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Abstract— We develop output feedback adaptive controllers for
two benchmark parabolic PDEs motivated by a model of thermal
instability in solid propellant rockets. Both benchmark plants
are unstable, have infinite relative degree, and are controlled
from the boundary. One plant has an unknown parameter in
the PDE and the other in the boundary condition. In both cases
the unknown parameter multiplies the measured output of the
system, which is obtained with a boundary sensor located on the
“opposite side” of the domain from the actuator. In comparison
with the Lyapunov output-feedback adaptive controllers in [12],
the controllers presented here employ much simpler update laws
and do not require a priori knowledge about the unknown
parameters. We show how our two benchmarks examples can
be combined and illustrate the adaptive stabilization design by
simulation.

Index Terms— adaptive control, boundary control, distributed
parameter systems

I. INTRODUCTION

In a companion paper [20] we introduced a novel approach
to adaptive control of PDEs where a parametrized family
of boundary controllers can be combined with “swapping
gradient” identifiers to yield global stability of the resulting
nonlinear PDE system. Only the state-feedback problem was
considered in [20]. For a different, narrower, class of systems,
the output-feedback problem is solvable by this method, which
is illustrated on two benchmark examples in this paper.

We consider two parametrically uncertain, unstable parab-
olic PDE plants controlled from the boundary. While these
benchmark plants are simple in appearance, there does not
exist an adaptive control design in the literature that is
applicable to them due to the fact that they have infinite
relative degree. Infinite relative degree arises in applications
where actuators and sensors are on the “opposite sides” of
the PDE domains. The two benchmark problems in this
paper are motivated by a model of thermal instability in
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solid propellant rockets [3]. Our control laws are adaptive
versions of the explicit boundary control laws developed
in [18], [19]. Our adaptive observers are infinite dimensional
extensions of Kreisselmeier observers [13]. Our identifiers
are designed using the swapping approach [13], prevalent
in adaptive control of finite dimensional systems of relative
degree higher than one. These identifiers remove the need
for parameter projection and low adaptation gain present in
Lyapunov output-feedback designs in [12].

Early works on adaptive control of infinite-dimensional sys-
tems were for plants stabilizable by non-identifier based high
gain feedback [15], under a relative degree one assumption.
State-feedback model reference adaptive control (MRAC) was
extended to PDEs in [7], [2], [21], [16], [1] but not for the
case of boundary control. Efforts in [5], [22] made use of
positive realness assumptions where relative degree one is
implicit, except in some examples where this restriction is
cleverly overcome. Stochastic adaptive LQR with least-squares
parameter estimation and state feedback was pursued in [6].
Adaptive control of nonlinear PDEs was studied in [14], [10],
[11]. Adaptive controllers for nonlinear systems on lattices
were designed in [9]. An experimentally validated adaptive
boundary controller for a flexible beam was presented in [4].

Although for the sake of clarity we consider two separate
benchmark problems, it is possible to design an adaptive
controller for a combined problem (Section VI). Another
reason for a separate consideration is a slightly weaker result
for the benchmark plant with the unknown parameter in the
boundary condition, due to an inherent difficulty observed
in [1], [14].

Throughout the paper we assume well posedness of the
closed-loop systems in the interest of space and due to the
parabolic character of these systems which ensures their be-
nign behavior, as supported by numerical results that we show
in this paper. An example on how one derives the Sobolev
estimates of higher order (H4), the key step in a proof of well
posedness, is given in [12].
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a) Notation.: The spatial L2(0, 1) norm is denoted by
‖ · ‖. The temporal norms are denoted by L∞ and L2 for
t ≥ 0. We denote by l1 a generic function in L∞ ∩ L2.

II. BENCHMARK PLANT WITH UNKNOWN PARAMETER IN
THE DOMAIN

Consider the following plant

ut(x, t) = uxx(x, t) + gu(0, t) , (1)
ux(0, t) = 0 , (2)
u(1, t) = U(t) , (3)

where U(t) is a control signal. This system is inspired by a
model of thermal instability in solid propellant rockets [3].
For U(t) = 0 this system is unstable if and only if g > 2.
The plant can be written in the frequency domain as a transfer
function from input u(1) to output u(0):

u(0, s) =
s

(s − g) cosh
√

s + g
u(1, s) . (4)

We can see that it has no zeros (at s = 0 the transfer function
is 2/(2 − g)) and has infinitely many poles, one of which is
unstable and approximately equal to g as g → +∞. So this
is an infinite relative degree system.

The following transformation has been proposed in [18] for
the case of known g:

w(x, t) = u(x, t) +

∫ x

0

√
g sinh

√
g(x − ξ)u(ξ, t) dξ , (5)

which maps (1)–(2) into an exponentially stable system

wt(x, t) = wxx(x, t) , (6)
wx(0, t) = 0 , (7)
w(1, t) = 0 . (8)

A stabilizing control law is given by (5) evaluated at x = 1:

u(1, t) = −
∫ 1

0

√
g sinh

√
g(1 − ξ)u(ξ, t) dξ . (9)

Suppose now that we want to stabilize this system when g
is unknown. Our main result for this problem is summarized
in the following theorem.

Theorem 1: Consider the system (1)–(2) with the control

u(1, t) =

∫ 1

0

k(1, ξ, ĝ)(ĝv(ξ, t) + η(ξ, t)) dξ , (10)

k(x, ξ, ĝ) =

{

−
√

ĝ sinh
√

ĝ(x − ξ), ĝ ≥ 0,√
−ĝ sin

√
−ĝ(x − ξ), ĝ < 0,

(11)

where an update law for ĝ is

˙̂g = γ
(u(0, t) − ĝv(0, t) − η(0, t))v(0, t)

1 + v2(0, t)
, (12)

and the filters v(x, t), η(x, t) are defined as

vt(x, t) = vxx(x, t) + u(0, t) , (13)
vx(0, t) = 0 , (14)
v(1, t) = 0 , (15)

ηt(x, t) = ηxx(x, t) , (16)
ηx(0, t) = 0 , (17)
η(1, t) = u(1, t) . (18)

If the closed loop system (1)–(2), (10)–(18) has a classical
solution (u, ĝ, v, η), then for any ĝ(0) and any initial
conditions u0, v0, η0 ∈ L2(0, 1), the signals ĝ, u, v, η are
bounded and u is regulated to zero for all x ∈ [0, 1]:

lim
t→∞

max
x∈[0,1]

|u(x, t)| = 0. (19)

Although it may not be immediately obvious from (11),
the control law (10)–(11) is a smooth function of ĝ. Note
that a-priori knowledge of a bound on ĝ is not required in the
swapping scheme (10)–(18) (as opposed to Lyapunov adaptive
design in [12]).

III. PROOF OF THEOREM 1

A. Target system

Introducing the error e = u−gv−η we get an exponentially
stable system

et(x, t) = exx(x, t) , (20)
ex(0, t) = 0 , (21)
e(1, t) = 0 . (22)

The estimate ê = u − ĝv − η satisfies the following PDE

êt(x, t) = êxx(x, t) + g̃u(0, t) − ˙̂gv(x, t) , (23)
êx(0, t) = 0 , (24)
ê(1, t) = 0 . (25)

The signal ê can be expressed through e as ê = e + g̃v.
The transformation

ŵ(x, t) = ĝv(x, t) + η(x, t)

−
∫ x

0

k(x, ξ, ĝ)(ĝv(ξ, t) + η(ξ, t)) dξ (26)

with k(x, ξ, ĝ) given by (11) maps (13)–(18) into the following
system (Lemma A.1):

ŵt(x, t) = ŵxx(x, t) + β(x)ê(0, t) + ˙̂gv

+ ˙̂g

∫ x

0

α(x − ξ) (ĝv(ξ, t) + ŵ(ξ, t)) dξ, (27)

ŵx(0, t) = 0 , (28)
ŵ(1, t) = 0 , (29)

where

α(x) = −1

ĝ
k(x, 0, ĝ), (30)

β(x) = kξ(x, 0, ĝ) =

{

ĝ cosh
√

ĝx, ĝ ≥ 0,
ĝ cos

√
−ĝx, ĝ < 0,

(31)

B. Adaptive law

We take the following equation as a parametric model

e(0, t) = u(0, t) − gv(0, t) − η(0, t) . (32)

The estimation error is

ê(0, t) = u(0, t) − ĝv(0, t) − η(0, t) . (33)
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We use the gradient update law

˙̂g = γ
ê(0, t)v(0, t)

1 + v2(0, t)
. (34)

Lemma 2: The adaptive law (34) guarantees the following
properties:

ê(0, t)
√

1 + v2(0, t)
∈ L2 ∩ L∞, g̃ ∈ L∞, ˙̂g ∈ L2 ∩ L∞ . (35)

Proof: Using a Lyapunov function

V =
1

2

∫ 1

0

e2 dx +
1

2γ
g̃2 (36)

we get

V̇ = −
∫ 1

0

e2
x dx − g̃ê(0)v(0)

1 + v2(0)

≤ −
∫ 1

0

e2
x dx − ê2(0)

1 + v2(0)
+

e(0)ê(0)

1 + v2(0)

≤ −‖ex‖2 − ê2(0)

1 + v2(0)
+

‖ex‖|ê(0)|
√

1 + v2(0)

≤ −1

2
‖ex‖2 − 1

2

ê2(0)

1 + v2(0)
(37)

This gives the following properties

ê(0, t)
√

1 + v2(0, t)
∈ L2, g̃ ∈ L∞ . (38)

Since
ê(0, t)

√

1 + v2(0, t)
=

e(0, t)
√

1 + v2(0, t)
+ g̃

v(0, t)
√

1 + v2(0, t)
, (39)

˙̂g = γ
ê(0, t)

√

1 + v2(0, t)

v(0, t)
√

1 + v2(0, t)
, (40)

we get (35).
The explicit bound on ĝ in terms of initial conditions of all

the signals can be obtained from (37):

ĝ2(t) ≤ 2g2 + 2

(

g̃(0)2 + γ

∫ 1

0

e2(x, 0) dx

)

≤ 2g2 + 2(g − ĝ(0))2

+ 2γ

∫ 1

0

(u(x, 0) − gv(x, 0) − η(x, 0))2 dx. (41)

We denote the bound on ĝ by g0. The above properties imply
that functions α and β are bounded, let us denote these bounds
by α0 and β0.

C. Boundedness

The filter v can be rewritten in the following way

vt(x, t) = vxx(x, t) + ŵ(0, t) + ê(0, t) , (42)
vx(0, t) = 0 , (43)
v(1, t) = 0 . (44)

We have two interconnected systems ŵ, v driven by a signal
ê(0, t) with properties (35). Consider a Lyapunov function

Vv =
1

2

∫ 1

0

v2(x) dx +
1

2

∫ 1

0

v2
x(x) dx . (45)

We include the H1 norm in the Lyapunov function because the
signal ê(0) is normalized by 1 + v2(0) and v2(0) can only be
bounded by ‖vx‖2. Using Young’s, Poincare’s, and Agmon’s
inequalities we have1

V̇v = −
∫ 1

0

v2
x dx + (ŵ(0) + ê(0))

∫ 1

0

v dx

−
∫ 1

0

v2
xx dx − (ŵ(0) + ê(0))

∫ 1

0

vxx dx

≤ −‖vx‖2 +
1

8
‖v‖2 + 4

ê2(0)

1 + v2(0)
(1 + ‖vx‖2)

+ 4‖ŵx‖2 − ‖vxx‖2 +
1

2
‖vxx‖2 + ‖ŵx‖2

+
ê2(0)

1 + v2(0)
(1 + ‖vx‖2)

≤ −1

2
‖vx‖2 − 1

2
‖vxx‖2 + 5‖ŵx‖2 + l1‖vx‖2 + l1, (46)

where l1 is a generic function of time in L1 ∩L∞. Using the
following Lyapunov function for the ŵ-system,

Vŵ =
1

2

∫ 1

0

ŵ2(x) dx (47)

we get

V̇ŵ = −
∫ 1

0

ŵ2
x dx + ê(0)

∫ 1

0

βŵ dx + ˙̂g

∫ 1

0

ŵv dx

+ ˙̂g

∫ 1

0

ŵ(x)

∫ x

0

α(x − y)(ĝv(y) + ŵ(y)) dy dx

≤ −‖ŵx‖2 +
c1

2
‖ŵ‖2 +

β2
0

2c1

ê2(0)

1 + v2(0)
(1 + ‖vx‖2)

+
| ˙̂g|2(1 + α0g0)

2

2c1
‖v‖2 + c1‖ŵ‖2 +

| ˙̂g|2α2
0

2c1
‖ŵ‖2

≤ −(1 − 6c1)‖ŵx‖2 + l1‖ŵ‖2 + l1‖vx‖2 + l1 . (48)

Choosing c1 = 1/24 and using a Lyapunov function V =
Vŵ + (1/20)Vv , we get

V̇ ≤ −1

2
‖ŵx‖2 − 1

40
‖vx‖2 − 1

40
‖vxx‖2

+ l1‖ŵ‖2 + l1‖vx‖2 + l1

≤ −1

4
V + l1V + l1 (49)

and by Lemma A.2 we obtain ‖ŵ‖,‖v‖, ‖vx‖ ∈ L2 ∩ L∞.
Using these properties we get

1

2

d

dt
‖ŵx‖2 ≤ −‖ŵxx‖2 + β0|ê(0)|‖ŵxx‖

+ | ˙̂g|‖ŵxx‖((1 + α0g0)‖v‖ + α0‖ŵ‖)
≤ −1

8
‖ŵx‖2 + l1, (50)

so that ‖ŵx‖ ∈ L2 ∩ L∞.

1We drop the dependence on time in the proofs to reduce notational burden.
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D. Regulation

Using the fact that ‖vx‖, ‖ŵx‖ are bounded we get
∣

∣

∣

∣

d

dt
(‖v‖2 + ‖ŵ‖2)

∣

∣

∣

∣

≤ l1‖ŵx‖2 + l1‖vx‖2 + l1 < ∞. (51)

By Barbalat’s lemma ‖ŵ‖ → 0, ‖v‖ → 0. From (A.2) we
have ‖η‖ → 0 and ‖ηx‖ is bounded. Since u = e+qv+η, we
get ‖u‖ → 0 and ‖ux‖ is bounded. Finally, using Agmon’s
inequality we get

lim
t→∞

max
x∈[0,1]

|u(x, t)| ≤ lim
t→∞

(2‖u‖‖ux‖)1/2 = 0 . (52)

IV. BENCHMARK PLANT WITH UNKNOWN PARAMETER IN
THE BOUNDARY CONDITION

Consider the following plant

ut(x, t) = uxx(x, t) , (53)
ux(0, t) = −qu(0, t) , (54)
u(1, t) = U(t) , (55)

where U(t) is the control signal. This is an example of a sys-
tem with a parametric uncertainty in the boundary condition,
a hard-to-stabilize case even with full state feedback with in-
domain actuation [1]. With U(1) = 0 this PDE is unstable if
and only if q > 1. The plant can be written in the frequency
domain as a transfer function from input u(1) to output u(0):

u(0, s) =

√
s√

s cosh
√

s − q sinh
√

s
u(1, s) . (56)

Since this transfer function has infinitely many poles and no
zeros (at s = 0 the transfer function is 1/(1 − q)), this is an
infinite relative degree system. One of the poles is unstable
and is approximately equal to q2 as q → +∞.

For the case of known q the transformation

w(x, t) = u(x, t) −
∫ x

0

k(x, ξ)u(ξ, t) dξ (57)

was used in [18] to map (53)–(54) into the target system

wt(x, t) = wxx(x, t) − cw(x, t) , (58)
wx(0, t) = −qw(0, t) , (59)
w(1, t) = 0 , (60)

which is exponentially stable for c ≥ max{q|q|, 0}. However,
this stability condition cannot be used when q is unknown.
Instead, let us use (57) to map (53)–(54) into a different target
system,

wt(x, t) = wxx(x, t) , (61)
wx(0, t) = 0 , (62)
w(1, t) = 0 . (63)

It can be shown that the kernel k(x, ξ) must satisfy the
following conditions:

kxx − kξξ = 0 , (64)
kξ(x, 0) = −qk(x, 0) , (65)
k(x, x) = −q . (66)

The solution to this PDE is

k(x, ξ) = −qeq(x−ξ) . (67)

Suppose now that we want to stabilize the plant (53)–(55)
when q is unknown. We have the following result.

Theorem 3: Consider the system (53)–(54) with the control

u(1, t) = −
∫ 1

0

q̂eq̂(1−ξ)(q̂v(ξ, t) + η(ξ, t)) dξ , (68)

where the update law for q̂ is

˙̂q = γ
(u(0, t) − q̂v(0, t) − η(0, t))v(0, t)

1 + v2(0, t)
, (69)

and the filters v(x, t), η(x, t) are defined as

vt(x, t) = vxx(x, t) , (70)
vx(0, t) = −u(0, t) , (71)
v(1, t) = 0 , (72)

ηt(x, t) = ηxx(x, t) , (73)
ηx(0, t) = 0 , (74)
η(1, t) = u(1, t) . (75)

If the closed loop system (53)–(54), (68)–(75) has a classical
solution (u, q̂, v, η), then for any q̂(0) and any initial
conditions u0, v0, η0 ∈ L2(0, 1), the signals q̂(t), ‖u‖, ‖v‖,
‖η‖ are bounded and ‖u‖ is regulated to zero:

lim
t→∞

‖u‖ = 0. (76)

In addition, u(x, t) is square integrable in t for all x ∈ [0, 1].
Although the plants considered in Sections II (g-system)

and IV (q-system) look quite similar, the adaptive stabilization
problem for the latter is substantially harder due to uncertainty
in the boundary condition. The proof becomes harder and the
end result is a little weaker — L2 boundedness and regulation
instead of pointwise boundedness and regulation.

V. PROOF OF THEOREM 3

A. Target system

Introducing the error e = u−qv−η we get an exponentially
stable system

et(x, t) = exx(x, t) , (77)
ex(0, t) = 0 , (78)
e(1, t) = 0 . (79)

The transformation

ŵ(x, t) = q̂v(x, t) + η(x, t)

+

∫ x

0

q̂eq̂(x−ξ)(q̂v(ξ, t) + η(ξ, t)) dξ (80)

maps (53)–(54), (68) into the following system (Lemma A.1):

ŵt(x, t) = ŵxx(x, t) + q̂2eq̂xê(0, t) + ˙̂qv

+ ˙̂q

∫ x

0

eq̂(x−ξ)(q̂v(ξ, t) + ŵ(ξ, t)) dξ , (81)

ŵx(0, t) = −q̂ê(0, t) , (82)
ŵ(1, t) = 0 . (83)
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B. Adaptive law properties

This step is almost the same as in Section III for the g-
system. We take the following equation as a parametric model

e(0, t) = u(0, t) − qv(0, t) − η(0, t) . (84)

The estimation error is

ê(0, t) = u(0, t) − q̂v(0, t) − η(0, t) . (85)

Using the gradient update law

˙̂q = γ
ê(0, t)v(0, t)

1 + v2(0, t)
(86)

we get the following properties (as in Lemma 2)

ê(0, t)
√

1 + v2(0, t)
∈ L2 ∩ L∞, q̃ ∈ L∞, ˙̂q ∈ L2 ∩ L∞ . (87)

We denote the bound on q̂ by q0.

C. Boundedness

First we rewrite v-filter as

vt(x, t) = vxx(x, t) , (88)
vx(0, t) = −ŵ(0, t) − ê(0, t) , (89)
v(1, t) = 0 , (90)

We have two interconnected systems for ŵ and v driven by
the signal ê(0, t) with properties (87). Consider a Lyapunov
function

V =
1

2

∫ 1

0

ŵ2(x) dx +
1

2

∫ 1

0

v2(x) dx . (91)

We have

V̇ = − ŵ(0)ŵx(0) −
∫ 1

0

ŵ2
x dx + ˙̂q

∫ 1

0

ŵ(x)v(x) dx

+ ˙̂q

∫ 1

0

ŵ(x)

∫ x

0

eq̂(x−ξ)(q̂v(ξ) + ŵ(ξ)) dξ dx

+ ê(0)

∫ 1

0

q̂2eq̂xŵ(x) dx − v(0)vx(0) −
∫ 1

0

v2
x dx

≤ −‖ŵx‖2 + |ê(0)|(q0|ŵ(0)| + q2
0eq0‖ŵ‖) + c1‖ŵ‖2

+
(1 + q0e

q0)2| ˙̂q|2
2c1

‖v‖2 +
e2q0 | ˙̂q|2

2c1
‖ŵ‖2

−‖vx‖2 +
1

2
‖vx‖2 +

1

2
‖ŵx‖2 + |v(0)||ê(0)| . (92)

Estimates of particular terms:

q0|ê(0)||ŵ(0)| ≤ q0|ŵ(0)| ê(0)
√

1 + v2(0)
(1 + |v(0)|)

≤ c2‖ŵx‖2 +
q2
0

4c2

ê2(0)

1 + v2(0)

+ 2q0

√

‖ŵ‖‖ŵx‖‖v‖‖vx‖
|ê(0)|

√

1 + v2(0)

≤ c2‖ŵx‖2 + l1

+
q0|ê(0)|

√

1 + v2(0)
(‖ŵ‖‖ŵx‖ + ‖v‖‖vx‖)

≤ c2‖ŵx‖2 + l1 + c3‖ŵx‖2 + c4‖vx‖2

+ q2
0

ê2(0)

1 + v2(0)

(‖v‖2

4c3
+

‖ŵ‖2

4c4

)

≤ c2‖ŵx‖2 + c3‖ŵx‖2 + c4‖vx‖2

+ l1‖v‖2 + l1‖ŵ‖2 + l1, (93)

q2
0eq0 |ê(0)|‖ŵ‖ ≤ q2

0eq0‖ŵ‖ ê(0)
√

1 + v2(0)
(1 + |v(0)|)

≤ c5‖ŵ‖2 +
q4
0e2q0

4c5

ê2(0)

1 + v2(0)
+ c6‖vx‖2

+
q4
0e2q0

4c6

ê2(0)

1 + v2(0)
‖ŵ‖2

≤ c5‖ŵ‖2 + c6‖vx‖2 + l1‖ŵ‖2 + l1, (94)

|v(0)||ê(0)| ≤ |v(0)||ê(0)|
1 + v2(0)

(1 + 2‖v‖‖vx‖)

≤ c7

2
‖vx‖2 +

1

2c7

ê2(0)

1 + v2(0)
+

c7

2
‖vx‖2

+
2

c7

( |v(0)||ê(0)|
1 + v2(0)

)2

‖v‖2

≤ c7‖vx‖2 + l1‖v‖2 + l1 . (95)

In the last inequality we used the fact that ˙̂q2 is an l1 function.
We have

V̇ ≤ −
(

1

2
− 4c1 − c2 − c3 − 4c5

)

‖ŵx‖2 + l1‖ŵ‖2

−
(

1

2
− c4 − c6 − c7

)

‖vx‖2 + l1‖v‖2 + l1 . (96)

Choosing 4c1 = c2 = c3 = 4c5 = 1/16, c4 = c6 = c7 =
1/12, we get

V̇ ≤ −1

8
V + l1V + l1 (97)

and by Lemma A.2 we obtain ‖ŵ‖,‖v‖ ∈ L2 ∩ L∞.

D. Regulation
It is easy to see from (97) that V̇ is bounded from above.

By using an alternative to Barbalat’s lemma [14, Lemma 3.1]
we get V → 0, that is ‖ŵ‖ → 0, ‖v‖ → 0. From (A.3) we
have ‖η‖ → 0. Since u = e + qv + η, we get ‖u‖ → 0.

By integrating (96) we get ‖ŵx‖,‖vx‖ ∈ L2, and from (A.3)
‖ηx‖ ∈ L2 and therefore ‖ux‖ ∈ L2. Square integrability
in time of u(x, t) for all x ∈ [0, 1] follows from Agmon’s
inequality.
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VI. PLANT WITH TWO UNKNOWN PARAMETERS

For the sake of clarity and due to different adaptive reg-
ulation properties that can be achieved, we considered two
benchmark problems separately. It is also possible to design an
output feedback adaptive controller for the combined system

ut(x, t) = uxx(x, t) + gu(0, t) , (98)
ux(0, t) = −qu(0, t) , (99)

This system is unstable if and only if 2q + g > 2. The non-
adaptive control law can be designed based on the controllers
for separate problems by using the method described in [18,
Sec. VIII-E]. We state here the stabilization result without a
proof.

Theorem 4: Consider the plant (98)–(99) with the controller

u(1) =

∫ 1

0

r2
1e

r1(1−x) − r2
2e

r2(1−x)

2
√

ĝ + q̂2/4
(ĝv + q̂p + η) dx, (100)

where the update laws for ĝ and q̂ are

˙̂g = γ1
ê(0)v(0, t)

1 + v2(0, t) + p2(0, t)
, (101)

˙̂q = γ2
ê(0)p(0, t)

1 + v2(0, t) + p2(0, t)
, (102)

the input filter is

ηt = ηxx (103)
ηx(0) = 0 (104)
η(1) = u(1) (105)

and the output filters are

vt = vxx + u(0)
vx(0) = 0
v(1) = 0

pt = pxx

px(0) = −u(0)
p(1) = 0

(106)

with ê(0) = u(0) − ĝv(0) − q̂p(0) − η(0) and

r1,2 =
q̂

2
∓

√

ĝ +
q̂2

4
. (107)

If the closed loop system (98)–(107) has a classical solution (u,
ĝ, q̂, v, p, η), then for any ĝ(0), q̂(0) and any initial conditions
u0, v0, p0, η0 ∈ L2(0, 1), the signals ĝ(t), q̂(t), ‖u‖, ‖v‖, ‖p‖,
‖η‖ are bounded and ‖u‖ is regulated to zero:

lim
t→∞

‖u‖ = 0. (108)

In addition, u(x, t) is square integrable in t for all x ∈ [0, 1].
Remark 1: If the expression ĝ+q̂2/4 becomes negative, r1,2

become complex. However, the control gain in (100) remains
real and well defined.

VII. SIMULATIONS

We present now the results of closed-loop simulations for
the system (98)–(99). The plant parameters are set to g = 4
and q = 2, with these values the unstable eigenvalue ≈ 10.
For the update laws we take ĝ(0) = 3, q̂(0) = 1, and γ1 =
γ2 = 15. The results are shown in Fig. 1-2. We can see that
although the instability occurs at the x = 0 boundary, the
system is successfully regulated to zero by the control from
the opposite boundary.
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VIII. CONCLUSIONS

It would be highly desirable to develop output-feedback
versions of the state-feedback designs for reaction-advection-
diffusion systems in [12], [20]. While the nonadaptive versions
of such results were developed in [19], we have so far not
been able to make them adaptive in a way that guarantees
global stability. This may contradict the finite-dimensional
intuition where output-feedback adaptive designs are available
for a very general class of linear systems [8]. However, those
designs rely on transfer function representations or particular
canonical state space forms—steps that do not easily translate
into the PDE framework, particularly if one wants to preserve
a finite parametrization.

In general, swapping-based adaptive schemes [20] have
a considerably higher dynamic order than Lyapunov-based
schemes [12]. However, for the systems studied in this paper
we have been able to use the same set of Kreisselmeier filters
for both designing an observer and for achieving a static
parametrization from which a gradient update law is derived.
Thus, the dynamic order for the output feedback designs in
the present paper and in [12] is the same. The advantage
of the swapping update laws in the present paper is that
they are considerably simpler, whereas the advantage of the
Lyapunov update laws in [12] is that they are derived from
a complete Lyapunov function that incorporates the plant, the
filters, and the update law, providing a tighter control over
transient performance.

APPENDIX

Lemma A.1: The transformation (26) maps the system (1)–
(2), (10) into (27)–(29). The transformation (80) maps the
system (53)–(54), (68) into (81)–(83).
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Proof: It is easy to check that boundary conditions (28)
and (29) are satisfied. Substituting (26) into (1) we get

ŵt = ŵxx + ˙̂gv − ˙̂g

∫ x

0

{(kĝ(x, ξ, ĝ)ĝ + k(x, ξ, ĝ))v(ξ)

+kĝ(x, ξ, ĝ)η(ξ)} dξ + kξ(x, 0, ĝ)ê(0) . (A.1)

To express the signal η in terms of v and ŵ we use the inverse
transformation to (26):

ĝv(x, t) + η(x, t) = ŵ(x, t) − ĝ

∫ x

0

(x − ξ)ŵ(ξ, t) dξ . (A.2)

Changing the order of integration and taking the necessary
derivatives of k(x, ξ, ĝ) we come to (27)–(29).

The second part of the lemma is proved in the same way.
It is easy to check that (80) satisfies the boundary conditions
(82) and (83). Substituting (80) into (53) we get (A.1) but with
ĝ changed to q̂ everywhere. To express the signal η in terms
of v and ŵ we use the inverse transformation of (80):

q̂v(x, t) + η(x, t) = ŵ(x, t) − q̂

∫ x

0

ŵ(ξ, t) dξ . (A.3)

Changing the order of integration and taking necessary deriva-
tives of k(x, ξ, q̂) we come to (81)–(83).

Lemma A.2 (Lemma B.6 in [13]): Let v, l1, and l2 be real-
valued functions defined on R+, and let c be a positive
constant. If l1 and l2 are nonnegative and in L1 and satisfy
the differential inequality

v̇ ≤ −cv + l1(t)v + l2(t), v(0) ≥ 0 (A.4)

then v ∈ L∞

⋂L1.
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