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Output Feedback Boundary Control of a
Ginzburg-Landau Model of Vortex Shedding
Ole Morten Aamo, Andrey Smyshlyaev, Miroslav Krstić, and Bjarne A. Foss

Abstract

An exponentially convergent observer is designed for a linearized Ginzburg-Landau model of vortex
shedding in viscous flow past a bluff body. Measurements are restricted to be taken collocated with
the actuation which is applied on the cylinder surface. The observer is used in conjuction with a
state feedback boundary controller designed in previous work to attenuate vortex shedding. Simulations
demonstrate the performance of the linear output feedback scheme on the nonlinear plant model.

Index Terms Partial differential equations, output feedback, observers, flow control.

I. INTRODUCTION

The dynamics of the cylinder wake, often referred to as the von Kármán vortex street, is
governed by the Navier-Stokes equation. However, in [7] and [17], a simplified model was
suggested in the form of the complex Ginzburg-Landau equation

∂A

∂t
= a1

∂2A

∂x̆2
+ a2 (x̆)

∂A

∂x̆
+ a3 (x̆)A+ a4 |A|2A+ δ (x̆− 1)u, (1)

where A is a complex-valued function of one spatial variable, x̆ ∈ R, and time, t ∈ R+. The
boundary conditions are A (±∞, t) = 0. The control input, denoted u, is in the form of point
actuation at the location of the cylinder, and the coefficients ai, i = 1, .., 4, were fitted to data
from laboratory experiments in [17]. δ denotes the Dirac distribution. A (x̆, t) may represent any
physical variable (velocities (u, v) or pressure p), or derivations thereof, along the centerline
of the 2D cylinder flow. The choice will have an impact on the performance of the Ginzburg-
Landau model, and associating A with the transverse fluctuating velocity v (x̆, y̆ = 0, t) seems
to be a particularly good choice [12]. As pointed out in [10], the model is derived for Reynolds
numbers close to the critical Reynolds number for onset of vortex shedding, but has been shown
to remain accurate far outside this vicinity for a wide variety of flows.

In [13], [17], it was shown numerically that the Ginzburg-Landau model for Reynolds numbers
close to the critical Reynolds number for onset of vortex shedding can be stabilized using
proportional feedback from a single measurement downstream of the cylinder, to local forcing
at the location of the cylinder. Controllers for the Ginzburg-Landau model have previously been
designed for finite dimensional approximations of equation (2) in [9] and [10] for the linearized
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model, and in [1] for the nonlinear model. Numerical investigations based on the Navier-Stokes
equation are numerous, see for instance [14], [5], [6].

We consider here a simplification of (1). We linearize around the zero solution, discard
the upstream subsystem by replacing the local forcing at x̆ = 1 with boundary input at this
location, and truncate the downstream subsystem at some xd ∈ (−∞, 1). Notice that the fluid
flows in the negative x̆ direction. We justify the truncation of the system by noting that the
upstream subsystem is approximately uniform flow, whereas the downstream subsystem can be
approximated to any desired level of accuracy by selecting xd sufficiently far from the cylinder.1

The resulting system is given by

∂A

∂t
= a1

∂2A

∂x̆2
+ a2 (x̆)

∂A

∂x̆
+ a3 (x̆)A (2)

for x̆ ∈ (xd, 1), with boundary conditions

A (xd, t) = 0, and
µ
A (1, t) = u (t) or

∂A

∂x̆
(1, t) = u (t)

¶
, (3)

where A : [xd, 1]×R+ → C, a2 ∈ C2 ([xd, 1];C) , a3 ∈ C1 ([xd, 1];C), a1 ∈ C, and u : R+ → C
is the control input. a1 is assumed to have strictly positive real part. In [2], stabilizing state
feedback boundary control laws for system (2)–(3) were derived based on the backstepping
methodology [8]. The control laws made use of distributed measurements in a finite region
downstream of the cylinder. In this paper, we continue this work by restricting measurements
to be taken at the location of the cylinder only, collocated with actuation, and solve the output
feedback boundary control problem following the lines of [16]. Although the anti-collocated
case (with measurement taken in one point downstream of the cylinder) can also be solved by
a similar procedure, we focus on the collocated case since it avoids the use of unrealistic mid-
flow measurements. In order to implement the scheme in practice, transfer functions between
the modelled Neumann actuation, ∂A (1, t) /∂x̆, and the physical actuation, and the physical
sensing and the modelled sensing, A (1, t), would have to be determined, either experimentally
or computationally. The physical actuation could for instance be micro/synthetic jet actuators
distributed on the cylinder surface, and a possible choice for the physical sensing could be
pressure sensors distributed on the cylinder surface. For further background material, see [3],
[11], [15], [2], [16], and the references therein.

II. PROBLEM STATEMENT

We now rewrite the equation to obtain two coupled partial differential equations in real
variables and coefficients by defining ρ (x, t) = <(B(x, t)) =

¡
B (x, t) + B̄ (x, t)

¢
/2, and

ι (x, t) = =(B(x, t)) =
¡
B (x, t)− B̄ (x, t)

¢
/ (2i), where x = (x̆− xd) / (1− xd) , B (x, t) =

1This claim is postulated from the observation that the local damping effect in (1) increases with increasing distance from
the cylinder, which follows from the coefficients reported in [17].
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A (x̆, t) exp
³

1
2a1

R x̆
xd
a2 (τ) dτ

´
, i denotes the imaginary unit, and denotes complex conjugation.

Equation (2) becomes

ρt = aRρxx + bR (x) ρ− aIιxx − bI (x) ι, ιt = aIρxx + bI (x) ρ+ aRιxx + bR (x) ι, (4)

for x ∈ (0, 1), with boundary conditions

ρ (0, t) = 0, ι (0, t) = 0, (5)

ρ (1, t) = uR (t) , ι (1, t) = uI (t) , or ρx (1, t) = uR (t) , ιx (1, t) = uI (t) , (6)

where aR , <(a1)/ (1− xd)
2 , aI , 1=(a1)/ (1− xd)

2 , and

bR (x) , <
µ
a3 (x̆)−

1

2
a02 (x̆)−

1

4a1
a22 (x̆)

¶
, bI (x) , =

µ
a3 (x̆)−

1

2
a02 (x̆)−

1

4a1
a22 (x̆)

¶
.

(7)
The problem is to find a convergent observer for (4)–(6) with only boundary measurements
available, and use it in conjunction with the state feedback control law found in [2] to derive
stabilizing output feedback boundary control laws. The observer design relates to the state
feedback problem solved in [2] in a way reminiscent of the duality of the corresponding problems
for finite dimensional systems. Thus, we start by reviewing the results in [2].

III. STABILIZATION BY STATE FEEDBACK

In [2], extending the results in [11], [15], the state feedback stabilization problem was solved
by searching for a coordinate transformation in the form

ρ̆ (x, t) = ρ (x, t)−
Z x

0

[k (x, y) ρ (y, t) + kc (x, y) ι (y, t)] dy, (8)

ῐ (x, t) = ι (x, t)−
Z x

0

[−kc (x, y) ρ (y, t) + k (x, y) ι (y, t)] dy, (9)

transforming system (4)–(6) into

ρ̆t = aRρ̆xx + fR (x) ρ̆− aI ῐxx − fI (x) ῐ, ῐt = aI ρ̆xx + fI (x) ρ̆+ aRῐxx + fR (x) ῐ, (10)

for x ∈ (0, 1), with boundary conditions

ρ̆ (0, t) = ῐ (0, t) = 0, and (ρ̆ (1, t) = ῐ (1, t) = 0, or ρ̆x (1, t) = ῐx (1, t) = 0) . (11)

By the choice of fR and fI , system (10)–(11) can be given any desired level of stability. The
corresponding stable behaviour for the original system is ensured by the control input

uR (t) =

Z 1

0

[k1 (y) ρ (y, t) + kc,1 (y) ι (y, t)] dy, (12)

uI (t) =

Z 1

0

[−kc,1 (y) ρ (y, t) + k1 (y) ι (y, t)] dy, (13)
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for Dirichlet actuation, where k1 (y) = k (1, y) , kc,1 (y) = kc (1, y) , and

uR (t) =

Z 1

0

[k2 (y) ρ (y, t) + kc,2 (y) ι (y, t)] dy + k1 (1) ρ (1, t) + kc,1 (1) ι (1, t) , (14)

uI (t) =

Z 1

0

[−kc,2 (y) ρ (y, t) + k2 (y) ι (y, t)] dy − kc,1 (1) ρ (1, t) + k1 (1) ι (1, t) , (15)

for Neumann actuation, where k2 (y) = kx (1, y) , kc,2 (y) = kc,x (1, y) . The skew-symmetric
form of (12)–(13) and (14)–(15) is postulated from the skew-symmetric form of (4). The
following result was proven in [2] for the Dirichlet controller (12)–(13) (it is valid also for
the Neumann controller (14)–(15), as stated here):

Theorem 1:
i. The pair of kernels, k (x, y) and kc (x, y), satisfy the partial differential equation

kxx = kyy + β(x, y)k + βc(x, y)kc, kc,xx = kc,yy − βc(x, y)k + β(x, y)kc, (16)

for (x, y) ∈ T = {x, y : 0 < y < x < 1}, with boundary conditions

k(x, x) = −1
2

Z x

0

β(γ, γ)dγ, kc(x, x) =
1

2

Z x

0

βc(γ, γ)dγ, k (x, 0) = 0, kc (x, 0) = 0, (17)

where
β(x, y) = [aR (bR(y)− fR(x)) + aI (bI(y)− fI(x))] /

¡
a2R + a2I

¢
, (18)

βc(x, y) = [aR (bI(y)− fI(x))− aI (bR(y)− fR(x))] /
¡
a2R + a2I

¢
. (19)

The equation (16) with boundary conditions (17) has a unique C2 (T ) solution, given by

k (x, y) =
∞X
n=0

Gn (x+ y, x− y) , kc (x, y) =
∞X
n=0

Gc,n (x+ y, x− y) , (20)

where
G0 (ξ, η) = −

1

4

Z ξ

η

b (τ , 0) dτ, Gc,0 (ξ, η) =
1

4

Z ξ

η

bc (τ , 0) dτ, (21)

Gn+1 (ξ, η) =
1

4

Z ξ

η

Z η

0

b (τ , s)Gn (τ , s) dsdτ +
1

4

Z ξ

η

Z η

0

bc (τ , s)Gc,n (τ , s) dsdτ, (22)

Gc,n+1 (ξ, η) = −
1

4

Z ξ

η

Z η

0

bc (τ , s)Gn (τ , s) dsdτ +
1

4

Z ξ

η

Z η

0

b (τ , s)Gc,n (τ , s) dsdτ, (23)

and
b (ξ, η) = β

µ
ξ + η

2
,
ξ − η

2

¶
, bc (ξ, η) = βc

µ
ξ + η

2
,
ξ − η

2

¶
. (24)

ii. The inverse of (8)–(9) exists and is in the form

ρ (x, t) = ρ̆ (x, t)−
Z x

0

[l (x, y) ρ̆ (y, t) + lc (x, y) ῐ (y, t)] dy, (25)
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ι (x, t) = ῐ (x, t)−
Z x

0

[−lc (x, y) ρ̆ (y, t) + l (x, y) ῐ (y, t)] dy, (26)

where l and lc are C2 (T ) functions. l and lc can be expressed similarly to k and kc in (20)–(23),
but we omit their explicit definition due to page limitations.

iii. Suppose c > 0, and select fR and fI such that

sup
x∈[0,1]

µ
fR (x) +

1

2
|f 0I (x)|

¶
≤ −c. (27)

Then for any initial data (ρ0, ι0) ∈ H1 (0, 1), the system (4)–(6) in closed loop with the control
law (12)–(13) has a unique classical solution (ρ, ι) ∈ C2,1 ((0, 1)× (0,∞)) and is exponentially
stable at the origin in the L2 (0, 1) and H1 (0, 1) norms. If, in addition, f 0R(1) = f 0I(1) = 0, then
the same conclusion holds for the control law (14)–(15).

In [2], it was shown that a particular choice of fR and fI , that depend on xd in a specific way,
results in state feedback kernel functions that are invariant of xd, provided xd ≤ xs, where xs is
a constant that can be deduced from the coefficients of (1). Moreover, the state feedback kernels
vanish in [xd, xs] in this case. This implies that if the domain is truncated at some xd ≤ xs
for the purpose of computing the feedback kernel functions, the resulting state feedback will
stabilize the plant evolving on the semi-infinite domain (−∞, 1). This is achieved by avoiding
the complete cancellation of the terms involving bR and bI in (4) by using a target system
(10) that contains the natural damping that exists in the plant downstream of xs. It ensures
that only cancellation/domination of the source of instability is performed in the design, and
is similar to common practice in design of finite dimensional backstepping controllers, where
one seeks to leave unaltered terms that add to the stability while cancelling terms that don’t.
The result is less complexity, and better robustness properties. The significance of this with
regard to the present work, is that we need to design an observer that provides an estimate of
the state in the interval [xs, 1], only. In the anti-collocated case, placing the measurement at
xs, the observer can be designed on [xs, 1] and guarantee output feedback stabilization on the
semi-infinite domain (−∞, 1). In the collocated case stability is guaranteed when the system is
truncated to a finite domain. An interesting property of our design is that it requires the solution
of a linear hyperbolic PDE, which is an advantage when compared to other methods, such as
LQG requiring the solution of a Riccati equation, which is quadratic. In fact, for a plant much
simpler than the linearized Ginzburg-Landau model, solving the hyperbolic PDE is reported in
[15] to take an order of magnitude less computational time than solving the Riccati equation.

IV. OBSERVER DESIGN

In the collocated case, measurements are taken at the same location as the control input, that
is on the cylinder surface. The measurements are yR (t) = ρ (1, t) and yI (t) = ι (1, t) , which
leaves ρx (1, t) and ιx (1, t) for control input. Consider the following Luenberger type observer
(omitting the independent variable t for notational brevity)

ρ̂t = aRρ̂xx + bR (x) ρ̂− aI ι̂xx − bI (x) ι̂+ p1 (x) (yR − ŷR) + pc,1 (x) (yI − ŷI) , (28)
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ι̂t = aI ρ̂xx + bI (x) ρ̂+ aRι̂xx + bR (x) ι̂− pc,1 (x) (yR − ŷR) + p1 (x) (yI − ŷI) , (29)

for x ∈ (0, 1), with boundary conditions ρ̂ (0) = ι̂ (0) = 0 and

ρ̂x (1) = p0 (ρ (1)− ρ̂ (1)) + pc,0 (ι (1)− ι̂ (1)) + uR, (30)

ι̂x (1) = −pc,0 (ρ (1)− ρ̂ (1)) + p0 (ι (1)− ι̂ (1)) + uI . (31)

In (28)–(31), p1 (x), pc,1 (x), p0 and pc,0 are output injection gains to be designed. Defining the
observer error ρ̃ (x) = ρ (x)− ρ̂ (x) , ι̃ (x) = ι (x)− ι̂ (x) , the error dynamics are given by

ρ̃t = aRρ̃xx + bR (x) ρ̃− aI ι̃xx − bI (x) ι̃− p1 (x) ρ̃ (1)− pc,1 (x) ι̃ (1) , (32)

ι̃t = aI ρ̃xx + bI (x) ρ̃+ aRι̃xx + bR (x) ι̃+ pc,1 (x) ρ̃ (1)− p1 (x) ι̃ (1) , (33)

for x ∈ (0, 1), with boundary conditions ρ̃ (0) = ι̃ (0) = 0 and

ρ̃x (1) = −p0ρ̃ (1)− pc,0ι̃ (1) , ι̃x (1) = pc,0ρ̃ (1)− p0ι̃ (1) . (34)

The output injection gains p1 (x), pc,1 (x), p0 and pc,0 should be chosen to stabilize the system
(32)–(34). Towards that end, we look for a transformation

ρ̃ (x, t) = σ̃ (x, t)−
Z 1

x

[p (x, y) σ̃ (y, t) + pc (x, y) κ̃ (y, t)] dy, (35)

ι̃ (x, t) = κ̃ (x, t)−
Z 1

x

[−pc (x, y) σ̃ (y, t) + p (x, y) κ̃ (y, t)] dy, (36)

that transforms system (32)–(34) into the exponentially stable system

σ̃t = aRσ̃xx + fR (x) σ̃ − aI κ̃xx − fI (x) κ̃, κ̃t = aI σ̃xx + fI (x) σ̃ + aRκ̃xx + fR (x) κ̃, (37)

for x ∈ (0, 1), with boundary conditions

σ̃ (0) = κ̃ (0) = 0, σ̃x (1) = κ̃x (1) = 0. (38)

When the transformation is found, the output injection gains are given by

p1 (x) = −aRpy (x, 1)− aIpc,y (x, 1) , pc,1 (x) = aIpy (x, 1)− aRpc,y (x, 1) , (39)

p0 = −p (1, 1) , pc,0 = −pc (1, 1) . (40)

By subtracting (32)–(34) from (37)–(38), and using (35)–(36), it can be shown that the kernels
p (x, y) and pc (x, y) must satisfy

pxx = pyy − β̄ (x, y) p− β̄c (x, y) pc, pc,xx = pc,yy + β̄c (x, y) p− β̄ (x, y) pc, (41)

with boundary conditions

p (x, x) = −1
2

Z x

0

β̄ (γ, γ) dγ, pc (x, x) =
1

2

Z x

0

β̄c (γ, γ) dγ, p (0, y) = pc (0, y) = 0, (42)

where

β̄ (x, y) = [aR (bR (x)− fR (y)) + aI (bI (x)− fI (y))] /
¡
a2R + a2I

¢
, (43)
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β̄c (x, y) = [aR (bI (x)− fI (y))− aI (bR (x)− fR (y))] /
¡
a2R + a2I

¢
. (44)

Changing coordinates according to x̆ = y, y̆ = x, defining p̆ (x̆, y̆) , p (x, y) , p̆c (x̆, y̆) ,
pc (x, y) , and noticing that β̄ (y̆, x̆) = β (x̆, y̆) and β̄c (y̆, x̆) = βc (x̆, y̆) , we obtain

p̆x̆x̆ = p̆y̆y̆ + β (x̆, y̆) p̆+ βc (x̆, y̆) p̆c, p̆c,x̆x̆ = p̆c,y̆y̆ − βc (x̆, y̆) p̆+ β (x̆, y̆) p̆c, (45)

with boundary conditions

p̆ (x̆, x̆) = −1
2

Z x̆

0

β (γ, γ) dγ, p̆c (x̆, x̆) =
1

2

Z x̆

0

βc (γ, γ) dγ, p̆ (x̆, 0) = p̆c (x̆, 0) = 0. (46)

From (39)–(40), we have p̆1 (y̆) = −aRp̆x̆ (1, y̆)−aI p̆c,x̆ (1, y̆), p̆c,1 (y̆) = aI p̆x̆ (1, y̆)−aRp̆c,x̆ (1, y̆),
p0 = −p̆ (1, 1), and pc,0 = −p̆c (1, 1). Since equation (45)–(46) is identical with equation (16)–
(17), it follows that the output injection gains can be obtained from the state feedback gains
as

p1 (x) = −aRkx (1, x)− aIkc,x (1, x) , pc,1 (x) = aIkx (1, x)− aRkc,x (1, x) , (47)

p0 = −k (1, 1) , pc,0 = −kc (1, 1) , (48)

and we get the following result directly from Theorem 1.

Theorem 2: Suppose fR and fI satisfy (27) and f 0R(1) = f 0I(1) = 0, and let k, kc be the solu-
tion of (16)–(17). Then for any initial data (ρ̃0, ι̃0) ∈ H1 (0, 1) , the system (32)–(34) with output
injection gains given by (47)–(48) has a unique classical solution (ρ̃, ι̃) ∈ C2,1 ((0, 1)× (0,∞))
and is exponentially stable at the origin in the L2 (0, 1) and H1 (0, 1) norms.

V. OUTPUT FEEDBACK CONTROL DESIGN

The state feedback control law presented in Section III can be implemented by replacing
ρ (y, t) and ι (y, t) by their estimates ρ̂ (y, t) and ι̂ (y, t) in (14)–(15). This adds the dynamics of
the observer into the feedback loop, and we need to verify that closed loop stability is preserved.
We formulate the solution to the ouput-feedback problem as follows.

Theorem 3: Suppose fR and fI satisfy (27) and f 0R(1) = f 0I(1) = 0, and let k, kc be the
solution of (16)–(17). Then for any initial data (ρ0, ι0, ρ̂0, ι̂0) ∈ H1 (0, 1), the system (4)–(5)
with the controller

ρx (1) =

Z 1

0

[kx (1, y) ρ̂ (y) + kc,x (1, y) ι̂ (y)] dy + k (1, 1) ρ (1) + kc (1, 1) ι (1) , (49)

ιx (1) =

Z 1

0

[−kc,x (1, y) ρ̂ (y) + kx (1, y) ι̂ (y)] dy − kc (1, 1) ρ (1) + k (1, 1) ι (1) , (50)

and the observer

ρ̂t = aRρ̂xx + bR (x) ρ̂− aI ι̂xx − bI (x) ι̂

+p1 (x) (ρ (1)− ρ̂ (1)) + pc,1 (x) (ι (1)− ι̂ (1)) , (51)
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ι̂t = aI ρ̂xx + bI (x) ρ̂+ aRι̂xx + bR (x) ι̂

−pc,1 (x) (ρ (1)− ρ̂ (1)) + p1 (x) (ι (1)− ι̂ (1)) , (52)

ρ̂ (0) = 0, ι̂ (0) = 0, (53)

ρ̂x (1) = p0 (ρ(1)− ρ̂(1)) + pc,0 (ι(1)− ι̂(1)) + ρx(1), (54)

ι̂x (1) = −pc,0 (ρ(1)− ρ̂(1)) + p0 (ι(1)− ι̂(1)) + ιx(1), (55)

has unique classical solutions (ρ, ι, ρ̂, ι̂) ∈ C2,1 ((0, 1)× (0,∞)) and is exponentially stable at
the origin in the L2 (0, 1) and H1 (0, 1) norms.

Proof: The coordinate transformation

σ̂ (x, t) = ρ̂ (x, t)−
Z x

0

[k (x, y) ρ̂ (y, t) + kc (x, y) ι̂ (y, t)] dy, (56)

κ̂ (x, t) = ι̂ (x, t)−
Z x

0

[−kc (x, y) ρ̂ (y, t) + k (x, y) ι̂ (y, t)] dy, (57)

maps (51)–(55) into the system

σ̂t = aRσ̂xx + fR (x) σ̂ − aI κ̂xx − fI (x) κ̂− γ (x) σ̃ (1)− γc (x) κ̃ (1) , (58)

κ̂t = aI σ̂xx + fI (x) σ̂ + aRκ̂xx + fR (x) κ̂+ γc (x) σ̃ (1)− γ (x) κ̃ (1) , (59)

for x ∈ (0, 1), with boundary conditions

σ̂ (0, t) = κ̂ (0, t) = 0, σ̂x (1, t) = κ̂x (1, t) = 0, (60)

where

γ (x) =

Z x

0

[k (x, y) p1 (y)− kc (x, y) pc,1 (y)] dy, (61)

γc (x) =

Z x

0

[k (x, y) pc,1 (y) + kc (x, y) p1 (y)] dy. (62)

Notice that systems (37)–(38) and (58)–(60) form a cascade, where the (σ̂, κ̂) subsystem is driven
by the (σ̃, κ̃) subsystem. Well posedness of the (σ̃, κ̃) subsystem is established in Theorem 2.
From standard results for uniformly parabolic equations (see, e.g., [4]; system (58)–(60) is
uniformly parabolic in (0, 1), with module of parabolicity aR) it follows that system (58)–
(59) with boundary conditions (60) and initial data σ̂0, κ̂0 ∈ L∞ (0, 1) , has a unique classical
solution σ̂, κ̂ ∈ C2,1 ((0, 1)× (0,∞)). The smoothness of k, kc and of the kernels for the inverse
transformation, l, lc, as stated in Theorem 1, provide well posedness of system (4)–(5) in closed
loop with (49)–(55). Next, we establish stability. Let k·k denote the L2 (0, 1) norm, and consider

E (t) =
1

2

Z 1

0

¡
σ̂2 + κ̂2 + µσ̃2 + µκ̃2

¢
dx =

1

2

¡
kσ̂k2 + kκ̂k2 + µ kσ̃k2 + µ kκ̃k2

¢
, (63)

where µ is a strictly positive constant to be determined. Due to (27), the time derivative of E (t)
along solutions of system (37)–(38) and (58)–(60) satisfies
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Ė (t) ≤ −cE (t)− c

2

¡
kσ̂k2 + kκ̂k2 + µ kσ̃k2 + µ kκ̃k2

¢
+ γ̄

Z 1

0

(|σ̂σ̃ (1)|+ |σ̂κ̃ (1)|+ |κ̂σ̃ (1)|+ |κ̂κ̃ (1)|) dx

− aR kσ̂xk2 − aR kκ̂xk2 − µaR kσ̃xk2 − µaR kκ̃xk2 , (64)

where we have defined γ̄ = max
©
supx∈[0,1] |γ (x)| , supx∈[0,1] |γc (x)|

ª
. Using Schwartz’ inequal-

ity twice, along with (38), we have
R 1
0
|σ̂σ̃ (1)| dx ≤ kσ̂k kσ̃xk , and similarly for the other terms

appearing in the integrand in the right hand side of (64), so upon completion of squares we get

Ė (t) ≤ −cE (t)−
µ√

c

2
kσ̂k− γ̄√

c
kσ̃xk

¶2
−
µ√

c

2
kσ̂k− γ̄√

c
kκ̃xk

¶2
−
µ√

c

2
kκ̂k− γ̄√

c
kσ̃xk

¶2
−
µ√

c

2
kκ̂k− γ̄√

c
kκ̃xk

¶2
+

µ
2
γ̄2

c
− µaR

¶¡
kσ̃xk2 + kκ̃xk2

¢
.

(65)

Setting µ = 2γ̄2/ (caR) , and applying the comparison principle, we obtain

E (t) ≤ E (0) e−ct, (66)

which proves exponential stability of the (σ̂, κ̂, σ̃, κ̃)-system in the L2 (0, 1) norm. Next, consider

V (t) =
1

2

Z 1

0

¡
σ̂2x + κ̂2x + µσ̃2x + µκ̃2x

¢
dx =

1

2

¡
kσ̂xk2 + kκ̂xk2 + µ kσ̃xk2 + µ kκ̃xk2

¢
. (67)

Due to (27), the derivative of V (t) along solutions of system (37)–(38) and (58)–(60) satisfies

V̇ (t) ≤ −aR
¡
kσ̂xxk2 + kκ̂xxk2 + µ kσ̃xxk2 + µ kκ̃xxk2

¢
+ γ̄ (kσ̂xxk kσ̃xk+ kσ̂xxk kκ̃xk+ kκ̂xxk kσ̃xk+ kκ̂xxk kκ̃xk)

− 3c
4

¡
kσ̂xk2 + kκ̂xk2 + µ kσ̃xk2 + µ kκ̃xk2

¢
+
2

c

Z 1

0

¡
f 0R (x)

2 + f 0I (x)
2¢ ¡σ̂2 + κ̂2 + µσ̃2 + µκ̃2

¢
dx. (68)

Defining c2 = 4 supx∈[0,1]
©
f 0R (x)

2 + f 0I (x)
2ª /c, we have

V̇ (t) ≤ − c
2
V (t) + c2E (t)− aR

¡
kσ̂xxk2 + kκ̂xxk2 + µ kσ̃xxk2 + µ kκ̃xxk2

¢
+ γ̄ (kσ̂xxk kσ̃xk+ kσ̂xxk kκ̃xk+ kκ̂xxk kσ̃xk+ kκ̂xxk kκ̃xk)

− c

2

¡
kσ̂xk2 + kκ̂xk2 + µ kσ̃xk2 + µ kκ̃xk2

¢
. (69)

Completing squares, using (66), and applying the comparison principle, we obtain V (t) ≤
(V (0) + 2c2E (0) /c) e

− c
2
t. From the Poincaré inequality, E ≤ V/2, we get

V (t) ≤ (1 + c2/c)V (0) e
− c
2
t, (70)
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Fig. 1. Left graph: Open loop simulation of nonlinear system. Middle graph: Output injection gains p1(x) (solid) and pc,1(x)

(dashed). Right graph: Observer error converging to zero for the linearly unstable nonlinear plant.

which proves exponential stability of the (σ̂, κ̂, σ̃, κ̃)-system in H1 (0, 1). Since transformation
(56)–(57) and its inverse imply equivalence of norms of (ρ̂, ι̂, ρ̃, ι̃) and (σ̂, κ̂, σ̃, κ̃) in L2 (0, 1)

and H1 (0, 1), the properties proven for system (58)–(60) also hold for system (51)–(55). Since
(ρ̂, ι̂, ρ̃, ι̃) is exponentially stable at the origin in L2 (0, 1) and H1 (0, 1), so is (ρ̂, ι̂, ρ, ι).

VI. SIMULATIONS WITH NONLINEAR MODEL

Observer. If we are using an observer for state estimation only, without a controller that
suppresses vortex shedding, the observer must incorporate the nonlinearities in the system (in
the same manner as an Extended Kalman Filter), in addition to linear output injection designed
by the backstepping method. Including the nonlinear term in (1), the plant model (4) in the (ρ, ι)
coordinates is

ρt = aRρxx +
¡
bR (x) + cR (x)

¡
ρ2 + ι2

¢¢
ρ− aIιxx −

¡
bI (x) + cI (x)

¡
ρ2 + ι2

¢¢
ι, (71)

ιt = aIρxx +
¡
bI (x) + cI (x)

¡
ρ2 + ι2

¢¢
ρ+ aRιxx +

¡
bR (x) + cR (x)

¡
ρ2 + ι2

¢¢
ι, (72)

for x ∈ (0, 1), where cR (x) = R (a4) exp (−r (x)) , cI (x) = I (a4) exp (−r (x)) , and r (x) =

R
³
1
a1

R (1−xd)x+xd
xd

a2 (τ) dτ ). The leftmost graph in Figure 1 shows the open-loop plant response
for the nonlinear system for xd = −7, at Reynolds number Re = 60.2 (Only ρ is shown; ι looks
qualitatively the same). The system is linearly unstable and goes into a quasi-steady/limit-cycling
motion reminiscent of vortex shedding. The middle graph of Figure 1 shows the output injection
gains (47). The observer consists of a copy of (71)–(72) with linear output injection given by
(47) in terms of the state feedback gains, which are computed using (20)–(24). The rightmost
graph in Figure 1 shows the convergence of that observer, despite the plant undergoing unsteady
motion, governed by a linear instability and kept bounded by the cubic nonlinearities.
Output-feedback controller. The left graph in Figure 2 shows the feedback gain kernels, kx (1, y)
and kc,x (1, y), used in (49)–(50). It is interesting to notice the similarity with the middle graph
of Figure 1, which is due to the definition of output injection gains in terms of state feedback

2Defined as Re = ρU∞D/µ, where U∞ is the free stream velocity, D is the cylinder diameter, and ρ and µ are density and
viscosity of the fluid, respectively. Vortex shedding occurs when Re > 47.
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Fig. 2. Left graph: State feedback gain kernels kx(1, x) (solid) and kc,x(1, x) (dashed). Right graph: closed-loop response.

gains in equation (47), and the fact that aI = 0 in this numerical example. When a stabilizing
controller is present, simulations show that one can use either a linear or a nonlinear observer.
The right graph in Figure 2 shows the closed-loop response with a nonlinear observer. Although
our controller (49)–(50) is linear, it is easy to understand why it is stabilizing for large initial
conditions (the i.c.’s of the uncontrolled vortex shedding). This is due to the nonlinearities
being cubic damping terms, which have a stabilizing effect on large states. The ability of our
linear controller to stabilize vortex shedding is in agreement with recent results by Lauga and
Bewley [10], where linear H2/H∞ optimal control methods were used for a spatially discretized
Ginzburg-Landau model, and stabilization was achieved up to Re = 97. Their controller is
structurally similar to ours—a linear state feedback controller plus an observer consisting of a
copy of the nonlinear system and linear output injection. The difference is twofold: our design
is for the continuum model and it places both the sensor(s) (in addition to the actuator(s))
on the bluff body. It was pointed out in [10] that stabilization becomes increasingly difficult
when the Reynolds number and the number of open-loop unstable modes is increased, as the
controllability and observability of these unstable modes become exponentially small. When
designed for the exact Reynolds number of the plant, our controller with nonlinear observer
stabilizes the nonlinear plant (71)–(72) up to Re = 127. A controller designed for Re = 60,
stabilizes the nonlinear plant up to Re = 78, while a controller designed for Re = 80 stabilizes
the nonlinear plant up to Re = 88. This indicates some degree of robustness.
A fully linear compensator. As mentioned above, simulations show that either a nonlinear
or a linear observer suffices in the presence of a stabilizing controller. When the observer is
linear one can take a Laplace transform of the observer and get a transfer function of the linear
compensator. The compensator is two-input-two-output, however due to the symmetry in the
plant, only two of the four transfer functions are different. Figure 3 shows the Bode plots of
the transfer function of the linear compensator, as well as the stable closed-loop response of the
nonlinear plant under the linear compensator. The linear compensator can be approximated very
accurately with a 10th order reduced model, which is stable and minimum phase.
An alternative actuator/sensor architecture. In Figure 3 we used an opportunity to show that
actuation/sensing can also be done in a Dirichlet/Neumann configuration (in addition to the
Neumann/Dirichlet configuration used in Figure 2). In this case we used the measurements of
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Fig. 3. Compensator transfer functions from ρx(1) to ρ(1) (solid) and ιx(1) to ρ(1) (dashed), and closed-loop plant response.

yR (t) = ρx (1, t) and yI (t) = ιx (1, t), the linear observer (28)–(29) with output injection gains

p1 (x) = aRk1 (x) + aIkc,1 (x) , pc,1 (x) = −aIk1 (x) + aRkc,1 (x) , (73)

and actuation via ρ (1, t) = ρ̂ (1, t) = uR (t) and ι (1, t) = ι̂ (1, t) = uI (t). Figure 3 shows the
compensator Bode plots from ρx (1) to ρ (1) (solid line) and from ιx (1) to ρ (1) (dashed line).
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