on the real axis. Clearly the least
damped of the eigenvalues is the one forn = 0, which
yields (8). Its negative real part is the second argument in
the min function in (9). For small-to-moderate values ofc the
n = 0 eigenvalue will be to the right of the accumulation point
σ = −1/d. However, for largec’s, the rightmost eigenvalue
might be σ∞, which corresponds to the first argument in
the min function in (9). The expression (10) is obtained by
analyzing the discriminant of the quadratic equation (11).

B. Controller design for wave equation
For the model (1)–(4) we introduce aninvertible spatially-

causal/lower-triangular/Volterra state transformation

w(x) = u(x)−
∫ x

0

k(x, y)u(y) dy , (13)

2The expression (10) should be understood in the sense of the nearest even
integer above the real number given in the expression. It should be also clear
that the number (10) is meaningful (real) only whenc ≥ 4ε/d2. For very
high c all the eigenvalues become real and reside on the semi-infinite interval
on the real axis(−∞,−1/d).
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and the boundary feedback law

u(1) =
∫ 1

0

k(1, y)u(y) dy . (14)

It can be shown that (13) and (14) convert the system (1)–(2)
into (5)–(7) provided the kernel/gain functionk(x, y) satisfies
the hyperbolic PDE

kxx = kyy + ck (15)
ky(x, 0) = 0 (16)

k(x, x) = − c

2
x (17)

on the triangular domain{0 ≤ y ≤ x ≤ 1}. An explicit
solution to this PDE was derived in [12]:

k(x, y) = −cx
I1

(√
c (x2 − y2)

)
√

c (x2 − y2)
, (18)

whereI1 is the modified Bessel function of the first kind/first
order.

We conclude that the controller defined by (14), (18) turns
the lightly damped wave equation (1)–(2) into the well damped
target system (5)–(7).

Theorem 1:The controller (14), (18) increases the damping
ratio of the nth conjugate complex eigenvalue pair of the

wave equation (1)–(2) by a factor of

√
1 +

4
π2(1 + 2n2)

c

and moves it leftward in the complex plane by a factor of

1 +
4

π2(1 + 2n2)
c.

From this result it follows that, in the presence of a
small amount of Kelvin-Voigt (interior material) damping, we
can impart a substantial amount of external-like (“viscous”)
damping. This is accompanied by an increase in stiffness,
which is evident by writing the system (5) in the expanded
form

εwtt + d(c− ∂xx)wt + (c− ∂xx)w = 0 (19)

and viewing (c − ∂xx)/ε as the system’s stiffness operator.
Whether the increase in stiffness (i.e., the increase in the
natural frequency) is desirable or not, the overall effect is
always the improvement in the damping ratio and the leftward
movement of the complex eigenvalues, along with the conver-
sion of some of the complex eigenvalues into real eigenvalues.

With a very high value ofc we could make all of the
eigenvalues real. While possible, this would not necessarily
be a good idea, neither for servo response, nor for disturbance
attenuation, and certainly not from the point of view of control
effort. Making all of the infinitely many eigenvalues real might
make the system response sluggish. Moreover, a very high
value of c would increase the density of eigenvalues near

−1
d

+ i0, which might result in poor transient response if the
eigenvectors become nearly parallel. Thus, the flexibility to
improve the damping using the backstepping transformation
and controller should be used judiciously, with lower values
of c if d is already relatively high.

C. Observer design for wave equation

Based on the duality between the backstepping controller
and observer designs introduced in [13], we propose an

observer of the form

εûtt = (1 + d∂t)
[
ûxx +

c̃(1− x)
x(2− x)

I2

(√
c̃x(2− x)

)
× (u(0)− û(0))] (20)

ûx(0) = − c̃

2
(u(0)− û(0)) (21)

û(1) = u(1) , (22)

where c̃ is a nonnegative design parameter. The function
c̃(1− x)
x(2− x)

I2

(√
c̃x(2− x)

)
in the PDE (20) and the constant

− c̃

2
in the boundary condition (21) are the observer gains

which multiply the output estimation erroru(0)− û(0), which
is the error between the measured boundary variableu(0) and
its estimateû(0). The purpose of the injection of the output
estimation error and the associate observer gains is to impart
a desired level of damping upon the dynamics of the observer
error u(x, t) − û(x, t). That this is achieved can be shown
using theinvertible transformationu− û 7→ w̃ defined by

u(x)− û(x) = w̃(x)−
∫ x

0

p(x, y)w̃(y)dy (23)

and

p(x, y) = −c̃(1− x)
I1

(√
c̃ ((1− y)2 − (1− x)2)

)
√

c̃ ((1− y)2 − (1− x)2)
, (24)

which transforms the differenceu− û between the equations
(1)–(2) and (20)–(22) into the well damped equation

εw̃tt = (1 + d∂t) (w̃xx − c̃w̃) (25)
w̃x(0) = 0 (26)
w̃(1) = 0 . (27)

Similar conclusions regarding damping follow as in Sec-
tions II-A and II-B. Even if no control is applied to the
system (1)–(2), which is very lightly damped through only
a small amount of Kelvin-Voigt dampingd, good convergence
of û(x, t) to u(x, t) is ensured due to the good damping of
the observer error system (25)–(27).

Moreover, applying the certainty equivalence version of the
controller (14), (18), i.e., using

û(1) = u(1) = −
∫ 1

0

c
I1

(√
c (1− y2)

)
√

c (1− y2)
û(y)dy (28)

in place of (22), we obtain an output feedback compensator
consisting of the observer (20)–(22) and the controller (28).
The input to this compensator is the measured variableu(0, t)
and the output is the actuated variableu(1, t). With the two
transformations (13) and (23) the closed-loop system can
be written as a cascade connection of thew̃-system whose
damping is improved with̃c and thew-system whose damping
is improved withc. The eigenvalues of the closed-loop system
(1)–(2), (20)–(21), (28) are a union of eigenvalues obtained
as the solutions of the quadratic equation (11) and the same
equation withc replaced bỹc (this is so because of the block-
triangular structure of the problem). As a final comment,
we indicate that a reasonable observer-based design would
tune the observer response to be a little faster than the state
feedback response, in our casec̃ > c, which we assume in the
following result.

Theorem 2:All the eigenvalues of the closed-loop system
(1)–(2), (20)–(21), (28) are in the open left-half-plane, have
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the damping ratios of at least
πd

4
√

ε

√
1 +

4
π2

c and all of their

real parts are no larger than−min
{

1
d
,
π2d

8ε

(
1 +

4
π2

c

)}
.

III. T IMOSHENKO AND SHEAR BEAM MODELS

We consider a beam modeled by the two coupled wave
equations given by

εutt = (1 + d∂t) (uxx − αx) (29)
µεαtt = (1 + d∂t) (εαxx + a (ux − α)) , (30)

where u(x, t) denotes the displacement,α(x, t) denotes the
angle of rotation, and the positive constantsε, µ, d, a denote
the appropriate physical parameters defined in [5], [22]. We
consider a beam which is free at the endx = 0, i.e.,

ux(0) = α(0) (31)
αx(0) = 0 (32)

and which is controlled at the endx = 1 through the boundary
conditionsu(1, t) andα(1, t).

For the case ofµ small we get the so called “slender beam.”
Whenµ is set to zero, the fourth-order-in-space/fourth-order-
in-time Timoshenko equations (29)–(30) reduce to the “shear
beam” model:

εutt = (1 + d∂t) (uxx − αss
x ) (33)

0 = αss
xx − b2αss + b2ux , (34)

where

b =
√

a

ε
. (35)

Let αss[u](x) denote the solution of the second order two point
boundary value ODE problem (34) with boundary conditions
for αss(x) given byαss

x (0) = 0 andαss(1) = α(1), the latter
of which we use for control.

Setting µ = 0 constitutes a singular perturbation. We
will pursue the singular perturbation approach in our design,
developing controllers and observers forµ = 0, which are also
valid for small positiveµ’s.

Sinceαss(x) in (34) is not the actual rotation angleα(x)
in the full Timoshenko model (29), (30) but only its “quasi-
steady state” singularly perturbed approximation, we introduce
the error variable

ᾱ(x) = α(x)− αss(x) . (36)

With the aid of this variable we can write both the Timoshenko
and the shear beam model in a compact way as

εutt = (1 + d∂t) (uxx − ∂xαss[u]− ᾱx) (37)

0 = αss
xx − b2αss + b2ux , (38)

whereᾱ is given by
ᾱ ≡ 0 (39)

for the shear beam case and

µᾱtt = (1 + d∂t)
(
ᾱxx − b2ᾱ

)
− µαss[utt] (40)

ᾱx(0) = 0 (41)
ᾱ(1) = 0 (42)

for the Timoshenko case.
Since the TPBV problem (34) with boundary conditions

αss
x (0) = 0, αss(1) = α(1) is linear and second order inx

it is easy to solve in various ways (for example, by Laplace
transform inx), yielding

αss(x) = cosh(bx)αss(0)− b

∫ x

0

sinh(b(x− y))uy(y)dy .

(43)
With this definition, and applying integration by parts to the
integral in (43), we get the following

α(x) = ᾱ(x) + cosh(bx) (α(0)− ᾱ(0)) + b sinh(bx)u(0)

−b2

∫ x

0

cosh(b(x− y))u(y)dy . (44)

By settingx = 1 in this equation we can find an expression
for α(0)− ᾱ(0) given in terms ofα(1),

α(0) = ᾱ(0) +
1

cosh(b)
[α(1)− b sinh(b)u(0)

+b2

∫ 1

0

cosh(b(1− y))u(y)dy

]
, (45)

providing us with an alternative form of the solution (44):

α(x) = ᾱ(x) +
cosh(bx)
cosh(b)

[α(1)− b sinh(b)u(0)

+b2

∫ 1

0

cosh(b(1− y))u(y)dy

]
+ b sinh(bx)u(0)

−b2

∫ x

0

cosh(b(x− y))u(y)dy . (46)

Differentiating (44) and (46) with respect tox and substituting
them into (29), (31) we get

εutt = (1 + d∂t)
{
uxx + b2u

+b3

∫ x

0

sinh(b(x− y))u(y)dy

−b2 cosh(bx)u(0)

−b sinh(bx)
cosh(b)

[α(1)− b sinh(b)u(0)

+b2

∫ 1

0

cosh(b(1− y))u(y)dy

]
−ᾱ(x)} (47)

ux(0) = ᾱ(0) +
1

cosh(b)
[α(1)− b sinh(b)u(0)

+b2

∫ 1

0

cosh(b(1− y))u(y)dy

]
(48)

and

εutt = (1 + d∂t)
{
uxx + b2u

+b3

∫ x

0

sinh(b(x− y))u(y)dy

−b2 cosh(bx)u(0)
−b sinh(bx)α(0)
−ᾱ(x) + b sinh(bx)ᾱ(0)} (49)

ux(0) = α(0) . (50)

For ᾱ(x) ≡ 0 we get the singularly perturbed reduced models
(the shear beam models), however, with theᾱ(x) and ᾱ(0)
present, these models are exact and they are theu-components
of a (u, ᾱ)-model that is equivalent to the original Timoshenko
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(u, α)-model.3 The model (47), (48) will be used in the control
design [note the presence of control inputα(1)], whereas the
model (49), (50) will be used in the observer design [note the
presence of the measured outputα(0)].

IV. CONTROL DESIGN

We start by assuming that̄α(x) ≡ 0 in (47), (48) and seek a
kernel functionk(x, y) in the change of variable (13) and in the
boundary feedback law (14) to convert (47), (48) into (5)–(7).
Unfortunately, because of the term

∫ 1

0
cosh(b(1− y))u(y)dy,

which is an integral over the entire interval[0, 1], the model
(47) is not in the strict-feedback form and therefore back-
stepping does not apply. However we can also notice that the
control inputα(1) can cancel the non-strict-feedback integral
and cast the problem into the form needed for a backstepping
design via the inputu(1). Hence, we select

α(1) = b sinh(b)u(0)− b2

∫ 1

0

cosh(b(1− y))u(y)dy . (51)

It can then be shown that a kernelk(x, y) that satisfies the
PDE

kxx = kyy +
(
c + b2

)
k − b3 sinh(b(x− y))

+b3

∫ x

y

k(x, ξ) sinh(b(ξ − y))dξ (52)

k(x, x) = −c + b2

2
x (53)

ky(x, 0) = b2 (− cosh(bx)

+
∫ x

0

k(x, y) cosh(by)dy

)
(54)

converts (47), (48) into (5)–(7). It was shown in [12] that this
type of a PDE has a unique smooth solution.

When the full stateu(y) is not available for measurement,
instead of (14) we use the feedback law

u(1) =
∫ 1

0

k(1, y)û(y) dy , (55)

with û(y) generated by an observer presented in Section V.
Likewise, we replace (51) by

α(1) = b sinh(b)u(0)− b2

∫ 1

0

cosh(b(1− y))û(y)dy . (56)

V. OBSERVERDESIGN

Next we focus our attention on the plant model (49), (50)
with ᾱ(x) set identically to zero. This system is also not
in the strict-feedback format required in the observer design
procedure in [13]. However, the termα(0), which violates the
structure, turns out to be measurable, which means that we
can cancel it in our observer.

According to the observer design theory in [13], our PDE
observer should consist of a copy of the plant (49), (50) and

3The PDE governing thēα dynamics will be presented later in the paper.
In singular perturbation terminology, thēα equation represents the “boundary
layer” model.

output injection. The observer is given by

εûtt = (1 + d∂t)
{
ûxx + b2û

+b3

∫ x

0

sinh(b(x− y))û(y)dy

−b2 cosh(bx)u(0)
−b sinh(bx)α(0)
+py(x, 0) (u(0)− û(0))} (57)

ûx(0) = α(0) + p(0, 0) (u(0)− û(0)) (58)
û(1) = u(1) , (59)

where the quantitiespy(x, 0) in the last line of (57) andp(0, 0)
in (58) are determined by solving the PDE

pyy = pxx +
(
c̃ + b2

)
p− b3 sinh(b(x− y))

+b3

∫ x

y

p(ξ, y) sinh(b(x− ξ))dξ (60)

p(x, x) =
c̃ + b2

2
(x− 1) (61)

p(1, y) = 0 . (62)

It should be noted that the observer (57)–(59) can be used
whether the inputu(1) in (59) is substituted from the controller
(55), set to zero, or set to some other (perhaps open-loop,
purely time dependent) control policy. Denoting the observer
error as

ũ = u− û (63)

and substituting (57)–(59) from (49), (50) we obtain the
observer error dynamics

εũtt = (1 + d∂t)
{
ũxx + b2ũ

+b3

∫ x

0

sinh(b(x− y))ũ(y)dy

+py(x, 0)ũ(0)} (64)
ũx(0) = −p(0, 0)ũ(0) (65)
ũ(1) = 0 . (66)

It can be shown that the transformation

ũ(x) = w̃(x)−
∫ x

0

p(x, y)w̃(y)dy (67)

converts the error system (64)–(66) into

εw̃tt = (1 + d∂t)
(
w̃xx − c̃w̃ + Π̃

)
(68)

w̃x(0) = 0 (69)
w̃(1) = 0 , (70)

where

Π̃(x) = −ᾱ(x)−
∫ x

0

r(x, y)ᾱy(y)dy

+b

(
sinh(bx) +

∫ x

0

r(x, y) sinh(by)dy

)
ᾱ(0) (71)

and the smooth functionr(x, y) represents the kernel of the
inverse transformation of (67) given by

w̃(x) = ũ(x) +
∫ x

0

r(x, y)ũ(y)dy . (72)

The observer error system (68)–(70) is the same as (25)–(27)
when ᾱ(x) ≡ 0, that is, it is well damped for the singularly
perturbed/reduced Timoshenko model or for the shear beam
model.
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When the control (55) is is used, we have to jointly analyze
the plant (47), (48), (55) and the observer (57)–(59). However,
analyzing the overall system in the variables(u, û) is not the
only possible choice. Other choices are(u, ũ) and(ũ, û). The
last choice turns out to be particularly convenient, so we will
analyze the systems (64)–(66) and (57)–(59), (55).

We start by noticing that the observer system (57)–(59)
contains the termα(0). We substitute the controller (56) into
the expression (45) forα(0) and get

α(0) = ᾱ(0) +
b2

cosh(b)

∫ 1

0

cosh(b(1− y))ũ(y)dy . (73)

Plugging this result into (57)–(59) we get

εûtt = (1 + d∂t)
{
ûxx + b2û

+b3

∫ x

0

sinh(b(x− y))û(y)dy

−b2 cosh(bx)û(0)
+

(
py(x, 0)− b2 cosh(bx)

)
ũ(0)

−b2 sinh(bx)
cosh(b)

∫ 1

0

cosh(b(1− y))ũ(y)dy

−b sinh(bx)ᾱ(0)} (74)
ûx(0) = ᾱ(0) + p(0, 0)ũ(0)

+
b2

cosh(b)

∫ 1

0

cosh(b(1− y))ũ(y)dy (75)

û(1) =
∫ 1

0

k(1, y)û(y) dy , (76)

We have already converted thẽu-system (64)–(66) into the
w̃-system (68)–(70). We do the same next with the observer
system (74)–(76). Applying the transformation

ŵ(x) = û(x)−
∫ x

0

k(x, y)û(y)dy (77)

with k(x, y) defined by (52)–(54), we get

εŵtt = (1 + d∂t)
(
ŵxx − ĉw̃ + Γ̂ + Π̂

)
(78)

ŵx(0) = Γ̂0 + Π̂0 (79)
ŵ(1) = 0 , (80)

where

Γ̂(x) = Q0(x)w̃(0) + Q1(x)
∫ 1

0

Qp(1, y)w̃(y)dy (81)

Π̂(x) = Q2(x)ᾱ(0) (82)

Γ̂0 = p(0, 0)w̃(0)

+
b2

cosh(b)

∫ 1

0

Qp(1, y)w̃(y)dy (83)

Π̂0 = ᾱ(0) (84)

Q0(x) = py(x, 0)− b2 cosh(bx)

−
∫ x

0

k(x, η)
(
py(η, 0)− b2 cosh(bη)

)
dη (85)

Q1(x) =
b2

cosh(b)
Q2(x) (86)

Q2(x) = −b

(
sinh(bx)−

∫ x

0

k(x, η) sinh(bη)dη

)
(87)

Qp(x, y) = b2 (cosh(b(x− y))

−
∫ x

y

cosh(b(x− ξ))p(ξ, y)dξ

)
. (88)

We have thus written the(ũ, û)-system in the(w̃, ŵ)
variables, given by the equations (68)–(70) and (78)–(80). The
ŵ-system is driven by both̃w andᾱ (through the perturbations
Γ̂, Γ̂0, Π̂, Π̂0), whereas thew̃-system is driven by onlyᾱ
(through the perturbatioñΠ).

VI. STABILITY ANALYSIS

To study the stability of the reduced model (68)–(70) and
(78)–(80) with ᾱ = 0 (which setsΠ̂ ≡ Π̂0 ≡ Π̃ ≡ 0), we
introduce the Lyapunov functions

Ṽ =
1
2

[(
1 + δ̃d

) (
‖w̃x‖2 + c̃‖w̃‖2

)
+ε‖w̃t‖2 + 2δ̃ε〈w̃, w̃t〉

]
(89)

V̂ =
1
2

[(
1 + δ̂d

) (
‖ŵx‖2 + c‖ŵ‖2

)
+ε‖ŵt‖2 + 2δ̂ε〈ŵ, ŵt〉

]
. (90)

Using Poincare’s inequality, it is easy to see that for suf-
ficiently small positive δ̂, δ̃ there exist positive constants
m̃1, m̃2, m̂1, m̂2 such that

m̃1Ũ ≤ Ṽ ≤ m̃2Ũ (91)

m̂1Û ≤ V̂ ≤ m̂2Û , (92)

where

Ũ = ‖w̃x‖2 + ‖w̃t‖2 (93)

Û = ‖ŵx‖2 + ‖ŵt‖2 . (94)

Furthermore, a long calculation shows that (forᾱ = 0)

˙̃
V = −δ̃

(
c̃‖w̃‖2 + ‖w̃x‖2

)
−

(
c̃d− δ̃ε

)
‖w̃t‖2 − d‖w̃xt‖2 (95)

and
˙̂
V = −δ̂

(
c‖ŵ‖2 + ‖ŵx‖2

)
−

(
cd− δ̂ε

)
‖ŵt‖2 − d‖ŵxt‖2

+Ξ , (96)

where

Ξ = −
(
Γ̂0 + d

˙̂Γ0

) (
ŵt(0) + δ̂ŵ(0)

)
+

〈
ŵt + δ̂ŵ, Γ̂ + dΓ̂t

〉
. (97)

Using the Poincare, Agmon, and Cauchy-Schwartz inequali-
ties, it can be shown that∥∥∥Γ̂

∥∥∥ ,
∣∣∣Γ̂0

∣∣∣ ≤ m‖w̃x‖ (98)∥∥∥Γ̂t

∥∥∥ ,
∣∣∣ ˙̂Γ0

∣∣∣ ≤ m‖w̃xt‖ (99)

for sufficiently largem, and further that

|Ξ| ≤ m̄
(
‖w̃x‖2 + ‖w̃xt‖2 + ‖ŵx‖2 + ‖ŵxt‖2

)
(100)

for sufficiently largem̄. Taking a Lyapunov function of the
form

V = V̂ + ΛṼ , (101)

using (89)–(100) one can show that there exists a sufficiently
large positiveΛ such that

V̇ ≤ −λV (102)
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for some (small)λ > 0. From this result, along with (91),
(92), it follows that

Û(t) + Ũ(t) ≤ Me−t/M
(
Û(0) + Ũ(0)

)
(103)

for sufficiently largeM > 0. From the invertibility of the
transformations (67) and (77) [and from the smoothness of
their kernelsp(x, y) andk(x, y)], it follows that

‖ux(t)‖2 + ‖ut(t)‖2 + ‖ûx(t)‖2 + ‖ût(t)‖2 ≤ M̄e−t/M̄

×
(
‖ux(0)‖2 + ‖ut(0)‖2 + ‖ûx(0)‖2 + ‖ût(0)‖2

)
.(104)

Theorem 3:Consider the system consisting of the plant
(47), (48), the controller (55), (56), and the observer (57)–(59),
(45), with ᾱ ≡ 0. The trivial solutionut(x, t) ≡ ux(x, t) ≡
ût(x, t) ≡ ûx(x, t) ≡ 0 is exponentially stable in theL2 sense,
as specified by the estimate (104).

Of course, a stronger property than mere exponential sta-
bility is achieved. All the eigenvalues of the closed loop
system, which is block-triangular as clearly displayed in the
representation (68)–(70), (78)–(80) witĥΠ ≡ Π̂0 ≡ Π̃ ≡ 0,

have damping ratios of at leastπd
4
√

ε

√
1 + 4

π2 c̄ and all of their

real parts are no larger than−min
{

1
d , π2d

8ε

(
1 + 4

π2 c̄
)}

, where

c̄ = min{c, c̃}. As mentioned before, a good engineering
choice would bec̃ > c, which would make the observer
operate on a faster time scale than the certainty-equivalent
state feedback controller.

All the conclusions so far in this section are for the shear
beam model. To study the closed-loop Timoshenko model we
include Π̂, Π̂0, Π̃ in (68)–(70), (78)–(80) and write (40)–(42),
(44), (73), (67) as

µᾱtt = (1 + d∂t)
(
ᾱxx − b2ᾱ

)
− µΓ̄ (105)

ᾱx(0) = 0 (106)
ᾱ(1) = 0 , (107)

where

Γ̄(x) = bsinh(bx) (w̃tt(0) + ŵtt(0))

+
cosh(bx)
cosh(b)

∫ 1

0

Qp(1, y)w̃tt(y)dy

−
∫ x

0

Qp(x, y)w̃tt(y)dy

−
∫ x

0

Ql(x, y)ŵtt(y)dy (108)

Ql(x, y) = b2 (cosh(b(x− y))

+
∫ x

y

cosh(b(x− ξ))l(ξ, y)dξ

)
(109)

and the smooth functionl(x, y) represents the kernel of the
inverse transformation of (77) given by

û(x) = ŵ(x) +
∫ x

0

l(x, y)ŵ(y)dy . (110)

Thus the “boundary layer model” in standard singular pertur-
bation analysis is

µᾱττ = (1 + d∂t)
(
ᾱxx − b2ᾱ

)
(111)

ᾱx(0) = 0 (112)
ᾱ(1) = 0 , (113)

whereτ is the time variable of the fast subsystem. Hence, both
the reduced model (68)–(70), (78)–(80) withΠ̂ ≡ Π̂0 ≡ Π̃ ≡ 0
and the boundary layer model (111)–(113) are exponentially

stable, satisfying the conditions in the singular perturbation
theory for overall stability of the un-approximated system.
Indeed, due to the fact thatµ multiplies the perturbation̄Γ
in (105), the overall(w̃, ŵ, ᾱ)-system (68)–(70), (78)–(80),
(105)–(107), with theᾱ-perturbationsΠ̂, Π̂0, Π̃ included in
(68)–(70), (78)–(80), is exponentially stable for sufficiently
small µ, however, the Lyapunov proof involves higher order
norms and we don’t pursue it here.

Finally, in addition to the eigenvalues of the re-
duced model being well damped, the eigenvalues of the
boundary layer model have damping ratios of at least
πd

4
√

µ

√
1 + 4

π2
a
ε and all of their real parts are no larger than

−min
{

1
d , π2d

8µ

(
1 + 4

π2
a
ε

)}
. So for smallµ all the eigenvalues

of the Timoshenko model are well damped.

VII. C ONTROLLER AND OBSERVERGAINS

The controller gain k(1, y) and the observer gain
py(x, 0), p(0, 0) can be computed by numerically calculating
the solutions to the hyperbolic PIDEs (52)–(54) and (60)–(62).
However their solutions can also be computed symbolically as

k(x, y) = lim
n→∞

kn(x, y) (114)

k0 = − b

2
[− sinh(b(x− y)) + by cosh(b(x− y))]

− c

2
x (115)

kn+1 = k0

+(c + b2)
∫ x+y

2

x−y
2

∫ x−y
2

0

kn(σ + s, σ − s) ds dσ

+2(c + b2)
∫ x−y

2

0

∫ σ

0

kn(σ + s, σ − s) ds dσ

−b2

∫ x−y

0

∫ σ

0

kn(σ, s) cosh(bs) ds dσ

+b3

∫ x+y
2

x−y
2

∫ x−y
2

0

∫ σ+s

σ−s

kn(σ + s, ξ)

× sinh(b(ξ − σ + s)) dξ ds dσ

+2b3

∫ x−y
2

0

∫ σ

0

∫ σ+s

σ−s

kn(σ + s, ξ)

× sinh(b(ξ − σ + s)) dξ ds dσ (116)

and

p(x, y) = lim
n→∞

pn(x, y) (117)

p0 = − b

2
[sinh(b(x− y)) + b(1− x) cosh(b(x− y))]

− c̃

2
(1− y) (118)
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pn+1 = p0

+(c̃ + b2)
∫ 2−x−y

2

x−y
2

∫ x−y
2

0

pn(σ + s, σ − s) ds dσ

+2(c̃ + b2)
∫ x−y

2

0

∫ σ

0

pn(σ + s, σ − s) ds dσ

+b3

∫ 2−x−y
2

x−y
2

∫ x−y
2

0

∫ σ+s

σ−s

pn(σ + s, ξ)

× sinh(b(ξ − σ + s)) dξ ds dσ

+2b3

∫ x−y
2

0

∫ σ

0

∫ σ+s

σ−s

pn(σ + s, ξ)

× sinh(b(ξ − σ + s)) dξ ds dσ (119)

As for the initial iterates of the controller and observer gains,
they are

(k(1, y))0 = − b

2
[− sinh(b(1− y)) + by cosh(b(1− y))]

− c

2
(120)

(py(x, 0))0 =
b2

2
[cosh(bx) + b(1− x) sinh(bx)]

+
c̃

2
. (121)

The observer gain in the boundary condition (58) is known
exactly,

p(0, 0) = − c̃ + b2

2
. (122)

VIII. D ISCUSSION

The main distinction between the bacstepping compensators
designed here and the damping feedbacks in the prior lit-
erature, besides the control architecture required, is that the
backstepping controllers, which are not relying on a passivity
property from the actuator to the sensor, can be employed to
pursue more ambitious objectives such as trajectory tracking.
Our major future research effort will be in developing motion
planning techniques that result in explicit formulae for state
and input reference functions to achieve asymptotic tracking
of desired beam tip trajectories. Once the motion planning
problems are solved, the backstepping compensators can be
modified in a straightforward way from serving the purpose
of stabilization of the equilibrium state to stabilization of
trajectories. Such an explicit parametrization will be possi-
ble for trajectories consisting of sinusoids, exponentials, and
polynomial functions of time.

We presented our results for a model of a beam with a free
end. These results can be extended to the case where the beam
tip is subject to a force that is the result of interaction with
the environment and is a function of the tip displacement. This
extension is of interest in atomic force microscopes.

We focused on the Dirichlet form of actuation and sensing.
Similar designs can be produced for the cases off Neumann
actuation and/or sensing.4

As mentioned before, our method does not work for the
Euler-Bernoulli beam model, though it works for more realistic
models, an irony which has kept the backstepping approach
restricted to parabolic problems only for several years. It is
useful to see that whenε, µ → 0, which is when the Timo-
shenko model degenerates into the Euler-Bernoulli model, our
controller and observer gains grow towards infinity.

4Involving ux(0), αx(0), ux(1), αx(1).
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41, pp. 1601-1608, 2005.

[15] A. Smyshlyaev and M. Krstic, ”Passive identifiers for boundary adaptive
control of 3D reaction-advection-diffusion PDEs,”IEEE Conference on
Decision and Control, 2005.

[16] A. Smyshlyaev and M. Krstic, ”Output feedback adaptive controllers
with swapping identifiers for two unstable PDEs with infinite relative
degree,”IEEE Conference on Decision and Control, 2005.

[17] S. W. Taylor and S. C. B. Yau, “Boundary control of a rotating
Timoshenko beam,”ANZIAM Journal, vol. 44, pp. E143–E184, 2003.

[18] R. Vazquez and M. Krstic, ”A closed form feedback controller for
stabilization of linearized Navier-Stokes equations: The 2D Poisseuille
flow,” IEEE Conference on Decision and Control, 2005.

[19] R. Vazquez and M. Krstic, ”A closed form observer for the channel flow
Navier-Stokes system,”IEEE Conf. Decision & Control, 2005.

[20] R. Vazquez and M. Krstic, “Explicit integral operator feedback for local
stabilization of nonlinear thermal convection loop PDEs,ÕÕ Systems
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