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Abstract—A state feedback boundary control law that and the backstepping method for infinite dimensional
stabilizes fluid flow in a 2D thermal convection loop is Jinear systems. Singular perturbation theory is a mature
presented. The fluid is enclosed between two cylinders, area [4] with a wealth of control applications, while

heated from above and cooled from below, which makes backstenping for infinite di . i ¢ h
it motion unstable for a large enough Rayleigh number. ackstepping for intinite dimensional linear systems has

The actuation is at the boundary through rotation (direct Just been recently developed [7].

velocity actuation) and heat flux (heating or cooling) of - . . .
the outer boundary. The design is a new approach for this ~ c0mbining both methods it is possible to design a

kind of a Coup|ed PDE pr0b|em, based on a combination of boundary state feedback control law which stabilizes the
singular perturbation theory and the backstepping method closed loop; this is proved for a large enough Prandtl
for infinite dimensional linear systems. Stability is proved  number, which is the ratio between kinematic viscosity
by Lyapunov method. Though only a linearized version of 44 thermal difussivity. In this problem, the inverse

the plant is considered in the design, an extensive closed .
loop simulation study of the nonlinear PDE model shows of the Prandtl number plays the role of the singular

that the result holds for reasonably large initial conditions. ~ Perturbation parameter.

We start the paper stating the mathematical model of
l. INTRODUCTION the convection loop (Section Il) and transforming it into

) . a suitable form for application of singular perturbation
A feedback boundary control law is designed for gnethods. In Section IIl we introduce the main assump-

thermal fluid confined in a closed convection loop, whichign of this paper which allows for the application of
is created by heating the lower half of the loop andingylar perturbation theory. The quasi-steady state and
cooling the upper half. Imposing a temperature gradienfe reduced model are then found for this problem, and
induces density differences, which creates a motion thife state feedback controller for velocity is set. Sec-
is opposed by viscosity and thermgl d!ffuswlty. FOr aion IV is divided in several subsections, and deals with
large enough Rayleigh number, which is a function ofye reduced system using backstepping to stabilize the
physical constants of the system, geometry and temp&spg A coordinate transformation (infinite dimensional,
ature difference between the top and the bottom, theresented by a linear Volterra operator) is introduced
plant develops an instability that the control law is ablg transform the original PDE into a stable linear PDE
to stop. _ _ (a heat equation, to be exact). Finding the kernel of the
~ Other controllers have been designed for this problemsansformation is the main design task in this procedure;
including an LQG controller by Burns et al [2] who g jinear hyperbolic PDE which it verifies is derived,
formulated the problem, and a nonlinear backsteppingnq also an equivalent integral equation. Either of them
design for a discretized version of the plant [1]. The.an pe used to numerically or symbolically find the
present design isimpler than the former, not needing ernel. The temperature feedback control law is then
a solution of Ricatti equations, only a linear hyperboliGyresented in terms of this kernel and the state. Finally,
equation; and moreigorous than the latter, which does the inverse transformation is derived in terms of the
not hold in the limit when the discrete grid approachegjirect backstepping transformation. In Section V we
the continuous domain. present the main result of the paper, a detailed proof of
Our controller is designed for the linearized planistapility based on both singular perturbation and infinite
using a combination of singular perturbation theoryjimensional backstepping theory. The theoretical result
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II. PROBLEM STATEMENT lg

For the convection loop we employ the model derived
in [1]. The geometry of the problem is shown in Fig.
1, and consists of fluid confined between two concen-
tric cylinders standing in a vertical plane. The main A
assumption of this model is that the gap between the
cylinders is small compared to the radius of the cylin-
ders, i.e.R; — R; < R1 < R2. Then, introducing the
Boussinesq approximation, other standard assumptions
for the velocity in this 2D configuration, and integrating
the momentum equation along circles of fixed radius \—FQ
the following plant equations are derived

o Fig. 1. Convection Loop
vo= oL | T(ts,¢)cosédo
2m Jo
+v (—r% + %’ + v7-7-> ) (1) The boundary conditions arg(t, R1) = 0, v(t, Rs) =
v V(t), m(t,R1,0) = 0, and 7.(t,Re,0) = U(t,6),
I, = _;T9 where V' and U is, respectively, the nondimensional
Too T, velocity and temperature control, and periodic boundary
+ <r2 T T’f’?‘) ) () conditions in angle for-.

Following the lines of the stability study of these
wherewv stands for velocity, which only depends on theequations in [1], the value of is set so the system is
radiusr, T' for the temperature, which depends on botfstable for Rayleigh numbers less than unity and unstable
r and the angl®), v is the kinematic viscosityxy the otherwise.
thermal diffusivity, andy = g3, with g representing Defininge = P~', A, = R,C/n, Ay = dr/2(R; +
the acceleration due to gravity amtithe coefficient of R5), dropping time dependence, and neglecting the

thermal expansion. The boundary conditions are Dirichonlinear term, the linearized plant equations are the
let for velocity, with actuation by rotating the outer following:

boundary, while the temperature has Neumann bound-

ary conditions, namelZ.(t, R1,0) = T,.(t, R2,0) = 2 v

K sinf, with K a constant parameter representing the Al/o 7(r, ¢) cos d¢g — 2

imposed heating and cooling in the boundaries. We Uy

actuate the heat flux in the outer boundary, which is +7 - Vrrs ®)

more .re.alistic than direct' temperatgre actuati.o.n.. 7 = Agvcos+ 7%0 4+ Iy Tor (6)
Defining r = T' — Krsin 6 we shift the equilibrium r r

to the origin. Then, we introduce nondimensional coo

dinates and variables! = r/d, t' = tx/d?, v = vd/x,

' =71/AT, R, = (1/C)yAd3/2vy, P = v/x, where

d = R2— Rl, AT = —(4/m)K(R1 + R2/2), C'is a

constant to be defined, anl, and P are respectively

the Rayleigh and Prandtl numbers. The nondimensional

€V

with the same boundary conditions.

We will stabilize this linearized plant around its equi-
librium at zero, therefore stabilizing —at least locally—
the full nonlinear plant.

plant equations are, dropping primes, as follows: lll. REDUCED MODEL
1 27 For dealing with this plant assume that the parameter
vy = ;PRaC 7(t, s, ¢) cos ¢pdg ¢ is small enough so we can use singular perturbation
o v, theory.
+P (_72 Tt “M) , @) For obtaining the value for the quasi-steady-state, we
dm gV L T00 sete = 0 and solve (5):
T = 2(R1+R2)UCOS TTg 2

2w
v Up
+ @) o:m/7mww—ﬁ+7+w. (7)
r 0



The general solution for (7) is [6]: B. Backstepping transformation

Ay For transforming (11) into (12) we are going to use

1
vo= Crr+t CQ; Ty the following change of variables:

" o T2 — 52 r 27
X /R 1 /0 . cos ¢7(s, p)dsdg. (8) w(r,0) = 7(r,0) — /R 1 /0 k(r,0,s,¢)7(s, p)dsdep. (13)

The values ofC, and C; depend on the boundary calculating the kernel, we introduce (13) into (12)
conditions, and therefore on the velocity actuation. Thg4 then we apply integration by parts to arrive at an

guasi-steady-state, substituted into (6), gives the reducﬁﬂra-hyperbolic PDE which must be verified by the
system, which will be stabilized via the backstepping ,nel

method. For this procedure to be applicable we need
the quasy-steady-state to have a strict integral feedback

form, i.e.,v(t,r) should not depend on any value of kpp = _kiz" _ ke + ki; _ ks ks + ﬁz
after ». Based on this consideration we set the velocity r s $ ) 32
. - S
actuation: +A ( k‘(?@&pﬂ/})p ;
s 0

V:_é Ro 27 R%_SQ
2 Rl 0 RQ

?snd then the final expression for the quasrsteady-sta\}\t/elth periodic boundary conditions in both and 1,

or 5 o and the following boundary conditions in the radial
A T us _ H .
v=-%t / / T cosgrit, s, ¢)dsdp, (10) Varables:
Rl 0

cos ¢7(s, p)dsdp, (9)  convpdpd — P2 _ 2

cos 9) cos ¢, (14)

T k(r,0, Ry, )

ks 9 9) R Y = 3 15
which plugged into equation (6) renders the following (r 19) Ry (15)
reduced system: k(r,0,r,6) = 0. (16)

L By inspection of (14) and looking for a solution, we
o= —Aw /Rl /0 r cos ¢ cos §7(s, ¢)dsde insert the following particular shape of the kernel:
Too Tr _

+r72 + = + Trr, (11) k(r,0,s,¢) = cos b cos gpk(r, s), @an

whereA, = A; A, /2. Note that the reduced system hasyvhich_ verifi_es the periodic boundary conditions, and
an integral term which is in the desired strict feedbacgubstituted in (14) renders:

form. 7 7 2 2
7 k kr S -
kr'r = 2__+kss_A12(r i
IV. BACKSTEPPINGCONTROLLER FOR r r
r 2 2
TEMPERATURE [ ke p)p s d,o) 7 (18)
For stabilization of the reduced system we apply the s P

backstepping technigue for parabolic PDEs [7], whicltompletely eliminating the angular dependence. Also,
allows for compensation of integral terms like the onéntroducingk = ﬁ/};(r,s) in the last equation we get:
that appears in (11).

A - 3/1 1Y r? —s2
A. Target system by —kss = 1 (7«2 - 52> k— A1z < Jrs
H P . r 2 _ o2
The target system is going to be: _W/ i, p)p\/j dp) a9
w Wy s S
Wy = %"‘7"‘707”7“7 (12) P
r r a hyperbolic partial integro-differential equation, in the
with periodic boundary conditions ihand the following region7 = {(r,s) : Ry <r < Ry, Ry < s < r} with
boundary conditions in: w,(R;) = 0, w.(R2) = boundary conditions:
quw(Rs), wheregq is a negative real number. Note that R
this system is exponentially stable, which follows from fes(r,Ry) = k(r, Rl)’ (20)
a standard argument taking as a Lyapunov functional the 2R,

e

L? norm of w. k(r,r) = (21)



The kernel in this form can be calculated numericallyinto the outer boundary condition for the target system,
using a simple finite difference scheme, or rewritten into o

an integral equation (useful for proving well-posedness - (R, ¢) / ky(Ro,0,s,¢)7(s, ¢)dsdep

and smoothness). This last step can be done introducing

the following variableg = r+s, n = r—s, and denoting

_/ (R219>R27¢) (R27¢>d8d¢

4+ 0
Glen =it =k (SFLEZT) @) —gr(m
27
transforming the problem into the following PIDE: *Q/ / k(R2,0,s,0)7(s, ¢)dsdo, (25)
_ &n &n and then the control law for the derivative of the
Gen = G—Ap| ———
€ —n2)? €2 —n2 temperature at the outer boundary becomes
27] p p 27
- /. GE+5m=73) Ut,0) = qr(Rs,0) / / +(Ra,0, 5,0)
)2 (£ —n)2 _
prE—m?—(E—n) dp) @ ak(Ra.0,5,0)) (s, 0)dsdo.  (26)
2(/(p+E=m)(E =) Note thatq is a design parameter that does not enter

This equation can be transformed into a pure integrdhe kemel equations at any point; it is set externally and

equation, doing several integrations and employing th@hhances stability.

boundary conditions, arriving at i
D. Inverse transformation

G = —Ap /5 /n 9 drdo Having found the backstepping change of variables,
Ri+nJo 24/02% —~ we also look for the inverse of it. Postulating it as

2R a)y r 27
/ [ ﬁ d d) ) =)~ [ 100, 0)uts, ojdsdg, @7)

then, introducing the expression faf in terms of 7
G(v,0) . T L _
R1+,7 ) an integral equation is found for this inverse kernel;

p introducing, as it was done for the direct transformation,

+ A127TG(U —|— 57~ 5) ~
0 Ur,0,s,0) = cos6cosdl(r,s), (28)
+o0—7)?%—(0—7n)?
(p Y —le—7) dp | dydo the equation for the inverse transformation is
AN (e =y

TR o (2R1 + o)y I(r,s) = —k(r,s) + Tl_(r, Yk (p, s)dp. (29)
[ (6000 ey o e [ 1k

n /27 (p+2R +0—7)?— (2R + 0 —~)? Using this integ_ral equation a similar result to Theorem
o (pr2Rito_1)(2Ri o) 1holds fortheinverse kemel.

XA127TG(2R1 + o+

g,’y — g)dp) dydo. (24) V. SINGULAR PERTUBATION ANALYSIS FOR THE
ENTIRE SYSTEM
Using (24) and the same argument as in [7] the following

result holds:

Theorem 1:The equation (19) with boundary condi-
tions (20)-(21) has a uniqué?(7) solution.
Therefore a smooth solution exists for equation (14) wit
boundary conditions (15)-(16).

Now that we have derived a control law for the

reduced system, we can drop the assumptiondkat)

and instead consider it a small but nonzero parameter,
nd analyze the stability of the closed loop system. Now

the quasi-steady-state solution is no longer the exact

solution of thev PDE, but still plays an important role.

C. Control law Calling this previously calculated fast solutiog,,

Once the kernel is found, it is easy to derive the con- AT PR
trol law. Substituting the backstepping transformation Uss = Ry

; 5 cos o7 (s, ¢)dsde, (30)



an error variablez that measures the deviation of theFor the stability proof we are going to use the following

velocity from the fast solution can be introduced: energy Lyapunov functionals:
Z(ta T) - U(tv 7”) - Uss(ta 7”). (31) 27
E,(t) = / / 2(t, s, ¢)sdsdp, (41)
We start by deriving the PDE that is verified by
) A [T (222 E.(t) = —/ t, s)sds. 42
€z = —%—&-Z——i-zrr—i—e—l// N (t) 2 Jn, 2t 5) (42)
r r 2 Jr, Jo r
X cos ¢1¢(s, @)dsd, 32)

The time derivative ofE,, can be bounded in the

where we have used the fact that, verifies equa- following way:

tion (7). This PDE without the last term is usually

referred to as the Boundary Layer model; note thatdE., < /2”/ —sdsdqb

it is exponentially stable. The last term of (32) can d+ —

be expressed in terms of introducing its differential 2

equation and applying integration by parts and the —5/ / w?sdsde
boundary conditions, and then in termsby using the 0 IR .

: R
inverse kernel. +(q+ 72) Ryw(Ry, ¢)*dg

The overall plant written inz,w) variables has the (R2 - Ry)
2m
form / / w?sdsde
z 2z " R2 Rl
€z = ~2 + o + Zpr + € < . Q.- (r,5)z(s)ds . 1
v p2m ' ( / / sdsqu)
s [ Qs oyt oyisds
27
+ i zw(r7 (b)w(r, ¢)d(b X (/Rl z ( )Sd5> 5 (43)
27
+ 0 szo (Tv ¢)w(R17 ¢)d¢) ) (33) Where
we = %‘Fi"rwrr"’_Q ( )Z(T)

R
B = Vom <||Qi,z||oo+ (B3 — R})In 3*
1

+ sz(r,sﬁ)z(s)ds, (34)
Ry
X[ Quzloo) - (44)
together with boundary conditiongR;) = z(Rz2) = 0,
wyr(Ry,0) = 0, w.(Re,0) = qw(Rz,6), and periodic
angular boundary conditions fap. For simplicity, we

have denoted the following kernels:

dE.  _ ( 1 ) /R2 p
2 .2 < 5 = z“sds
sz = A127Tr i (35) dt GR
T

The time derivative ofF, has the following bound:

)

27 %
1= 7% cos ¢ (27rl_(r, s) (/ / 5dsd¢>

4_ 4282 T
+ A1 cos d)T > rE > ,(36) z
r X / 22(s)sds
2 = Ajcoso, (37) Ry

Zw o
+ﬁ3 / ’LU2 (t7 R27 ¢)d¢
0

! —Agm cos Ok(r, s), (38)

2 = Ajcost, (39)
A1 7"2 + R2

1 R2 27
S L} , +f/ / w2 (t,r, ¢)sdsdg, (45
Q2wo > IR cos ¢ (40) 2 Jn Jo (t,r,¢)sdsdg,  (45)



where Our interest is to find the maximum possible value of
e so A > 0. From Sylvester's criterion we get the
Vo (102,

Pz = condition for A to be positive definite:
R
(R% - R%) In R2|Q.12w||00> ) (46) 1 9 9
1 0< (=) 2R - R+ 2 (59)
R R
Py = —72(514' (Ri_QR))» (47)
27 Solving for 1/e,
Y= nA2pt 2 5 (48)
1
i = > 2R3(Ry—R1)’ (Bi + B2)" + R3y. (57)
7Mo= ( ) ”sznom (49) €
- (R2 ~R))? ||szo||2 Ro. (50) Substitutingy, we can define an upper bound for
= _— — 2 ].
= T Al oy L aRyR - R (8
In both of the previous calculations repeated use of ) v
Cauchy-Schwartz’s and Young's inequality has been +R (’71 + 272 + 232> : (58)

made, and a version of Poincare’s inequality tailored
for this system has been employed (see the Appendix}ote that this bound is a function which depends exclu-

Now, selecting the following Lyapunov function, sively of the geometry and physical parameters of the
B() = Eu(t) + E.(0). (52) Plant | _
This establishes asymptotic stability for the plant
we find its time derivative to be: in the z,w coordinates, where € (0,¢*). Stability
2m in the original coordinates follows from the following
< / / *Sdsdcﬁ inequalities:
Ry 2 2 7|
(Bt m2s) I8 <l (+ 1) 2
27 _ 2 _ p2
x/ wit, Ra, ¢)ds XWWQmm?&U (59)
Ry
27
w?sdsd
RQ — Ry)? / / ¢ and
&) 2 ) s ((R2— Ri)(R3 — R})?
+(B1 + ) 2*(s)sds ol < 2]z + 2||lwllz 3
Ry Ry
2n 3 X (14 [lT]loo
(/ / (s, & sdsdqb) . 5 2
X¢M&Rgm2fm) )
2 1
(eR% —’y) /R1 2%sds. (53)

which are derived taking norm in the respective defini-
tions. We have just proved the following theorem:

Theorem 2:For a sufficiently smalle, the system

In this equation we have to choog@ande so the final
expression is negative definite. We set the first as:

Ry

g=—-1—-—"—— (54) (5)-(6) with inner boundary conditions(R;) = 0,
A(R; — R1) 7.(R1,0) = 0, outer boundary conditions(Rs) =
For finding a value fore, we identify the quadratic V(¢), 7(R2,0) = U(t,6) whereV andU are specified
form which appears in (53) and call its mattik by control laws (9) and (26) respectively, has unique

Ry—R1)2 2 (55) origin in the L? sense, that is, there exist positive

— Lt eég - constants\/ anda, independent of the initial conditions,

1 1450 classical solutions and is exponentially stable at the
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Fig. 3. Open loop evolution of temperature at radius: 1.21.
Fig. 2. Kernel for temperature actuaction

actuation can be seen just looking at the: R, section

such that in the velocity plot, which is the outer cylinder rotation
/R2 (UQ(t o4 /2“ 2its ¢)d¢) ods imposed by the control law.
o Ry 0 VIl. CONCLUSIONS ANDFUTURE WORK
< Me_‘”/ (v*(0, s) A combination of singular perturbation theory and
o R backstepping for parabolic PDEs has been successfully
+/ 72(0, 5 ng)qu) sds (61) employed to stabilize a thermal fluid confined in a
0 o convection loop which is open loop unstable. The equa-

) ) . tions of the plant consists on a 1D evolution equation
The proof of existence and uniqueness of classicqlyy|inearly coupled with a 2D evolution equation, which
solutions has beer_1 sklpped, but follows from standargd complex enough to make very hard any analytical
arguments due to linearity of (5)-(6) and due to the form,e 1t 1o design a boundary controller and then prove
of the boundary conditions. stability of the closed loop. Our controller, based on
VI. SIMULATION STUDY the singular pertu_rbation assumption. of a large Prandtl
We show a prototypical simulation case. For numerilUMPer —which is true for many fluids— succeeds at
this, at least for the linearized plant, employing rotation

cal computations, a spectral method combined with the

well-known Crank-Nicholson method (see, for exam-mc the outer boundary and a Neumann type of boundary

le, [3]) has been used, using the followin numerica?tate feedback controller for the temperature (heat flux
\F;alijesR — 11975 ft R . gl 2059 ft. P % 8.06 actuation) which is a realistic setting. This controller is
1 — . .y 2 — . "y - . 3

Ra = 50, C = 7.8962 x 10°, K — 5 °F /ft. found using a backstepping design procedure, which is

In Fig. 2 the shape of the control kernéi(Rg,s) both conceptually and computationally simple, requiring

is plotted, showing that information near the inneronly to solve a hyperbolic linear equation for obtaining

boundary is given more weight in the control law the control law. A simulation study has been done to
'show how the plant is stabilized and the magnitude of

which makes sense as the boundary controller is on thﬁ
L . the control exerted through the boundary.
opposite side and therefore has to react more agresswerFuII state feedback can be used in a CFD setting in
to compensate fluctuations of temperature in the interior, . . . 9
part of the domain. whlc_h the state is !<nown at every pqlnt_ of the dom_am,
Fig. 3 1 an open loap simiaton of temperaurel! " 2 19 BIVSES experment e s ol possble,
which grows very positive or very negative, dependin ping b

on the angle, eventually becoming too large for furthe%ontm"er’ which will need to measure the temperature
only at one or both of the boundaries.

computations. In Fig. 4 closed loop simulations of the
plant are shown in physical variables (velocity and REFERENCES
temperature) showing how they reach the equilibrium _ _ . I
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