
1 Review

We did several things last lecture.

1. We went over the nonlinear Navier Stokes equations

2. We linearized the NS equations around the equilibrium profile

3. We took the Fourier Transform of the system in the x and z directions

4. We solved for the pressure

5. We derived Vc to put p in backstepping form

2 Y and ω and backstepping

From last time we have

p = β

∫ y

0

V (t, η)(2η − 1) sinh(α(y − η))dη

+
1

Re
Vyy(0)

cosh(αy)− cosh(α(1− y))
sinh(α)

(1)

and

ut =
1

Re
(−α2u + uyy) +

β

2
y(y − 1)u + 4(2y − 1)V − 2πikxp (2)

Wt =
1

Re
(−α2W + Wyy) +

β

2
y(y − 1)W − 2πikzp (3)

Vt =
1

Re
(−α2V + Vyy) +

β

2
y(y − 1)V − py (4)

To continue our derivation of controllers, we’re going to do a standard trans-
formation in fluid stability analysis and look at the normal velocity and the
vorticity with one caveat. We’re going to look at Vy instead of V .

Y = −Vy = 2πi(kxu + kzW ) (5)
ω = 2πi(kzu− kxW ) . (6)

We establish the second equality by recalling the incompressible condition

2πikxu + 2πikzW + Vy = 0 (7)

Stabilizing these two systems stabilizes the entire linearized system. We see this
by looking at the inverse transformations.

u =
1

2πi

kxY + kzω

k2
x + k2

z

(8)

W =
1

2πi

kzY − kxω

k2
x + k2

z

(9)

V (y) = −
∫ y

0

Y (η)dη . (10)
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So now we want to see what the dynamics of Y and ω look like. Using (2) and
(3) we see

Yt =
1

Re
(−α2Y + Yyy) +

β

2
y(y − 1)Y + 8πikx(2y − 1)V + α2p , (11)

ωt =
1

Re
(−α2ω + ωyy) +

β

2
y(y − 1)ω + 8πikz(2y − 1)V (12)

By plugging in our solution to the pressure we arrive at

Yt =
1

Re
(−α2Y + Yyy) +

β

2
y(y − 1)Y + 8πikx(2y − 1)V

+α2
{

β

∫ y

0

V (t, η)(2η − 1) sinh(α(y − η))dη

+
1

Re
Vyy(0)

cosh(αy)− cosh(α(1− y))
sinh(α)

}
, (13)

ωt =
1

Re
(−α2ω + ωyy) +

β

2
y(y − 1)ω + 8πikz(2y − 1)V (14)

Remembering that Vy = −Y and V = −
∫ y

0
Y (η)dη we now see

Yt =
1

Re
(−α2Y + Yyy) +

β

2
y(y − 1)Y − 8πikx(2y − 1)

∫ y

0

Y (η)dη

+α2
{
− β

∫ y

0

(∫ η

0

Y (σ)dσ
)
(2η − 1) sinh(α(y − η))dη

− 1
Re

Yy(0)
cosh(αy)− cosh(α(1− y))

sinh(α)

}
, (15)

ωt =
1

Re
(−α2ω + ωyy) +

β

2
y(y − 1)ω − 8πikz(2y − 1)

∫ y

0

Y (η)dη (16)

If we define the following:

ε =
1

Re
, (17)

φ(y) =
β

2
y(y − 1) = 8πikxy(y − 1) , (18)

f(y, η) = 8i
{

πkx(2y − 1)− 4π
kx

α
sinh(α(y − η))

−2πkx(2η − 1) cosh(α(y − η))
}

, (19)

g(y) = εα2 cosh(α(1− y))− cosh(αy)
sinh(α)

, (20)

h(y) = −8πkzi(2y − 1) (21)

then our Y and ω systems satisfy the following

2



Yt = ε(−α2Y + Yyy) + φ(y)Y + g(y)Yy(t, 0) +
∫ y

0

f(y, η)Y (t, η)dη .(22)

ωt = ε(−α2ω + ωyy) + φ(y)ω + h(y)
∫ y

0

Y (η)dη (23)

Y (t, 0) = 0 , Y (t, 1) = kxu(t, 1) + kxW (t, 1) (24)
ω(t, 0) = 0 , ω(t, 1) = kzu(t, 1)− kxW (t, 1) (25)

But wait - we can see that we already know how to find a controller for the
Y system as it is autonomous, but we dont know yet how to find a controller
for the ω system as it is not autonomous. We have a cascade system, so what
do we do? Well, it turns out, since the viscous coefficient here is the same, we
can use the following transformations to both decouple and stabilize the system.

Ψ = Y −
∫ y

0

K(kx, kz, y, η)Y (t, kx, kz, η)dη , (26)

Ω = ω −
∫ y

0

Γ(kx, kz, y, η)Y (t, kx, kz, η)dη, (27)

(28)

The first transformation is the standard one we’ve seen, and it stabilizes the two
systems. The second decouples Y and ω. As ω is stable without the Y forcing,
all we are doing is decoupleing it from Y . (Note that φ does not cause instability
because it is a purely imaginary valued function). These transformations take
us to the following target systems

Ψt = ε(−α2Ψ + Ψyy) + φ(y)Ψ , (29)
Ωt = ε(−α2Ω + Ωyy) + φ(y)Ω (30)

Ψ(t, 0) = Ψ(t, 1) = 0 , (31)
Ω(t, 0) = Ω(t, 1) = 0, (32)

both of these are autonomous and stable systems. Again, they have an extra
term that might be unfamiliar (φ(y)Ψ and φ(y)Ω), but this term does not cause
instability as the coefficient is purely imaginary. We see this in a homework
problem.
You know how to derive the pdes for K and Gamma, but Ill write them down
for you.

εKyy = εKηη − f(y, η) + (φ(η)− φ(y))K +
∫ y

η

K(y, ξ)f(ξ, η)dξ , (33)

εK(y, 0) =
∫ y

0

K(y, η)g(η)dη − g(y) , (34)

εK(y, y) = −g(0) . (35)
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εΓyy = εΓηη − h(y) + (φ(η)− φ(y))Γ +
∫ y

η

Γ(y, σ)f(σ, η)dσ (36)

εΓ(y, y) = 0 (37)

εΓ(y, 0) =
∫ y

0

Γ(y, η)g(η)dη (38)

Now we have controllers of the Y and omega systems that look like this.

Y (1) =
∫ 1

0

K(1, η)Y (η)dη (39)

ω(1) =
∫ 1

0

Γ(1, η)Y (η)dη (40)

Again, the ω controller only needs to use Y as it decouples ω from Y . Now
what do we do with these controllers? well, we use the inverse transforms we
wrote down earlier

u =
1

2πi

kxY + kzω

k2
x + k2

z

(41)

W =
1

2πi

kzY − kxω

k2
x + k2

z

(42)

(43)

to find controllers for u and W.

Uc =
−2πi

α2

(
kxY (t, 1) + kzω(t, 1)

)
(44)

Wc =
−2πi

α2

(
kzY (y, 1)− kxω(t, 1)

)
(45)

(46)

and then use the forward tranformation

Y = 2πi(kxu + kzW ) (47)

to get Uc and Wc in terms of u and W .

Uc =
∫ 1

0

4π2

α2

(
kxK(1, η) + kzΓ(1, η)

)(
kxu(t, η) + kzW (t, η)

)
dη (48)

Wc =
∫ 1

0

4π2

α2

(
kzK(1, η)− kxΓ(1, η)

)(
kxu(t, η) + kzW (t, η)

)
dη. (49)

So to take this back to physical space we first want to check that the energy is
not infinite. One way to do this is to remember Parseval’s theorem - the energy
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in wavespace is the same in physical space - and then to cut the wavenumbers
that we actuate off at a certain number. So we can cut off high wavenumbers
because the paramaterized system is stable when kx and kz are high. Now Uc

in physical space becomes

Uc =
∫ 1

0

∫ M

−M

∫ M

−M

∫ ∞
−∞

∫ ∞
−∞

4π2

k2
x + k2

z

×
(
kxK(kx, kz, 1, η) + kzΓ(kx, kz, 1, η)

)(
kxu(t, x̃, z̃, η) + kzW (t, x̃, z̃, η)

)
×e

2πi

(
kx(x−x̃)+kz(z−z̃)

)
dx̃dz̃dkxdkzdη (50)

where M is our cutoff. Physically, actuating small wavenumbers means actua-
tors can be spaced further apart and the changes in space are relatively slow.
Actuating high wavenumbers means that actuators spaced close together will
change quickly in space.
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