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Abstract— A state feedback boundary control law that
stabilizes fluid flow in a 2D thermal convection loop is
presented. The fluid is enclosed between two cylinders,
heated from above and cooled from below, which makes
it motion unstable for a large enough Rayleigh number.
The actuation is at the boundary through rotation (direct
velocity actuation) and heat flux (heating or cooling) of
the outer boundary. The design is a new approach for this
kind of a coupled PDE problem, based on a combination of
singular perturbation theory and the backstepping method
for infinite dimensional linear systems. Stability is proved
by Lyapunov method. Though only a linearized version of
the plant is considered in the design, an extensive closed
loop simulation study of the nonlinear PDE model shows
that the result holds for reasonably large initial conditions.

I. I NTRODUCTION

A feedback boundary control law is designed for a
thermal fluid confined in a closed convection loop, which
is created by heating the lower half of the loop and
cooling the upper half. Imposing a temperature gradient
induces density differences, which creates a motion that
is opposed by viscosity and thermal diffusivity. For a
large enough Rayleigh number, which is a function of
physical constants of the system, geometry and temper-
ature difference between the top and the bottom, the
plant develops an instability that the control law is able
to stop.

Other controllers have been designed for this problem,
including an LQG controller by Burns et al [2] who
formulated the problem, and a nonlinear backstepping
design for a discretized version of the plant [1]. The
present design issimpler than the former, not needing
a solution of Ricatti equations, only a linear hyperbolic
equation; and morerigorous than the latter, which does
not hold in the limit when the discrete grid approaches
the continuous domain.

Our controller is designed for the linearized plant
using a combination of singular perturbation theory
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and the backstepping method for infinite dimensional
linear systems. Singular perturbation theory is a mature
area [4] with a wealth of control applications, while
backstepping for infinite dimensional linear systems has
just been recently developed [7].

Combining both methods it is possible to design a
boundary state feedback control law which stabilizes the
closed loop; this is proved for a large enough Prandtl
number, which is the ratio between kinematic viscosity
and thermal difussivity. In this problem, the inverse
of the Prandtl number plays the role of the singular
perturbation parameter.

We start the paper stating the mathematical model of
the convection loop (Section II) and transforming it into
a suitable form for application of singular perturbation
methods. In Section III we introduce the main assump-
tion of this paper which allows for the application of
singular perturbation theory. The quasi-steady state and
the reduced model are then found for this problem, and
the state feedback controller for velocity is set. Sec-
tion IV is divided in several subsections, and deals with
the reduced system using backstepping to stabilize the
PDE. A coordinate transformation (infinite dimensional,
represented by a linear Volterra operator) is introduced
to transform the original PDE into a stable linear PDE
(a heat equation, to be exact). Finding the kernel of the
transformation is the main design task in this procedure;
a linear hyperbolic PDE which it verifies is derived,
and also an equivalent integral equation. Either of them
can be used to numerically or symbolically find the
kernel. The temperature feedback control law is then
presented in terms of this kernel and the state. Finally,
the inverse transformation is derived in terms of the
direct backstepping transformation. In Section V we
present the main result of the paper, a detailed proof of
stability based on both singular perturbation and infinite
dimensional backstepping theory. The theoretical result
is finally suported by a simulation study, presented in
Section VI, in which computations of the evolution of
the closed loop plant and control effort is shown. In
these simulations the Rayleigh number is large enough
for the plant to go open loop unstable, but the controller
is able to overcome the instability.



II. PROBLEM STATEMENT

For the convection loop we employ the model derived
in [1]. The geometry of the problem is shown in Fig.
1, and consists of fluid confined between two concen-
tric cylinders standing in a vertical plane. The main
assumption of this model is that the gap between the
cylinders is small compared to the radius of the cylin-
ders, i.e.R2 − R1 � R1 < R2. Then, introducing the
Boussinesq approximation, other standard assumptions
for the velocity in this 2D configuration, and integrating
the momentum equation along circles of fixed radiusr,
the following plant equations are derived
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wherev stands for velocity, which only depends on the
radiusr, T for the temperature, which depends on both
r and the angleθ, ν is the kinematic viscosity,χ the
thermal diffusivity, andγ = gβ, with g representing
the acceleration due to gravity andβ the coefficient of
thermal expansion. The boundary conditions are Dirich-
let for velocity, with actuation by rotating the outer
boundary, while the temperature has Neumann bound-
ary conditions, namelyTr(t, R1, θ) = Tr(t, R2, θ) =
K sin θ, with K a constant parameter representing the
imposed heating and cooling in the boundaries. We
actuate the heat flux in the outer boundary, which is
more realistic than direct temperature actuation.

Defining τ = T −Kr sin θ we shift the equilibrium
to the origin. Then, we introduce nondimensional coor-
dinates and variables,r′ = r/d, t′ = tχ/d2, v′ = vd/χ,
τ ′ = τ/∆T , Ra = (1/C)γ∆d3/2νχ, P = ν/χ, where
d = R2 − R1, ∆T = −(4/π)K(R1 + R2/2), C is a
constant to be defined, andRa andP are respectively
the Rayleigh and Prandtl numbers. The nondimensional
plant equations are, dropping primes, as follows:
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Fig. 1. Convection Loop

The boundary conditions arev(t, R1) = 0, v(t, R2) =
V (t), τr(t, R1, θ) = 0, and τr(t, R2, θ) = U(t, θ),
where V and U is, respectively, the nondimensional
velocity and temperature control, and periodic boundary
conditions in angle forτ .

Following the lines of the stability study of these
equations in [1], the value ofC is set so the system is
stable for Rayleigh numbers less than unity and unstable
otherwise.

Defining ε = P−1, A1 = RaC/π, A2 = dπ/2(R1 +
R2), dropping time dependence, and neglecting the
nonlinear term, the linearized plant equations are the
following:

εvt = A1

∫ 2π

0

τ(r, φ) cosφdφ− v
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+
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r
+ vrr, (5)

τt = A2v cos θ +
τθθ

r2
+
τr
r

+ τrr, (6)

with the same boundary conditions.
We will stabilize this linearized plant around its equi-

librium at zero, therefore stabilizing —at least locally—
the full nonlinear plant.

III. R EDUCED MODEL

For dealing with this plant assume that the parameter
ε is small enough so we can use singular perturbation
theory.

For obtaining the value for the quasi-steady-state, we
set ε = 0 and solve (5):

0 = A1
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r
+ vrr. (7)



The general solution for (7) is [6]:

v = C1r + C2
1
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2

×
∫ r
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r
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The values ofC1 and C2 depend on the boundary
conditions, and therefore on the velocity actuation. The
quasi-steady-state, substituted into (6), gives the reduced
system, which will be stabilized via the backstepping
method. For this procedure to be applicable we need
the quasy-steady-state to have a strict integral feedback
form, i.e., v(t, r) should not depend on any value ofτ
after r. Based on this consideration we set the velocity
actuation:
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and then the final expression for the quasi-steady-state
is

v = −A1

2
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which plugged into equation (6) renders the following
reduced system:
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whereA12 = A1A2/2. Note that the reduced system has
an integral term which is in the desired strict feedback
form.

IV. BACKSTEPPINGCONTROLLER FOR

TEMPERATURE

For stabilization of the reduced system we apply the
backstepping technique for parabolic PDEs [7], which
allows for compensation of integral terms like the one
that appears in (11).

A. Target system

The target system is going to be:

wt =
wθθ

r2
+
wr

r
+ wrr, (12)

with periodic boundary conditions inθ and the following
boundary conditions inr: wr(R1) = 0, wr(R2) =
qw(R2), whereq is a negative real number. Note that
this system is exponentially stable, which follows from
a standard argument taking as a Lyapunov functional the
L2 norm ofw.

B. Backstepping transformation

For transforming (11) into (12) we are going to use
the following change of variables:

w(r, θ) = τ(r, θ)−
∫ r
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0

k(r, θ, s, φ)τ(s, φ)dsdφ. (13)

For calculating the kernel, we introduce (13) into (12)
and then we apply integration by parts to arrive at an
ultra-hyperbolic PDE which must be verified by the
kernel,
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with periodic boundary conditions in bothφ and ψ,
and the following boundary conditions in the radial
variables:

ks(r, θ, R1, φ) =
k(r, θ, R1, φ)

R1
, (15)

k(r, θ, r, φ) = 0. (16)

By inspection of (14) and looking for a solution, we
insert the following particular shape of the kernel:

k(r, θ, s, φ) = cos θ cosφk̄(r, s), (17)

which verifies the periodic boundary conditions, and
substituted in (14) renders:
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completely eliminating the angular dependence. Also,
introducingk̄ =

√
s
r k̂(r, s) in the last equation we get:
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)
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a hyperbolic partial integro-differential equation, in the
regionT = {(r, s) : R1 ≤ r ≤ R2, R1 ≤ s ≤ r} with
boundary conditions:

k̂s(r,R1) =
k̂(r,R1)

2R1
, (20)

k̂(r, r) = 0. (21)



The kernel in this form can be calculated numerically,
using a simple finite difference scheme, or rewritten into
an integral equation (useful for proving well-posedness
and smoothness). This last step can be done introducing
the following variablesξ = r+s, η = r−s, and denoting

G(ξ, η) = k̂(r, s) = k̂

(
ξ + η

2
,
ξ − η

2

)
(22)

transforming the problem into the following PIDE:
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This equation can be transformed into a pure integral
equation, doing several integrations and employing the
boundary conditions, arriving at
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Using (24) and the same argument as in [7] the following
result holds:

Theorem 1:The equation (19) with boundary condi-
tions (20)-(21) has a uniqueC2(T ) solution.
Therefore a smooth solution exists for equation (14) with
boundary conditions (15)-(16).

C. Control law

Once the kernel is found, it is easy to derive the con-
trol law. Substituting the backstepping transformation

into the outer boundary condition for the target system,
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and then the control law for the derivative of the
temperature at the outer boundary becomes

U(t, θ) = qτ(R2, θ) +
∫ R2
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Note thatq is a design parameter that does not enter
the kernel equations at any point; it is set externally and
enhances stability.

D. Inverse transformation

Having found the backstepping change of variables,
we also look for the inverse of it. Postulating it as

τ(r, θ) = w(r, θ)−
∫ r

R1

∫ 2π

0

l(r, θ, s, φ)w(s, φ)dsdφ, (27)

then, introducing the expression forw in terms of τ
an integral equation is found for this inverse kernel;
introducing, as it was done for the direct transformation,

l(r, θ, s, φ) = cos θ cosφl̄(r, s), (28)

the equation for the inverse transformation is

l̄(r, s) = −k̄(r, s) + π

∫ r

s

l̄(r, ρ)k̄(ρ, s)dρ. (29)

Using this integral equation a similar result to Theorem
1 holds for the inverse kernel.

V. SINGULAR PERTUBATION ANALYSIS FOR THE

ENTIRE SYSTEM

Now that we have derived a control law for the
reduced system, we can drop the assumption thatε = 0
and instead consider it a small but nonzero parameter,
and analyze the stability of the closed loop system. Now
the quasi-steady-state solution is no longer the exact
solution of thev PDE, but still plays an important role.
Calling this previously calculated fast solutionvss,

vss = −A1

2
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r
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an error variablez that measures the deviation of the
velocity from the fast solution can be introduced:

z(t, r) = v(t, r)− vss(t, r). (31)

We start by deriving the PDE that is verified byz:

εzt = − z
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where we have used the fact thatvss verifies equa-
tion (7). This PDE without the last term is usually
referred to as the Boundary Layer model; note that
it is exponentially stable. The last term of (32) can
be expressed in terms ofτ introducing its differential
equation and applying integration by parts and theτ
boundary conditions, and then in termsw by using the
inverse kernel.

The overall plant written in(z, w) variables has the
form
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together with boundary conditionsz(R1) = z(R2) = 0,
wr(R1, θ) = 0, wr(R2, θ) = qw(R2, θ), and periodic
angular boundary conditions forw. For simplicity, we
have denoted the following kernels:
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For the stability proof we are going to use the following
energy Lyapunov functionals:
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The time derivative ofEw can be bounded in the
following way:
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β1 =
√

2π

(
‖Q2

wz‖∞ +
√

(R2
2 −R2

1) ln
R2

R1

×‖Q1
wz‖∞

)
. (44)

The time derivative ofEz has the following bound:
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where
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√
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In both of the previous calculations repeated use of
Cauchy-Schwartz’s and Young’s inequality has been
made, and a version of Poincare’s inequality tailored
for this system has been employed (see the Appendix).
Now, selecting the following Lyapunov function,

E(t) = Ew(t) + Ez(t), (52)

we find its time derivative to be:
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In this equation we have to chooseq andε so the final
expression is negative definite. We set the first as:

q = −1− R2

4(R2 −R1)
. (54)

For finding a value forε, we identify the quadratic
form which appears in (53) and call its matrixA:
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2
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2
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Our interest is to find the maximum possible value of
ε so A > 0. From Sylvester’s criterion we get the
condition forA to be positive definite:
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Solving for 1/ε,

1
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Substitutingγ, we can define an upper bound forε:

1
ε∗

= 2R2
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γ1 + 2γ2 + 2

γ3
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)
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Note that this bound is a function which depends exclu-
sively of the geometry and physical parameters of the
plant.

This establishes asymptotic stability for the plant
in the z, w coordinates, whenε ∈ (0, ε∗). Stability
in the original coordinates follows from the following
inequalities:
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and
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)
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1)
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2

(60)

which are derived taking norm in the respective defini-
tions. We have just proved the following theorem:

Theorem 2:For a sufficiently smallε, the system
(5)-(6) with inner boundary conditionsv(R1) = 0,
τr(R1, θ) = 0, outer boundary conditionsv(R2) =
V (t), τ(R2, θ) = U(t, θ) whereV andU are specified
by control laws (9) and (26) respectively, has unique
classical solutions and is exponentially stable at the
origin in the L2 sense, that is, there exist positive
constantsM andα, independent of the initial conditions,
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Fig. 2. Kernel for temperature actuaction

such that ∫ R2

R1

(
v2(t, s) +

∫ 2π

0

τ2(t, s, φ)dφ
)
sds

≤ Me−αt

∫ R2

R1

(
v2(0, s)

+
∫ 2π

0

τ2(0, s, φ)dφ
)
sds (61)

The proof of existence and uniqueness of classical
solutions has been skipped, but follows from standard
arguments due to linearity of (5)-(6) and due to the form
of the boundary conditions.

VI. SIMULATION STUDY

We show a prototypical simulation case. For numeri-
cal computations, a spectral method combined with the
well-known Crank-Nicholson method (see, for exam-
ple, [3]) has been used, using the following numerical
values:R1 = 1.1975 ft., R2 = 1.2959 ft., P = 8.06,
Ra = 50, C = 7.8962× 103, K = 5 ◦F/ft.

In Fig. 2 the shape of the control kernel,k̂(R2, s)
is plotted, showing that information near the inner
boundary is given more weight in the control law,
which makes sense as the boundary controller is on the
opposite side and therefore has to react more agressively
to compensate fluctuations of temperature in the interior
part of the domain.

Fig. 3 is an open loop simulation of temperature,
which grows very positive or very negative, depending
on the angle, eventually becoming too large for further
computations. In Fig. 4 closed loop simulations of the
plant are shown in physical variables (velocity and
temperature) showing how they reach the equilibrium
state quickly, staying there afterwards. The magnitude
of heat flux control is also shown, while the velocity
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Fig. 3. Open loop evolution of temperature at radiusr = 1.21.

actuation can be seen just looking at ther = R2 section
in the velocity plot, which is the outer cylinder rotation
imposed by the control law.

VII. C ONCLUSIONS ANDFUTURE WORK

A combination of singular perturbation theory and
backstepping for parabolic PDEs has been successfully
employed to stabilize a thermal fluid confined in a
convection loop which is open loop unstable. The equa-
tions of the plant consists on a 1D evolution equation
nonlinearly coupled with a 2D evolution equation, which
is complex enough to make very hard any analytical
attempt to design a boundary controller and then prove
stability of the closed loop. Our controller, based on
the singular perturbation assumption of a large Prandtl
number —which is true for many fluids— succeeds at
this, at least for the linearized plant, employing rotation
of the outer boundary and a Neumann type of boundary
state feedback controller for the temperature (heat flux
actuation) which is a realistic setting. This controller is
found using a backstepping design procedure, which is
both conceptually and computationally simple, requiring
only to solve a hyperbolic linear equation for obtaining
the control law. A simulation study has been done to
show how the plant is stabilized and the magnitude of
the control exerted through the boundary.

Full state feedback can be used in a CFD setting in
which the state is known at every point of the domain,
but in a real physical experiment this is not possible.
Future research includes developing an output feedback
controller, which will need to measure the temperature
only at one or both of the boundaries.
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APPENDIX

The following lemma has been used in Section V.
Lemma 1:For any τ ∈ C1[R1, R2] the following

inequality holds:∫ 2π

0

∫ R2

R1

τ2(r, θ)rdrdθ

≤ 2R2(R2 −R1)
∫ 2π

0

τ2(R2, θ)dθ

+4(R2 −R1)2
∫ 2π

0

∫ R2

R1

τ2
r (r, θ)rdrdθ.(62)

We skip the proof which is standard, see, e.g., [5].


